1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pstate.c: Native P state management for Intel processors 4 * 5 * (C) Copyright 2012 Intel Corporation 6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/module.h> 14 #include <linux/ktime.h> 15 #include <linux/hrtimer.h> 16 #include <linux/tick.h> 17 #include <linux/slab.h> 18 #include <linux/sched/cpufreq.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/sysfs.h> 23 #include <linux/types.h> 24 #include <linux/fs.h> 25 #include <linux/acpi.h> 26 #include <linux/vmalloc.h> 27 #include <linux/pm_qos.h> 28 #include <trace/events/power.h> 29 30 #include <asm/div64.h> 31 #include <asm/msr.h> 32 #include <asm/cpu_device_id.h> 33 #include <asm/cpufeature.h> 34 #include <asm/intel-family.h> 35 36 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC) 37 38 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 39 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000 40 #define INTEL_CPUFREQ_TRANSITION_DELAY 500 41 42 #ifdef CONFIG_ACPI 43 #include <acpi/processor.h> 44 #include <acpi/cppc_acpi.h> 45 #endif 46 47 #define FRAC_BITS 8 48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) 49 #define fp_toint(X) ((X) >> FRAC_BITS) 50 51 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3)) 52 53 #define EXT_BITS 6 54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) 55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) 56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) 57 58 static inline int32_t mul_fp(int32_t x, int32_t y) 59 { 60 return ((int64_t)x * (int64_t)y) >> FRAC_BITS; 61 } 62 63 static inline int32_t div_fp(s64 x, s64 y) 64 { 65 return div64_s64((int64_t)x << FRAC_BITS, y); 66 } 67 68 static inline int ceiling_fp(int32_t x) 69 { 70 int mask, ret; 71 72 ret = fp_toint(x); 73 mask = (1 << FRAC_BITS) - 1; 74 if (x & mask) 75 ret += 1; 76 return ret; 77 } 78 79 static inline u64 mul_ext_fp(u64 x, u64 y) 80 { 81 return (x * y) >> EXT_FRAC_BITS; 82 } 83 84 static inline u64 div_ext_fp(u64 x, u64 y) 85 { 86 return div64_u64(x << EXT_FRAC_BITS, y); 87 } 88 89 /** 90 * struct sample - Store performance sample 91 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average 92 * performance during last sample period 93 * @busy_scaled: Scaled busy value which is used to calculate next 94 * P state. This can be different than core_avg_perf 95 * to account for cpu idle period 96 * @aperf: Difference of actual performance frequency clock count 97 * read from APERF MSR between last and current sample 98 * @mperf: Difference of maximum performance frequency clock count 99 * read from MPERF MSR between last and current sample 100 * @tsc: Difference of time stamp counter between last and 101 * current sample 102 * @time: Current time from scheduler 103 * 104 * This structure is used in the cpudata structure to store performance sample 105 * data for choosing next P State. 106 */ 107 struct sample { 108 int32_t core_avg_perf; 109 int32_t busy_scaled; 110 u64 aperf; 111 u64 mperf; 112 u64 tsc; 113 u64 time; 114 }; 115 116 /** 117 * struct pstate_data - Store P state data 118 * @current_pstate: Current requested P state 119 * @min_pstate: Min P state possible for this platform 120 * @max_pstate: Max P state possible for this platform 121 * @max_pstate_physical:This is physical Max P state for a processor 122 * This can be higher than the max_pstate which can 123 * be limited by platform thermal design power limits 124 * @scaling: Scaling factor to convert frequency to cpufreq 125 * frequency units 126 * @turbo_pstate: Max Turbo P state possible for this platform 127 * @max_freq: @max_pstate frequency in cpufreq units 128 * @turbo_freq: @turbo_pstate frequency in cpufreq units 129 * 130 * Stores the per cpu model P state limits and current P state. 131 */ 132 struct pstate_data { 133 int current_pstate; 134 int min_pstate; 135 int max_pstate; 136 int max_pstate_physical; 137 int scaling; 138 int turbo_pstate; 139 unsigned int max_freq; 140 unsigned int turbo_freq; 141 }; 142 143 /** 144 * struct vid_data - Stores voltage information data 145 * @min: VID data for this platform corresponding to 146 * the lowest P state 147 * @max: VID data corresponding to the highest P State. 148 * @turbo: VID data for turbo P state 149 * @ratio: Ratio of (vid max - vid min) / 150 * (max P state - Min P State) 151 * 152 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) 153 * This data is used in Atom platforms, where in addition to target P state, 154 * the voltage data needs to be specified to select next P State. 155 */ 156 struct vid_data { 157 int min; 158 int max; 159 int turbo; 160 int32_t ratio; 161 }; 162 163 /** 164 * struct global_params - Global parameters, mostly tunable via sysfs. 165 * @no_turbo: Whether or not to use turbo P-states. 166 * @turbo_disabled: Whether or not turbo P-states are available at all, 167 * based on the MSR_IA32_MISC_ENABLE value and whether or 168 * not the maximum reported turbo P-state is different from 169 * the maximum reported non-turbo one. 170 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq. 171 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo 172 * P-state capacity. 173 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo 174 * P-state capacity. 175 */ 176 struct global_params { 177 bool no_turbo; 178 bool turbo_disabled; 179 bool turbo_disabled_mf; 180 int max_perf_pct; 181 int min_perf_pct; 182 }; 183 184 /** 185 * struct cpudata - Per CPU instance data storage 186 * @cpu: CPU number for this instance data 187 * @policy: CPUFreq policy value 188 * @update_util: CPUFreq utility callback information 189 * @update_util_set: CPUFreq utility callback is set 190 * @iowait_boost: iowait-related boost fraction 191 * @last_update: Time of the last update. 192 * @pstate: Stores P state limits for this CPU 193 * @vid: Stores VID limits for this CPU 194 * @last_sample_time: Last Sample time 195 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference 196 * @prev_aperf: Last APERF value read from APERF MSR 197 * @prev_mperf: Last MPERF value read from MPERF MSR 198 * @prev_tsc: Last timestamp counter (TSC) value 199 * @prev_cummulative_iowait: IO Wait time difference from last and 200 * current sample 201 * @sample: Storage for storing last Sample data 202 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios 203 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios 204 * @acpi_perf_data: Stores ACPI perf information read from _PSS 205 * @valid_pss_table: Set to true for valid ACPI _PSS entries found 206 * @epp_powersave: Last saved HWP energy performance preference 207 * (EPP) or energy performance bias (EPB), 208 * when policy switched to performance 209 * @epp_policy: Last saved policy used to set EPP/EPB 210 * @epp_default: Power on default HWP energy performance 211 * preference/bias 212 * @epp_cached Cached HWP energy-performance preference value 213 * @hwp_req_cached: Cached value of the last HWP Request MSR 214 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR 215 * @last_io_update: Last time when IO wake flag was set 216 * @sched_flags: Store scheduler flags for possible cross CPU update 217 * @hwp_boost_min: Last HWP boosted min performance 218 * @suspended: Whether or not the driver has been suspended. 219 * 220 * This structure stores per CPU instance data for all CPUs. 221 */ 222 struct cpudata { 223 int cpu; 224 225 unsigned int policy; 226 struct update_util_data update_util; 227 bool update_util_set; 228 229 struct pstate_data pstate; 230 struct vid_data vid; 231 232 u64 last_update; 233 u64 last_sample_time; 234 u64 aperf_mperf_shift; 235 u64 prev_aperf; 236 u64 prev_mperf; 237 u64 prev_tsc; 238 u64 prev_cummulative_iowait; 239 struct sample sample; 240 int32_t min_perf_ratio; 241 int32_t max_perf_ratio; 242 #ifdef CONFIG_ACPI 243 struct acpi_processor_performance acpi_perf_data; 244 bool valid_pss_table; 245 #endif 246 unsigned int iowait_boost; 247 s16 epp_powersave; 248 s16 epp_policy; 249 s16 epp_default; 250 s16 epp_cached; 251 u64 hwp_req_cached; 252 u64 hwp_cap_cached; 253 u64 last_io_update; 254 unsigned int sched_flags; 255 u32 hwp_boost_min; 256 bool suspended; 257 }; 258 259 static struct cpudata **all_cpu_data; 260 261 /** 262 * struct pstate_funcs - Per CPU model specific callbacks 263 * @get_max: Callback to get maximum non turbo effective P state 264 * @get_max_physical: Callback to get maximum non turbo physical P state 265 * @get_min: Callback to get minimum P state 266 * @get_turbo: Callback to get turbo P state 267 * @get_scaling: Callback to get frequency scaling factor 268 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference 269 * @get_val: Callback to convert P state to actual MSR write value 270 * @get_vid: Callback to get VID data for Atom platforms 271 * 272 * Core and Atom CPU models have different way to get P State limits. This 273 * structure is used to store those callbacks. 274 */ 275 struct pstate_funcs { 276 int (*get_max)(void); 277 int (*get_max_physical)(void); 278 int (*get_min)(void); 279 int (*get_turbo)(void); 280 int (*get_scaling)(void); 281 int (*get_aperf_mperf_shift)(void); 282 u64 (*get_val)(struct cpudata*, int pstate); 283 void (*get_vid)(struct cpudata *); 284 }; 285 286 static struct pstate_funcs pstate_funcs __read_mostly; 287 288 static int hwp_active __read_mostly; 289 static int hwp_mode_bdw __read_mostly; 290 static bool per_cpu_limits __read_mostly; 291 static bool hwp_boost __read_mostly; 292 293 static struct cpufreq_driver *intel_pstate_driver __read_mostly; 294 295 #ifdef CONFIG_ACPI 296 static bool acpi_ppc; 297 #endif 298 299 static struct global_params global; 300 301 static DEFINE_MUTEX(intel_pstate_driver_lock); 302 static DEFINE_MUTEX(intel_pstate_limits_lock); 303 304 #ifdef CONFIG_ACPI 305 306 static bool intel_pstate_acpi_pm_profile_server(void) 307 { 308 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || 309 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) 310 return true; 311 312 return false; 313 } 314 315 static bool intel_pstate_get_ppc_enable_status(void) 316 { 317 if (intel_pstate_acpi_pm_profile_server()) 318 return true; 319 320 return acpi_ppc; 321 } 322 323 #ifdef CONFIG_ACPI_CPPC_LIB 324 325 /* The work item is needed to avoid CPU hotplug locking issues */ 326 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) 327 { 328 sched_set_itmt_support(); 329 } 330 331 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); 332 333 static void intel_pstate_set_itmt_prio(int cpu) 334 { 335 struct cppc_perf_caps cppc_perf; 336 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; 337 int ret; 338 339 ret = cppc_get_perf_caps(cpu, &cppc_perf); 340 if (ret) 341 return; 342 343 /* 344 * The priorities can be set regardless of whether or not 345 * sched_set_itmt_support(true) has been called and it is valid to 346 * update them at any time after it has been called. 347 */ 348 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); 349 350 if (max_highest_perf <= min_highest_perf) { 351 if (cppc_perf.highest_perf > max_highest_perf) 352 max_highest_perf = cppc_perf.highest_perf; 353 354 if (cppc_perf.highest_perf < min_highest_perf) 355 min_highest_perf = cppc_perf.highest_perf; 356 357 if (max_highest_perf > min_highest_perf) { 358 /* 359 * This code can be run during CPU online under the 360 * CPU hotplug locks, so sched_set_itmt_support() 361 * cannot be called from here. Queue up a work item 362 * to invoke it. 363 */ 364 schedule_work(&sched_itmt_work); 365 } 366 } 367 } 368 369 static int intel_pstate_get_cppc_guranteed(int cpu) 370 { 371 struct cppc_perf_caps cppc_perf; 372 int ret; 373 374 ret = cppc_get_perf_caps(cpu, &cppc_perf); 375 if (ret) 376 return ret; 377 378 if (cppc_perf.guaranteed_perf) 379 return cppc_perf.guaranteed_perf; 380 381 return cppc_perf.nominal_perf; 382 } 383 384 #else /* CONFIG_ACPI_CPPC_LIB */ 385 static void intel_pstate_set_itmt_prio(int cpu) 386 { 387 } 388 #endif /* CONFIG_ACPI_CPPC_LIB */ 389 390 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 391 { 392 struct cpudata *cpu; 393 int ret; 394 int i; 395 396 if (hwp_active) { 397 intel_pstate_set_itmt_prio(policy->cpu); 398 return; 399 } 400 401 if (!intel_pstate_get_ppc_enable_status()) 402 return; 403 404 cpu = all_cpu_data[policy->cpu]; 405 406 ret = acpi_processor_register_performance(&cpu->acpi_perf_data, 407 policy->cpu); 408 if (ret) 409 return; 410 411 /* 412 * Check if the control value in _PSS is for PERF_CTL MSR, which should 413 * guarantee that the states returned by it map to the states in our 414 * list directly. 415 */ 416 if (cpu->acpi_perf_data.control_register.space_id != 417 ACPI_ADR_SPACE_FIXED_HARDWARE) 418 goto err; 419 420 /* 421 * If there is only one entry _PSS, simply ignore _PSS and continue as 422 * usual without taking _PSS into account 423 */ 424 if (cpu->acpi_perf_data.state_count < 2) 425 goto err; 426 427 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); 428 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { 429 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", 430 (i == cpu->acpi_perf_data.state ? '*' : ' '), i, 431 (u32) cpu->acpi_perf_data.states[i].core_frequency, 432 (u32) cpu->acpi_perf_data.states[i].power, 433 (u32) cpu->acpi_perf_data.states[i].control); 434 } 435 436 /* 437 * The _PSS table doesn't contain whole turbo frequency range. 438 * This just contains +1 MHZ above the max non turbo frequency, 439 * with control value corresponding to max turbo ratio. But 440 * when cpufreq set policy is called, it will call with this 441 * max frequency, which will cause a reduced performance as 442 * this driver uses real max turbo frequency as the max 443 * frequency. So correct this frequency in _PSS table to 444 * correct max turbo frequency based on the turbo state. 445 * Also need to convert to MHz as _PSS freq is in MHz. 446 */ 447 if (!global.turbo_disabled) 448 cpu->acpi_perf_data.states[0].core_frequency = 449 policy->cpuinfo.max_freq / 1000; 450 cpu->valid_pss_table = true; 451 pr_debug("_PPC limits will be enforced\n"); 452 453 return; 454 455 err: 456 cpu->valid_pss_table = false; 457 acpi_processor_unregister_performance(policy->cpu); 458 } 459 460 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 461 { 462 struct cpudata *cpu; 463 464 cpu = all_cpu_data[policy->cpu]; 465 if (!cpu->valid_pss_table) 466 return; 467 468 acpi_processor_unregister_performance(policy->cpu); 469 } 470 #else /* CONFIG_ACPI */ 471 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 472 { 473 } 474 475 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 476 { 477 } 478 479 static inline bool intel_pstate_acpi_pm_profile_server(void) 480 { 481 return false; 482 } 483 #endif /* CONFIG_ACPI */ 484 485 #ifndef CONFIG_ACPI_CPPC_LIB 486 static int intel_pstate_get_cppc_guranteed(int cpu) 487 { 488 return -ENOTSUPP; 489 } 490 #endif /* CONFIG_ACPI_CPPC_LIB */ 491 492 static inline void update_turbo_state(void) 493 { 494 u64 misc_en; 495 struct cpudata *cpu; 496 497 cpu = all_cpu_data[0]; 498 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); 499 global.turbo_disabled = 500 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || 501 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); 502 } 503 504 static int min_perf_pct_min(void) 505 { 506 struct cpudata *cpu = all_cpu_data[0]; 507 int turbo_pstate = cpu->pstate.turbo_pstate; 508 509 return turbo_pstate ? 510 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0; 511 } 512 513 static s16 intel_pstate_get_epb(struct cpudata *cpu_data) 514 { 515 u64 epb; 516 int ret; 517 518 if (!boot_cpu_has(X86_FEATURE_EPB)) 519 return -ENXIO; 520 521 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 522 if (ret) 523 return (s16)ret; 524 525 return (s16)(epb & 0x0f); 526 } 527 528 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) 529 { 530 s16 epp; 531 532 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 533 /* 534 * When hwp_req_data is 0, means that caller didn't read 535 * MSR_HWP_REQUEST, so need to read and get EPP. 536 */ 537 if (!hwp_req_data) { 538 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, 539 &hwp_req_data); 540 if (epp) 541 return epp; 542 } 543 epp = (hwp_req_data >> 24) & 0xff; 544 } else { 545 /* When there is no EPP present, HWP uses EPB settings */ 546 epp = intel_pstate_get_epb(cpu_data); 547 } 548 549 return epp; 550 } 551 552 static int intel_pstate_set_epb(int cpu, s16 pref) 553 { 554 u64 epb; 555 int ret; 556 557 if (!boot_cpu_has(X86_FEATURE_EPB)) 558 return -ENXIO; 559 560 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 561 if (ret) 562 return ret; 563 564 epb = (epb & ~0x0f) | pref; 565 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); 566 567 return 0; 568 } 569 570 /* 571 * EPP/EPB display strings corresponding to EPP index in the 572 * energy_perf_strings[] 573 * index String 574 *------------------------------------- 575 * 0 default 576 * 1 performance 577 * 2 balance_performance 578 * 3 balance_power 579 * 4 power 580 */ 581 static const char * const energy_perf_strings[] = { 582 "default", 583 "performance", 584 "balance_performance", 585 "balance_power", 586 "power", 587 NULL 588 }; 589 static const unsigned int epp_values[] = { 590 HWP_EPP_PERFORMANCE, 591 HWP_EPP_BALANCE_PERFORMANCE, 592 HWP_EPP_BALANCE_POWERSAVE, 593 HWP_EPP_POWERSAVE 594 }; 595 596 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp) 597 { 598 s16 epp; 599 int index = -EINVAL; 600 601 *raw_epp = 0; 602 epp = intel_pstate_get_epp(cpu_data, 0); 603 if (epp < 0) 604 return epp; 605 606 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 607 if (epp == HWP_EPP_PERFORMANCE) 608 return 1; 609 if (epp == HWP_EPP_BALANCE_PERFORMANCE) 610 return 2; 611 if (epp == HWP_EPP_BALANCE_POWERSAVE) 612 return 3; 613 if (epp == HWP_EPP_POWERSAVE) 614 return 4; 615 *raw_epp = epp; 616 return 0; 617 } else if (boot_cpu_has(X86_FEATURE_EPB)) { 618 /* 619 * Range: 620 * 0x00-0x03 : Performance 621 * 0x04-0x07 : Balance performance 622 * 0x08-0x0B : Balance power 623 * 0x0C-0x0F : Power 624 * The EPB is a 4 bit value, but our ranges restrict the 625 * value which can be set. Here only using top two bits 626 * effectively. 627 */ 628 index = (epp >> 2) + 1; 629 } 630 631 return index; 632 } 633 634 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp) 635 { 636 int ret; 637 638 /* 639 * Use the cached HWP Request MSR value, because in the active mode the 640 * register itself may be updated by intel_pstate_hwp_boost_up() or 641 * intel_pstate_hwp_boost_down() at any time. 642 */ 643 u64 value = READ_ONCE(cpu->hwp_req_cached); 644 645 value &= ~GENMASK_ULL(31, 24); 646 value |= (u64)epp << 24; 647 /* 648 * The only other updater of hwp_req_cached in the active mode, 649 * intel_pstate_hwp_set(), is called under the same lock as this 650 * function, so it cannot run in parallel with the update below. 651 */ 652 WRITE_ONCE(cpu->hwp_req_cached, value); 653 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 654 if (!ret) 655 cpu->epp_cached = epp; 656 657 return ret; 658 } 659 660 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, 661 int pref_index, bool use_raw, 662 u32 raw_epp) 663 { 664 int epp = -EINVAL; 665 int ret; 666 667 if (!pref_index) 668 epp = cpu_data->epp_default; 669 670 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 671 if (use_raw) 672 epp = raw_epp; 673 else if (epp == -EINVAL) 674 epp = epp_values[pref_index - 1]; 675 676 /* 677 * To avoid confusion, refuse to set EPP to any values different 678 * from 0 (performance) if the current policy is "performance", 679 * because those values would be overridden. 680 */ 681 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 682 return -EBUSY; 683 684 ret = intel_pstate_set_epp(cpu_data, epp); 685 } else { 686 if (epp == -EINVAL) 687 epp = (pref_index - 1) << 2; 688 ret = intel_pstate_set_epb(cpu_data->cpu, epp); 689 } 690 691 return ret; 692 } 693 694 static ssize_t show_energy_performance_available_preferences( 695 struct cpufreq_policy *policy, char *buf) 696 { 697 int i = 0; 698 int ret = 0; 699 700 while (energy_perf_strings[i] != NULL) 701 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); 702 703 ret += sprintf(&buf[ret], "\n"); 704 705 return ret; 706 } 707 708 cpufreq_freq_attr_ro(energy_performance_available_preferences); 709 710 static struct cpufreq_driver intel_pstate; 711 712 static ssize_t store_energy_performance_preference( 713 struct cpufreq_policy *policy, const char *buf, size_t count) 714 { 715 struct cpudata *cpu = all_cpu_data[policy->cpu]; 716 char str_preference[21]; 717 bool raw = false; 718 ssize_t ret; 719 u32 epp = 0; 720 721 ret = sscanf(buf, "%20s", str_preference); 722 if (ret != 1) 723 return -EINVAL; 724 725 ret = match_string(energy_perf_strings, -1, str_preference); 726 if (ret < 0) { 727 if (!boot_cpu_has(X86_FEATURE_HWP_EPP)) 728 return ret; 729 730 ret = kstrtouint(buf, 10, &epp); 731 if (ret) 732 return ret; 733 734 if (epp > 255) 735 return -EINVAL; 736 737 raw = true; 738 } 739 740 /* 741 * This function runs with the policy R/W semaphore held, which 742 * guarantees that the driver pointer will not change while it is 743 * running. 744 */ 745 if (!intel_pstate_driver) 746 return -EAGAIN; 747 748 mutex_lock(&intel_pstate_limits_lock); 749 750 if (intel_pstate_driver == &intel_pstate) { 751 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp); 752 } else { 753 /* 754 * In the passive mode the governor needs to be stopped on the 755 * target CPU before the EPP update and restarted after it, 756 * which is super-heavy-weight, so make sure it is worth doing 757 * upfront. 758 */ 759 if (!raw) 760 epp = ret ? epp_values[ret - 1] : cpu->epp_default; 761 762 if (cpu->epp_cached != epp) { 763 int err; 764 765 cpufreq_stop_governor(policy); 766 ret = intel_pstate_set_epp(cpu, epp); 767 err = cpufreq_start_governor(policy); 768 if (!ret) 769 ret = err; 770 } 771 } 772 773 mutex_unlock(&intel_pstate_limits_lock); 774 775 return ret ?: count; 776 } 777 778 static ssize_t show_energy_performance_preference( 779 struct cpufreq_policy *policy, char *buf) 780 { 781 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 782 int preference, raw_epp; 783 784 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp); 785 if (preference < 0) 786 return preference; 787 788 if (raw_epp) 789 return sprintf(buf, "%d\n", raw_epp); 790 else 791 return sprintf(buf, "%s\n", energy_perf_strings[preference]); 792 } 793 794 cpufreq_freq_attr_rw(energy_performance_preference); 795 796 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf) 797 { 798 struct cpudata *cpu; 799 u64 cap; 800 int ratio; 801 802 ratio = intel_pstate_get_cppc_guranteed(policy->cpu); 803 if (ratio <= 0) { 804 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap); 805 ratio = HWP_GUARANTEED_PERF(cap); 806 } 807 808 cpu = all_cpu_data[policy->cpu]; 809 810 return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling); 811 } 812 813 cpufreq_freq_attr_ro(base_frequency); 814 815 static struct freq_attr *hwp_cpufreq_attrs[] = { 816 &energy_performance_preference, 817 &energy_performance_available_preferences, 818 &base_frequency, 819 NULL, 820 }; 821 822 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu) 823 { 824 u64 cap; 825 826 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap); 827 WRITE_ONCE(cpu->hwp_cap_cached, cap); 828 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap); 829 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap); 830 } 831 832 static void intel_pstate_get_hwp_cap(struct cpudata *cpu) 833 { 834 __intel_pstate_get_hwp_cap(cpu); 835 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling; 836 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling; 837 } 838 839 static void intel_pstate_hwp_set(unsigned int cpu) 840 { 841 struct cpudata *cpu_data = all_cpu_data[cpu]; 842 int max, min; 843 u64 value; 844 s16 epp; 845 846 max = cpu_data->max_perf_ratio; 847 min = cpu_data->min_perf_ratio; 848 849 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 850 min = max; 851 852 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); 853 854 value &= ~HWP_MIN_PERF(~0L); 855 value |= HWP_MIN_PERF(min); 856 857 value &= ~HWP_MAX_PERF(~0L); 858 value |= HWP_MAX_PERF(max); 859 860 if (cpu_data->epp_policy == cpu_data->policy) 861 goto skip_epp; 862 863 cpu_data->epp_policy = cpu_data->policy; 864 865 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { 866 epp = intel_pstate_get_epp(cpu_data, value); 867 cpu_data->epp_powersave = epp; 868 /* If EPP read was failed, then don't try to write */ 869 if (epp < 0) 870 goto skip_epp; 871 872 epp = 0; 873 } else { 874 /* skip setting EPP, when saved value is invalid */ 875 if (cpu_data->epp_powersave < 0) 876 goto skip_epp; 877 878 /* 879 * No need to restore EPP when it is not zero. This 880 * means: 881 * - Policy is not changed 882 * - user has manually changed 883 * - Error reading EPB 884 */ 885 epp = intel_pstate_get_epp(cpu_data, value); 886 if (epp) 887 goto skip_epp; 888 889 epp = cpu_data->epp_powersave; 890 } 891 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 892 value &= ~GENMASK_ULL(31, 24); 893 value |= (u64)epp << 24; 894 } else { 895 intel_pstate_set_epb(cpu, epp); 896 } 897 skip_epp: 898 WRITE_ONCE(cpu_data->hwp_req_cached, value); 899 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); 900 } 901 902 static void intel_pstate_hwp_offline(struct cpudata *cpu) 903 { 904 u64 value = READ_ONCE(cpu->hwp_req_cached); 905 int min_perf; 906 907 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 908 /* 909 * In case the EPP has been set to "performance" by the 910 * active mode "performance" scaling algorithm, replace that 911 * temporary value with the cached EPP one. 912 */ 913 value &= ~GENMASK_ULL(31, 24); 914 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached); 915 WRITE_ONCE(cpu->hwp_req_cached, value); 916 } 917 918 value &= ~GENMASK_ULL(31, 0); 919 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached)); 920 921 /* Set hwp_max = hwp_min */ 922 value |= HWP_MAX_PERF(min_perf); 923 value |= HWP_MIN_PERF(min_perf); 924 925 /* Set EPP to min */ 926 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) 927 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE); 928 929 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 930 } 931 932 #define POWER_CTL_EE_ENABLE 1 933 #define POWER_CTL_EE_DISABLE 2 934 935 static int power_ctl_ee_state; 936 937 static void set_power_ctl_ee_state(bool input) 938 { 939 u64 power_ctl; 940 941 mutex_lock(&intel_pstate_driver_lock); 942 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 943 if (input) { 944 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE); 945 power_ctl_ee_state = POWER_CTL_EE_ENABLE; 946 } else { 947 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); 948 power_ctl_ee_state = POWER_CTL_EE_DISABLE; 949 } 950 wrmsrl(MSR_IA32_POWER_CTL, power_ctl); 951 mutex_unlock(&intel_pstate_driver_lock); 952 } 953 954 static void intel_pstate_hwp_enable(struct cpudata *cpudata); 955 956 static void intel_pstate_hwp_reenable(struct cpudata *cpu) 957 { 958 intel_pstate_hwp_enable(cpu); 959 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached)); 960 } 961 962 static int intel_pstate_suspend(struct cpufreq_policy *policy) 963 { 964 struct cpudata *cpu = all_cpu_data[policy->cpu]; 965 966 pr_debug("CPU %d suspending\n", cpu->cpu); 967 968 cpu->suspended = true; 969 970 return 0; 971 } 972 973 static int intel_pstate_resume(struct cpufreq_policy *policy) 974 { 975 struct cpudata *cpu = all_cpu_data[policy->cpu]; 976 977 pr_debug("CPU %d resuming\n", cpu->cpu); 978 979 /* Only restore if the system default is changed */ 980 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE) 981 set_power_ctl_ee_state(true); 982 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE) 983 set_power_ctl_ee_state(false); 984 985 if (cpu->suspended && hwp_active) { 986 mutex_lock(&intel_pstate_limits_lock); 987 988 /* Re-enable HWP, because "online" has not done that. */ 989 intel_pstate_hwp_reenable(cpu); 990 991 mutex_unlock(&intel_pstate_limits_lock); 992 } 993 994 cpu->suspended = false; 995 996 return 0; 997 } 998 999 static void intel_pstate_update_policies(void) 1000 { 1001 int cpu; 1002 1003 for_each_possible_cpu(cpu) 1004 cpufreq_update_policy(cpu); 1005 } 1006 1007 static void intel_pstate_update_max_freq(unsigned int cpu) 1008 { 1009 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 1010 struct cpudata *cpudata; 1011 1012 if (!policy) 1013 return; 1014 1015 cpudata = all_cpu_data[cpu]; 1016 policy->cpuinfo.max_freq = global.turbo_disabled_mf ? 1017 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq; 1018 1019 refresh_frequency_limits(policy); 1020 1021 cpufreq_cpu_release(policy); 1022 } 1023 1024 static void intel_pstate_update_limits(unsigned int cpu) 1025 { 1026 mutex_lock(&intel_pstate_driver_lock); 1027 1028 update_turbo_state(); 1029 /* 1030 * If turbo has been turned on or off globally, policy limits for 1031 * all CPUs need to be updated to reflect that. 1032 */ 1033 if (global.turbo_disabled_mf != global.turbo_disabled) { 1034 global.turbo_disabled_mf = global.turbo_disabled; 1035 arch_set_max_freq_ratio(global.turbo_disabled); 1036 for_each_possible_cpu(cpu) 1037 intel_pstate_update_max_freq(cpu); 1038 } else { 1039 cpufreq_update_policy(cpu); 1040 } 1041 1042 mutex_unlock(&intel_pstate_driver_lock); 1043 } 1044 1045 /************************** sysfs begin ************************/ 1046 #define show_one(file_name, object) \ 1047 static ssize_t show_##file_name \ 1048 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \ 1049 { \ 1050 return sprintf(buf, "%u\n", global.object); \ 1051 } 1052 1053 static ssize_t intel_pstate_show_status(char *buf); 1054 static int intel_pstate_update_status(const char *buf, size_t size); 1055 1056 static ssize_t show_status(struct kobject *kobj, 1057 struct kobj_attribute *attr, char *buf) 1058 { 1059 ssize_t ret; 1060 1061 mutex_lock(&intel_pstate_driver_lock); 1062 ret = intel_pstate_show_status(buf); 1063 mutex_unlock(&intel_pstate_driver_lock); 1064 1065 return ret; 1066 } 1067 1068 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b, 1069 const char *buf, size_t count) 1070 { 1071 char *p = memchr(buf, '\n', count); 1072 int ret; 1073 1074 mutex_lock(&intel_pstate_driver_lock); 1075 ret = intel_pstate_update_status(buf, p ? p - buf : count); 1076 mutex_unlock(&intel_pstate_driver_lock); 1077 1078 return ret < 0 ? ret : count; 1079 } 1080 1081 static ssize_t show_turbo_pct(struct kobject *kobj, 1082 struct kobj_attribute *attr, char *buf) 1083 { 1084 struct cpudata *cpu; 1085 int total, no_turbo, turbo_pct; 1086 uint32_t turbo_fp; 1087 1088 mutex_lock(&intel_pstate_driver_lock); 1089 1090 if (!intel_pstate_driver) { 1091 mutex_unlock(&intel_pstate_driver_lock); 1092 return -EAGAIN; 1093 } 1094 1095 cpu = all_cpu_data[0]; 1096 1097 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1098 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; 1099 turbo_fp = div_fp(no_turbo, total); 1100 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); 1101 1102 mutex_unlock(&intel_pstate_driver_lock); 1103 1104 return sprintf(buf, "%u\n", turbo_pct); 1105 } 1106 1107 static ssize_t show_num_pstates(struct kobject *kobj, 1108 struct kobj_attribute *attr, char *buf) 1109 { 1110 struct cpudata *cpu; 1111 int total; 1112 1113 mutex_lock(&intel_pstate_driver_lock); 1114 1115 if (!intel_pstate_driver) { 1116 mutex_unlock(&intel_pstate_driver_lock); 1117 return -EAGAIN; 1118 } 1119 1120 cpu = all_cpu_data[0]; 1121 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1122 1123 mutex_unlock(&intel_pstate_driver_lock); 1124 1125 return sprintf(buf, "%u\n", total); 1126 } 1127 1128 static ssize_t show_no_turbo(struct kobject *kobj, 1129 struct kobj_attribute *attr, char *buf) 1130 { 1131 ssize_t ret; 1132 1133 mutex_lock(&intel_pstate_driver_lock); 1134 1135 if (!intel_pstate_driver) { 1136 mutex_unlock(&intel_pstate_driver_lock); 1137 return -EAGAIN; 1138 } 1139 1140 update_turbo_state(); 1141 if (global.turbo_disabled) 1142 ret = sprintf(buf, "%u\n", global.turbo_disabled); 1143 else 1144 ret = sprintf(buf, "%u\n", global.no_turbo); 1145 1146 mutex_unlock(&intel_pstate_driver_lock); 1147 1148 return ret; 1149 } 1150 1151 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b, 1152 const char *buf, size_t count) 1153 { 1154 unsigned int input; 1155 int ret; 1156 1157 ret = sscanf(buf, "%u", &input); 1158 if (ret != 1) 1159 return -EINVAL; 1160 1161 mutex_lock(&intel_pstate_driver_lock); 1162 1163 if (!intel_pstate_driver) { 1164 mutex_unlock(&intel_pstate_driver_lock); 1165 return -EAGAIN; 1166 } 1167 1168 mutex_lock(&intel_pstate_limits_lock); 1169 1170 update_turbo_state(); 1171 if (global.turbo_disabled) { 1172 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n"); 1173 mutex_unlock(&intel_pstate_limits_lock); 1174 mutex_unlock(&intel_pstate_driver_lock); 1175 return -EPERM; 1176 } 1177 1178 global.no_turbo = clamp_t(int, input, 0, 1); 1179 1180 if (global.no_turbo) { 1181 struct cpudata *cpu = all_cpu_data[0]; 1182 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate; 1183 1184 /* Squash the global minimum into the permitted range. */ 1185 if (global.min_perf_pct > pct) 1186 global.min_perf_pct = pct; 1187 } 1188 1189 mutex_unlock(&intel_pstate_limits_lock); 1190 1191 intel_pstate_update_policies(); 1192 1193 mutex_unlock(&intel_pstate_driver_lock); 1194 1195 return count; 1196 } 1197 1198 static void update_qos_request(enum freq_qos_req_type type) 1199 { 1200 struct freq_qos_request *req; 1201 struct cpufreq_policy *policy; 1202 int i; 1203 1204 for_each_possible_cpu(i) { 1205 struct cpudata *cpu = all_cpu_data[i]; 1206 unsigned int freq, perf_pct; 1207 1208 policy = cpufreq_cpu_get(i); 1209 if (!policy) 1210 continue; 1211 1212 req = policy->driver_data; 1213 cpufreq_cpu_put(policy); 1214 1215 if (!req) 1216 continue; 1217 1218 if (hwp_active) 1219 intel_pstate_get_hwp_cap(cpu); 1220 1221 if (type == FREQ_QOS_MIN) { 1222 perf_pct = global.min_perf_pct; 1223 } else { 1224 req++; 1225 perf_pct = global.max_perf_pct; 1226 } 1227 1228 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100); 1229 1230 if (freq_qos_update_request(req, freq) < 0) 1231 pr_warn("Failed to update freq constraint: CPU%d\n", i); 1232 } 1233 } 1234 1235 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b, 1236 const char *buf, size_t count) 1237 { 1238 unsigned int input; 1239 int ret; 1240 1241 ret = sscanf(buf, "%u", &input); 1242 if (ret != 1) 1243 return -EINVAL; 1244 1245 mutex_lock(&intel_pstate_driver_lock); 1246 1247 if (!intel_pstate_driver) { 1248 mutex_unlock(&intel_pstate_driver_lock); 1249 return -EAGAIN; 1250 } 1251 1252 mutex_lock(&intel_pstate_limits_lock); 1253 1254 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100); 1255 1256 mutex_unlock(&intel_pstate_limits_lock); 1257 1258 if (intel_pstate_driver == &intel_pstate) 1259 intel_pstate_update_policies(); 1260 else 1261 update_qos_request(FREQ_QOS_MAX); 1262 1263 mutex_unlock(&intel_pstate_driver_lock); 1264 1265 return count; 1266 } 1267 1268 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b, 1269 const char *buf, size_t count) 1270 { 1271 unsigned int input; 1272 int ret; 1273 1274 ret = sscanf(buf, "%u", &input); 1275 if (ret != 1) 1276 return -EINVAL; 1277 1278 mutex_lock(&intel_pstate_driver_lock); 1279 1280 if (!intel_pstate_driver) { 1281 mutex_unlock(&intel_pstate_driver_lock); 1282 return -EAGAIN; 1283 } 1284 1285 mutex_lock(&intel_pstate_limits_lock); 1286 1287 global.min_perf_pct = clamp_t(int, input, 1288 min_perf_pct_min(), global.max_perf_pct); 1289 1290 mutex_unlock(&intel_pstate_limits_lock); 1291 1292 if (intel_pstate_driver == &intel_pstate) 1293 intel_pstate_update_policies(); 1294 else 1295 update_qos_request(FREQ_QOS_MIN); 1296 1297 mutex_unlock(&intel_pstate_driver_lock); 1298 1299 return count; 1300 } 1301 1302 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj, 1303 struct kobj_attribute *attr, char *buf) 1304 { 1305 return sprintf(buf, "%u\n", hwp_boost); 1306 } 1307 1308 static ssize_t store_hwp_dynamic_boost(struct kobject *a, 1309 struct kobj_attribute *b, 1310 const char *buf, size_t count) 1311 { 1312 unsigned int input; 1313 int ret; 1314 1315 ret = kstrtouint(buf, 10, &input); 1316 if (ret) 1317 return ret; 1318 1319 mutex_lock(&intel_pstate_driver_lock); 1320 hwp_boost = !!input; 1321 intel_pstate_update_policies(); 1322 mutex_unlock(&intel_pstate_driver_lock); 1323 1324 return count; 1325 } 1326 1327 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr, 1328 char *buf) 1329 { 1330 u64 power_ctl; 1331 int enable; 1332 1333 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 1334 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE)); 1335 return sprintf(buf, "%d\n", !enable); 1336 } 1337 1338 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b, 1339 const char *buf, size_t count) 1340 { 1341 bool input; 1342 int ret; 1343 1344 ret = kstrtobool(buf, &input); 1345 if (ret) 1346 return ret; 1347 1348 set_power_ctl_ee_state(input); 1349 1350 return count; 1351 } 1352 1353 show_one(max_perf_pct, max_perf_pct); 1354 show_one(min_perf_pct, min_perf_pct); 1355 1356 define_one_global_rw(status); 1357 define_one_global_rw(no_turbo); 1358 define_one_global_rw(max_perf_pct); 1359 define_one_global_rw(min_perf_pct); 1360 define_one_global_ro(turbo_pct); 1361 define_one_global_ro(num_pstates); 1362 define_one_global_rw(hwp_dynamic_boost); 1363 define_one_global_rw(energy_efficiency); 1364 1365 static struct attribute *intel_pstate_attributes[] = { 1366 &status.attr, 1367 &no_turbo.attr, 1368 &turbo_pct.attr, 1369 &num_pstates.attr, 1370 NULL 1371 }; 1372 1373 static const struct attribute_group intel_pstate_attr_group = { 1374 .attrs = intel_pstate_attributes, 1375 }; 1376 1377 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[]; 1378 1379 static struct kobject *intel_pstate_kobject; 1380 1381 static void __init intel_pstate_sysfs_expose_params(void) 1382 { 1383 int rc; 1384 1385 intel_pstate_kobject = kobject_create_and_add("intel_pstate", 1386 &cpu_subsys.dev_root->kobj); 1387 if (WARN_ON(!intel_pstate_kobject)) 1388 return; 1389 1390 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); 1391 if (WARN_ON(rc)) 1392 return; 1393 1394 /* 1395 * If per cpu limits are enforced there are no global limits, so 1396 * return without creating max/min_perf_pct attributes 1397 */ 1398 if (per_cpu_limits) 1399 return; 1400 1401 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); 1402 WARN_ON(rc); 1403 1404 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); 1405 WARN_ON(rc); 1406 1407 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) { 1408 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr); 1409 WARN_ON(rc); 1410 } 1411 } 1412 1413 static void __init intel_pstate_sysfs_remove(void) 1414 { 1415 if (!intel_pstate_kobject) 1416 return; 1417 1418 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group); 1419 1420 if (!per_cpu_limits) { 1421 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr); 1422 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr); 1423 1424 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) 1425 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr); 1426 } 1427 1428 kobject_put(intel_pstate_kobject); 1429 } 1430 1431 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void) 1432 { 1433 int rc; 1434 1435 if (!hwp_active) 1436 return; 1437 1438 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1439 WARN_ON_ONCE(rc); 1440 } 1441 1442 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void) 1443 { 1444 if (!hwp_active) 1445 return; 1446 1447 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1448 } 1449 1450 /************************** sysfs end ************************/ 1451 1452 static void intel_pstate_hwp_enable(struct cpudata *cpudata) 1453 { 1454 /* First disable HWP notification interrupt as we don't process them */ 1455 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1456 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1457 1458 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); 1459 if (cpudata->epp_default == -EINVAL) 1460 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); 1461 } 1462 1463 static int atom_get_min_pstate(void) 1464 { 1465 u64 value; 1466 1467 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1468 return (value >> 8) & 0x7F; 1469 } 1470 1471 static int atom_get_max_pstate(void) 1472 { 1473 u64 value; 1474 1475 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1476 return (value >> 16) & 0x7F; 1477 } 1478 1479 static int atom_get_turbo_pstate(void) 1480 { 1481 u64 value; 1482 1483 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value); 1484 return value & 0x7F; 1485 } 1486 1487 static u64 atom_get_val(struct cpudata *cpudata, int pstate) 1488 { 1489 u64 val; 1490 int32_t vid_fp; 1491 u32 vid; 1492 1493 val = (u64)pstate << 8; 1494 if (global.no_turbo && !global.turbo_disabled) 1495 val |= (u64)1 << 32; 1496 1497 vid_fp = cpudata->vid.min + mul_fp( 1498 int_tofp(pstate - cpudata->pstate.min_pstate), 1499 cpudata->vid.ratio); 1500 1501 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); 1502 vid = ceiling_fp(vid_fp); 1503 1504 if (pstate > cpudata->pstate.max_pstate) 1505 vid = cpudata->vid.turbo; 1506 1507 return val | vid; 1508 } 1509 1510 static int silvermont_get_scaling(void) 1511 { 1512 u64 value; 1513 int i; 1514 /* Defined in Table 35-6 from SDM (Sept 2015) */ 1515 static int silvermont_freq_table[] = { 1516 83300, 100000, 133300, 116700, 80000}; 1517 1518 rdmsrl(MSR_FSB_FREQ, value); 1519 i = value & 0x7; 1520 WARN_ON(i > 4); 1521 1522 return silvermont_freq_table[i]; 1523 } 1524 1525 static int airmont_get_scaling(void) 1526 { 1527 u64 value; 1528 int i; 1529 /* Defined in Table 35-10 from SDM (Sept 2015) */ 1530 static int airmont_freq_table[] = { 1531 83300, 100000, 133300, 116700, 80000, 1532 93300, 90000, 88900, 87500}; 1533 1534 rdmsrl(MSR_FSB_FREQ, value); 1535 i = value & 0xF; 1536 WARN_ON(i > 8); 1537 1538 return airmont_freq_table[i]; 1539 } 1540 1541 static void atom_get_vid(struct cpudata *cpudata) 1542 { 1543 u64 value; 1544 1545 rdmsrl(MSR_ATOM_CORE_VIDS, value); 1546 cpudata->vid.min = int_tofp((value >> 8) & 0x7f); 1547 cpudata->vid.max = int_tofp((value >> 16) & 0x7f); 1548 cpudata->vid.ratio = div_fp( 1549 cpudata->vid.max - cpudata->vid.min, 1550 int_tofp(cpudata->pstate.max_pstate - 1551 cpudata->pstate.min_pstate)); 1552 1553 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value); 1554 cpudata->vid.turbo = value & 0x7f; 1555 } 1556 1557 static int core_get_min_pstate(void) 1558 { 1559 u64 value; 1560 1561 rdmsrl(MSR_PLATFORM_INFO, value); 1562 return (value >> 40) & 0xFF; 1563 } 1564 1565 static int core_get_max_pstate_physical(void) 1566 { 1567 u64 value; 1568 1569 rdmsrl(MSR_PLATFORM_INFO, value); 1570 return (value >> 8) & 0xFF; 1571 } 1572 1573 static int core_get_tdp_ratio(u64 plat_info) 1574 { 1575 /* Check how many TDP levels present */ 1576 if (plat_info & 0x600000000) { 1577 u64 tdp_ctrl; 1578 u64 tdp_ratio; 1579 int tdp_msr; 1580 int err; 1581 1582 /* Get the TDP level (0, 1, 2) to get ratios */ 1583 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); 1584 if (err) 1585 return err; 1586 1587 /* TDP MSR are continuous starting at 0x648 */ 1588 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); 1589 err = rdmsrl_safe(tdp_msr, &tdp_ratio); 1590 if (err) 1591 return err; 1592 1593 /* For level 1 and 2, bits[23:16] contain the ratio */ 1594 if (tdp_ctrl & 0x03) 1595 tdp_ratio >>= 16; 1596 1597 tdp_ratio &= 0xff; /* ratios are only 8 bits long */ 1598 pr_debug("tdp_ratio %x\n", (int)tdp_ratio); 1599 1600 return (int)tdp_ratio; 1601 } 1602 1603 return -ENXIO; 1604 } 1605 1606 static int core_get_max_pstate(void) 1607 { 1608 u64 tar; 1609 u64 plat_info; 1610 int max_pstate; 1611 int tdp_ratio; 1612 int err; 1613 1614 rdmsrl(MSR_PLATFORM_INFO, plat_info); 1615 max_pstate = (plat_info >> 8) & 0xFF; 1616 1617 tdp_ratio = core_get_tdp_ratio(plat_info); 1618 if (tdp_ratio <= 0) 1619 return max_pstate; 1620 1621 if (hwp_active) { 1622 /* Turbo activation ratio is not used on HWP platforms */ 1623 return tdp_ratio; 1624 } 1625 1626 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar); 1627 if (!err) { 1628 int tar_levels; 1629 1630 /* Do some sanity checking for safety */ 1631 tar_levels = tar & 0xff; 1632 if (tdp_ratio - 1 == tar_levels) { 1633 max_pstate = tar_levels; 1634 pr_debug("max_pstate=TAC %x\n", max_pstate); 1635 } 1636 } 1637 1638 return max_pstate; 1639 } 1640 1641 static int core_get_turbo_pstate(void) 1642 { 1643 u64 value; 1644 int nont, ret; 1645 1646 rdmsrl(MSR_TURBO_RATIO_LIMIT, value); 1647 nont = core_get_max_pstate(); 1648 ret = (value) & 255; 1649 if (ret <= nont) 1650 ret = nont; 1651 return ret; 1652 } 1653 1654 static inline int core_get_scaling(void) 1655 { 1656 return 100000; 1657 } 1658 1659 static u64 core_get_val(struct cpudata *cpudata, int pstate) 1660 { 1661 u64 val; 1662 1663 val = (u64)pstate << 8; 1664 if (global.no_turbo && !global.turbo_disabled) 1665 val |= (u64)1 << 32; 1666 1667 return val; 1668 } 1669 1670 static int knl_get_aperf_mperf_shift(void) 1671 { 1672 return 10; 1673 } 1674 1675 static int knl_get_turbo_pstate(void) 1676 { 1677 u64 value; 1678 int nont, ret; 1679 1680 rdmsrl(MSR_TURBO_RATIO_LIMIT, value); 1681 nont = core_get_max_pstate(); 1682 ret = (((value) >> 8) & 0xFF); 1683 if (ret <= nont) 1684 ret = nont; 1685 return ret; 1686 } 1687 1688 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) 1689 { 1690 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); 1691 cpu->pstate.current_pstate = pstate; 1692 /* 1693 * Generally, there is no guarantee that this code will always run on 1694 * the CPU being updated, so force the register update to run on the 1695 * right CPU. 1696 */ 1697 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 1698 pstate_funcs.get_val(cpu, pstate)); 1699 } 1700 1701 static void intel_pstate_set_min_pstate(struct cpudata *cpu) 1702 { 1703 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); 1704 } 1705 1706 static void intel_pstate_max_within_limits(struct cpudata *cpu) 1707 { 1708 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio); 1709 1710 update_turbo_state(); 1711 intel_pstate_set_pstate(cpu, pstate); 1712 } 1713 1714 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) 1715 { 1716 cpu->pstate.min_pstate = pstate_funcs.get_min(); 1717 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical(); 1718 cpu->pstate.scaling = pstate_funcs.get_scaling(); 1719 1720 if (hwp_active && !hwp_mode_bdw) { 1721 __intel_pstate_get_hwp_cap(cpu); 1722 } else { 1723 cpu->pstate.max_pstate = pstate_funcs.get_max(); 1724 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(); 1725 } 1726 1727 cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling; 1728 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling; 1729 1730 if (pstate_funcs.get_aperf_mperf_shift) 1731 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift(); 1732 1733 if (pstate_funcs.get_vid) 1734 pstate_funcs.get_vid(cpu); 1735 1736 intel_pstate_set_min_pstate(cpu); 1737 } 1738 1739 /* 1740 * Long hold time will keep high perf limits for long time, 1741 * which negatively impacts perf/watt for some workloads, 1742 * like specpower. 3ms is based on experiements on some 1743 * workoads. 1744 */ 1745 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC; 1746 1747 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu) 1748 { 1749 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached); 1750 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 1751 u32 max_limit = (hwp_req & 0xff00) >> 8; 1752 u32 min_limit = (hwp_req & 0xff); 1753 u32 boost_level1; 1754 1755 /* 1756 * Cases to consider (User changes via sysfs or boot time): 1757 * If, P0 (Turbo max) = P1 (Guaranteed max) = min: 1758 * No boost, return. 1759 * If, P0 (Turbo max) > P1 (Guaranteed max) = min: 1760 * Should result in one level boost only for P0. 1761 * If, P0 (Turbo max) = P1 (Guaranteed max) > min: 1762 * Should result in two level boost: 1763 * (min + p1)/2 and P1. 1764 * If, P0 (Turbo max) > P1 (Guaranteed max) > min: 1765 * Should result in three level boost: 1766 * (min + p1)/2, P1 and P0. 1767 */ 1768 1769 /* If max and min are equal or already at max, nothing to boost */ 1770 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit) 1771 return; 1772 1773 if (!cpu->hwp_boost_min) 1774 cpu->hwp_boost_min = min_limit; 1775 1776 /* level at half way mark between min and guranteed */ 1777 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1; 1778 1779 if (cpu->hwp_boost_min < boost_level1) 1780 cpu->hwp_boost_min = boost_level1; 1781 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap)) 1782 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap); 1783 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) && 1784 max_limit != HWP_GUARANTEED_PERF(hwp_cap)) 1785 cpu->hwp_boost_min = max_limit; 1786 else 1787 return; 1788 1789 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min; 1790 wrmsrl(MSR_HWP_REQUEST, hwp_req); 1791 cpu->last_update = cpu->sample.time; 1792 } 1793 1794 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu) 1795 { 1796 if (cpu->hwp_boost_min) { 1797 bool expired; 1798 1799 /* Check if we are idle for hold time to boost down */ 1800 expired = time_after64(cpu->sample.time, cpu->last_update + 1801 hwp_boost_hold_time_ns); 1802 if (expired) { 1803 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached); 1804 cpu->hwp_boost_min = 0; 1805 } 1806 } 1807 cpu->last_update = cpu->sample.time; 1808 } 1809 1810 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu, 1811 u64 time) 1812 { 1813 cpu->sample.time = time; 1814 1815 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) { 1816 bool do_io = false; 1817 1818 cpu->sched_flags = 0; 1819 /* 1820 * Set iowait_boost flag and update time. Since IO WAIT flag 1821 * is set all the time, we can't just conclude that there is 1822 * some IO bound activity is scheduled on this CPU with just 1823 * one occurrence. If we receive at least two in two 1824 * consecutive ticks, then we treat as boost candidate. 1825 */ 1826 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC)) 1827 do_io = true; 1828 1829 cpu->last_io_update = time; 1830 1831 if (do_io) 1832 intel_pstate_hwp_boost_up(cpu); 1833 1834 } else { 1835 intel_pstate_hwp_boost_down(cpu); 1836 } 1837 } 1838 1839 static inline void intel_pstate_update_util_hwp(struct update_util_data *data, 1840 u64 time, unsigned int flags) 1841 { 1842 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 1843 1844 cpu->sched_flags |= flags; 1845 1846 if (smp_processor_id() == cpu->cpu) 1847 intel_pstate_update_util_hwp_local(cpu, time); 1848 } 1849 1850 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) 1851 { 1852 struct sample *sample = &cpu->sample; 1853 1854 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); 1855 } 1856 1857 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) 1858 { 1859 u64 aperf, mperf; 1860 unsigned long flags; 1861 u64 tsc; 1862 1863 local_irq_save(flags); 1864 rdmsrl(MSR_IA32_APERF, aperf); 1865 rdmsrl(MSR_IA32_MPERF, mperf); 1866 tsc = rdtsc(); 1867 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { 1868 local_irq_restore(flags); 1869 return false; 1870 } 1871 local_irq_restore(flags); 1872 1873 cpu->last_sample_time = cpu->sample.time; 1874 cpu->sample.time = time; 1875 cpu->sample.aperf = aperf; 1876 cpu->sample.mperf = mperf; 1877 cpu->sample.tsc = tsc; 1878 cpu->sample.aperf -= cpu->prev_aperf; 1879 cpu->sample.mperf -= cpu->prev_mperf; 1880 cpu->sample.tsc -= cpu->prev_tsc; 1881 1882 cpu->prev_aperf = aperf; 1883 cpu->prev_mperf = mperf; 1884 cpu->prev_tsc = tsc; 1885 /* 1886 * First time this function is invoked in a given cycle, all of the 1887 * previous sample data fields are equal to zero or stale and they must 1888 * be populated with meaningful numbers for things to work, so assume 1889 * that sample.time will always be reset before setting the utilization 1890 * update hook and make the caller skip the sample then. 1891 */ 1892 if (cpu->last_sample_time) { 1893 intel_pstate_calc_avg_perf(cpu); 1894 return true; 1895 } 1896 return false; 1897 } 1898 1899 static inline int32_t get_avg_frequency(struct cpudata *cpu) 1900 { 1901 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz); 1902 } 1903 1904 static inline int32_t get_avg_pstate(struct cpudata *cpu) 1905 { 1906 return mul_ext_fp(cpu->pstate.max_pstate_physical, 1907 cpu->sample.core_avg_perf); 1908 } 1909 1910 static inline int32_t get_target_pstate(struct cpudata *cpu) 1911 { 1912 struct sample *sample = &cpu->sample; 1913 int32_t busy_frac; 1914 int target, avg_pstate; 1915 1916 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift, 1917 sample->tsc); 1918 1919 if (busy_frac < cpu->iowait_boost) 1920 busy_frac = cpu->iowait_boost; 1921 1922 sample->busy_scaled = busy_frac * 100; 1923 1924 target = global.no_turbo || global.turbo_disabled ? 1925 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 1926 target += target >> 2; 1927 target = mul_fp(target, busy_frac); 1928 if (target < cpu->pstate.min_pstate) 1929 target = cpu->pstate.min_pstate; 1930 1931 /* 1932 * If the average P-state during the previous cycle was higher than the 1933 * current target, add 50% of the difference to the target to reduce 1934 * possible performance oscillations and offset possible performance 1935 * loss related to moving the workload from one CPU to another within 1936 * a package/module. 1937 */ 1938 avg_pstate = get_avg_pstate(cpu); 1939 if (avg_pstate > target) 1940 target += (avg_pstate - target) >> 1; 1941 1942 return target; 1943 } 1944 1945 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) 1946 { 1947 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio); 1948 int max_pstate = max(min_pstate, cpu->max_perf_ratio); 1949 1950 return clamp_t(int, pstate, min_pstate, max_pstate); 1951 } 1952 1953 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) 1954 { 1955 if (pstate == cpu->pstate.current_pstate) 1956 return; 1957 1958 cpu->pstate.current_pstate = pstate; 1959 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); 1960 } 1961 1962 static void intel_pstate_adjust_pstate(struct cpudata *cpu) 1963 { 1964 int from = cpu->pstate.current_pstate; 1965 struct sample *sample; 1966 int target_pstate; 1967 1968 update_turbo_state(); 1969 1970 target_pstate = get_target_pstate(cpu); 1971 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 1972 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu); 1973 intel_pstate_update_pstate(cpu, target_pstate); 1974 1975 sample = &cpu->sample; 1976 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), 1977 fp_toint(sample->busy_scaled), 1978 from, 1979 cpu->pstate.current_pstate, 1980 sample->mperf, 1981 sample->aperf, 1982 sample->tsc, 1983 get_avg_frequency(cpu), 1984 fp_toint(cpu->iowait_boost * 100)); 1985 } 1986 1987 static void intel_pstate_update_util(struct update_util_data *data, u64 time, 1988 unsigned int flags) 1989 { 1990 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 1991 u64 delta_ns; 1992 1993 /* Don't allow remote callbacks */ 1994 if (smp_processor_id() != cpu->cpu) 1995 return; 1996 1997 delta_ns = time - cpu->last_update; 1998 if (flags & SCHED_CPUFREQ_IOWAIT) { 1999 /* Start over if the CPU may have been idle. */ 2000 if (delta_ns > TICK_NSEC) { 2001 cpu->iowait_boost = ONE_EIGHTH_FP; 2002 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) { 2003 cpu->iowait_boost <<= 1; 2004 if (cpu->iowait_boost > int_tofp(1)) 2005 cpu->iowait_boost = int_tofp(1); 2006 } else { 2007 cpu->iowait_boost = ONE_EIGHTH_FP; 2008 } 2009 } else if (cpu->iowait_boost) { 2010 /* Clear iowait_boost if the CPU may have been idle. */ 2011 if (delta_ns > TICK_NSEC) 2012 cpu->iowait_boost = 0; 2013 else 2014 cpu->iowait_boost >>= 1; 2015 } 2016 cpu->last_update = time; 2017 delta_ns = time - cpu->sample.time; 2018 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL) 2019 return; 2020 2021 if (intel_pstate_sample(cpu, time)) 2022 intel_pstate_adjust_pstate(cpu); 2023 } 2024 2025 static struct pstate_funcs core_funcs = { 2026 .get_max = core_get_max_pstate, 2027 .get_max_physical = core_get_max_pstate_physical, 2028 .get_min = core_get_min_pstate, 2029 .get_turbo = core_get_turbo_pstate, 2030 .get_scaling = core_get_scaling, 2031 .get_val = core_get_val, 2032 }; 2033 2034 static const struct pstate_funcs silvermont_funcs = { 2035 .get_max = atom_get_max_pstate, 2036 .get_max_physical = atom_get_max_pstate, 2037 .get_min = atom_get_min_pstate, 2038 .get_turbo = atom_get_turbo_pstate, 2039 .get_val = atom_get_val, 2040 .get_scaling = silvermont_get_scaling, 2041 .get_vid = atom_get_vid, 2042 }; 2043 2044 static const struct pstate_funcs airmont_funcs = { 2045 .get_max = atom_get_max_pstate, 2046 .get_max_physical = atom_get_max_pstate, 2047 .get_min = atom_get_min_pstate, 2048 .get_turbo = atom_get_turbo_pstate, 2049 .get_val = atom_get_val, 2050 .get_scaling = airmont_get_scaling, 2051 .get_vid = atom_get_vid, 2052 }; 2053 2054 static const struct pstate_funcs knl_funcs = { 2055 .get_max = core_get_max_pstate, 2056 .get_max_physical = core_get_max_pstate_physical, 2057 .get_min = core_get_min_pstate, 2058 .get_turbo = knl_get_turbo_pstate, 2059 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift, 2060 .get_scaling = core_get_scaling, 2061 .get_val = core_get_val, 2062 }; 2063 2064 #define X86_MATCH(model, policy) \ 2065 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 2066 X86_FEATURE_APERFMPERF, &policy) 2067 2068 static const struct x86_cpu_id intel_pstate_cpu_ids[] = { 2069 X86_MATCH(SANDYBRIDGE, core_funcs), 2070 X86_MATCH(SANDYBRIDGE_X, core_funcs), 2071 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs), 2072 X86_MATCH(IVYBRIDGE, core_funcs), 2073 X86_MATCH(HASWELL, core_funcs), 2074 X86_MATCH(BROADWELL, core_funcs), 2075 X86_MATCH(IVYBRIDGE_X, core_funcs), 2076 X86_MATCH(HASWELL_X, core_funcs), 2077 X86_MATCH(HASWELL_L, core_funcs), 2078 X86_MATCH(HASWELL_G, core_funcs), 2079 X86_MATCH(BROADWELL_G, core_funcs), 2080 X86_MATCH(ATOM_AIRMONT, airmont_funcs), 2081 X86_MATCH(SKYLAKE_L, core_funcs), 2082 X86_MATCH(BROADWELL_X, core_funcs), 2083 X86_MATCH(SKYLAKE, core_funcs), 2084 X86_MATCH(BROADWELL_D, core_funcs), 2085 X86_MATCH(XEON_PHI_KNL, knl_funcs), 2086 X86_MATCH(XEON_PHI_KNM, knl_funcs), 2087 X86_MATCH(ATOM_GOLDMONT, core_funcs), 2088 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs), 2089 X86_MATCH(SKYLAKE_X, core_funcs), 2090 {} 2091 }; 2092 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); 2093 2094 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { 2095 X86_MATCH(BROADWELL_D, core_funcs), 2096 X86_MATCH(BROADWELL_X, core_funcs), 2097 X86_MATCH(SKYLAKE_X, core_funcs), 2098 {} 2099 }; 2100 2101 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { 2102 X86_MATCH(KABYLAKE, core_funcs), 2103 {} 2104 }; 2105 2106 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = { 2107 X86_MATCH(SKYLAKE_X, core_funcs), 2108 X86_MATCH(SKYLAKE, core_funcs), 2109 {} 2110 }; 2111 2112 static int intel_pstate_init_cpu(unsigned int cpunum) 2113 { 2114 struct cpudata *cpu; 2115 2116 cpu = all_cpu_data[cpunum]; 2117 2118 if (!cpu) { 2119 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); 2120 if (!cpu) 2121 return -ENOMEM; 2122 2123 all_cpu_data[cpunum] = cpu; 2124 2125 cpu->cpu = cpunum; 2126 2127 cpu->epp_default = -EINVAL; 2128 2129 if (hwp_active) { 2130 const struct x86_cpu_id *id; 2131 2132 intel_pstate_hwp_enable(cpu); 2133 2134 id = x86_match_cpu(intel_pstate_hwp_boost_ids); 2135 if (id && intel_pstate_acpi_pm_profile_server()) 2136 hwp_boost = true; 2137 } 2138 } else if (hwp_active) { 2139 /* 2140 * Re-enable HWP in case this happens after a resume from ACPI 2141 * S3 if the CPU was offline during the whole system/resume 2142 * cycle. 2143 */ 2144 intel_pstate_hwp_reenable(cpu); 2145 } 2146 2147 cpu->epp_powersave = -EINVAL; 2148 cpu->epp_policy = 0; 2149 2150 intel_pstate_get_cpu_pstates(cpu); 2151 2152 pr_debug("controlling: cpu %d\n", cpunum); 2153 2154 return 0; 2155 } 2156 2157 static void intel_pstate_set_update_util_hook(unsigned int cpu_num) 2158 { 2159 struct cpudata *cpu = all_cpu_data[cpu_num]; 2160 2161 if (hwp_active && !hwp_boost) 2162 return; 2163 2164 if (cpu->update_util_set) 2165 return; 2166 2167 /* Prevent intel_pstate_update_util() from using stale data. */ 2168 cpu->sample.time = 0; 2169 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, 2170 (hwp_active ? 2171 intel_pstate_update_util_hwp : 2172 intel_pstate_update_util)); 2173 cpu->update_util_set = true; 2174 } 2175 2176 static void intel_pstate_clear_update_util_hook(unsigned int cpu) 2177 { 2178 struct cpudata *cpu_data = all_cpu_data[cpu]; 2179 2180 if (!cpu_data->update_util_set) 2181 return; 2182 2183 cpufreq_remove_update_util_hook(cpu); 2184 cpu_data->update_util_set = false; 2185 synchronize_rcu(); 2186 } 2187 2188 static int intel_pstate_get_max_freq(struct cpudata *cpu) 2189 { 2190 return global.turbo_disabled || global.no_turbo ? 2191 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2192 } 2193 2194 static void intel_pstate_update_perf_limits(struct cpudata *cpu, 2195 unsigned int policy_min, 2196 unsigned int policy_max) 2197 { 2198 int scaling = cpu->pstate.scaling; 2199 int32_t max_policy_perf, min_policy_perf; 2200 2201 /* 2202 * HWP needs some special consideration, because HWP_REQUEST uses 2203 * abstract values to represent performance rather than pure ratios. 2204 */ 2205 if (hwp_active) 2206 intel_pstate_get_hwp_cap(cpu); 2207 2208 max_policy_perf = policy_max / scaling; 2209 if (policy_max == policy_min) { 2210 min_policy_perf = max_policy_perf; 2211 } else { 2212 min_policy_perf = policy_min / scaling; 2213 min_policy_perf = clamp_t(int32_t, min_policy_perf, 2214 0, max_policy_perf); 2215 } 2216 2217 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n", 2218 cpu->cpu, min_policy_perf, max_policy_perf); 2219 2220 /* Normalize user input to [min_perf, max_perf] */ 2221 if (per_cpu_limits) { 2222 cpu->min_perf_ratio = min_policy_perf; 2223 cpu->max_perf_ratio = max_policy_perf; 2224 } else { 2225 int turbo_max = cpu->pstate.turbo_pstate; 2226 int32_t global_min, global_max; 2227 2228 /* Global limits are in percent of the maximum turbo P-state. */ 2229 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); 2230 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); 2231 global_min = clamp_t(int32_t, global_min, 0, global_max); 2232 2233 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu, 2234 global_min, global_max); 2235 2236 cpu->min_perf_ratio = max(min_policy_perf, global_min); 2237 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf); 2238 cpu->max_perf_ratio = min(max_policy_perf, global_max); 2239 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio); 2240 2241 /* Make sure min_perf <= max_perf */ 2242 cpu->min_perf_ratio = min(cpu->min_perf_ratio, 2243 cpu->max_perf_ratio); 2244 2245 } 2246 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu, 2247 cpu->max_perf_ratio, 2248 cpu->min_perf_ratio); 2249 } 2250 2251 static int intel_pstate_set_policy(struct cpufreq_policy *policy) 2252 { 2253 struct cpudata *cpu; 2254 2255 if (!policy->cpuinfo.max_freq) 2256 return -ENODEV; 2257 2258 pr_debug("set_policy cpuinfo.max %u policy->max %u\n", 2259 policy->cpuinfo.max_freq, policy->max); 2260 2261 cpu = all_cpu_data[policy->cpu]; 2262 cpu->policy = policy->policy; 2263 2264 mutex_lock(&intel_pstate_limits_lock); 2265 2266 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2267 2268 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { 2269 /* 2270 * NOHZ_FULL CPUs need this as the governor callback may not 2271 * be invoked on them. 2272 */ 2273 intel_pstate_clear_update_util_hook(policy->cpu); 2274 intel_pstate_max_within_limits(cpu); 2275 } else { 2276 intel_pstate_set_update_util_hook(policy->cpu); 2277 } 2278 2279 if (hwp_active) { 2280 /* 2281 * When hwp_boost was active before and dynamically it 2282 * was turned off, in that case we need to clear the 2283 * update util hook. 2284 */ 2285 if (!hwp_boost) 2286 intel_pstate_clear_update_util_hook(policy->cpu); 2287 intel_pstate_hwp_set(policy->cpu); 2288 } 2289 2290 mutex_unlock(&intel_pstate_limits_lock); 2291 2292 return 0; 2293 } 2294 2295 static void intel_pstate_adjust_policy_max(struct cpudata *cpu, 2296 struct cpufreq_policy_data *policy) 2297 { 2298 if (!hwp_active && 2299 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && 2300 policy->max < policy->cpuinfo.max_freq && 2301 policy->max > cpu->pstate.max_freq) { 2302 pr_debug("policy->max > max non turbo frequency\n"); 2303 policy->max = policy->cpuinfo.max_freq; 2304 } 2305 } 2306 2307 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu, 2308 struct cpufreq_policy_data *policy) 2309 { 2310 int max_freq; 2311 2312 update_turbo_state(); 2313 if (hwp_active) { 2314 intel_pstate_get_hwp_cap(cpu); 2315 max_freq = global.no_turbo || global.turbo_disabled ? 2316 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2317 } else { 2318 max_freq = intel_pstate_get_max_freq(cpu); 2319 } 2320 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq); 2321 2322 intel_pstate_adjust_policy_max(cpu, policy); 2323 } 2324 2325 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy) 2326 { 2327 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy); 2328 2329 return 0; 2330 } 2331 2332 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy) 2333 { 2334 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2335 2336 pr_debug("CPU %d going offline\n", cpu->cpu); 2337 2338 if (cpu->suspended) 2339 return 0; 2340 2341 /* 2342 * If the CPU is an SMT thread and it goes offline with the performance 2343 * settings different from the minimum, it will prevent its sibling 2344 * from getting to lower performance levels, so force the minimum 2345 * performance on CPU offline to prevent that from happening. 2346 */ 2347 if (hwp_active) 2348 intel_pstate_hwp_offline(cpu); 2349 else 2350 intel_pstate_set_min_pstate(cpu); 2351 2352 intel_pstate_exit_perf_limits(policy); 2353 2354 return 0; 2355 } 2356 2357 static int intel_pstate_cpu_online(struct cpufreq_policy *policy) 2358 { 2359 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2360 2361 pr_debug("CPU %d going online\n", cpu->cpu); 2362 2363 intel_pstate_init_acpi_perf_limits(policy); 2364 2365 if (hwp_active) { 2366 /* 2367 * Re-enable HWP and clear the "suspended" flag to let "resume" 2368 * know that it need not do that. 2369 */ 2370 intel_pstate_hwp_reenable(cpu); 2371 cpu->suspended = false; 2372 } 2373 2374 return 0; 2375 } 2376 2377 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy) 2378 { 2379 pr_debug("CPU %d stopping\n", policy->cpu); 2380 2381 intel_pstate_clear_update_util_hook(policy->cpu); 2382 } 2383 2384 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy) 2385 { 2386 pr_debug("CPU %d exiting\n", policy->cpu); 2387 2388 policy->fast_switch_possible = false; 2389 2390 return 0; 2391 } 2392 2393 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) 2394 { 2395 struct cpudata *cpu; 2396 int rc; 2397 2398 rc = intel_pstate_init_cpu(policy->cpu); 2399 if (rc) 2400 return rc; 2401 2402 cpu = all_cpu_data[policy->cpu]; 2403 2404 cpu->max_perf_ratio = 0xFF; 2405 cpu->min_perf_ratio = 0; 2406 2407 /* cpuinfo and default policy values */ 2408 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling; 2409 update_turbo_state(); 2410 global.turbo_disabled_mf = global.turbo_disabled; 2411 policy->cpuinfo.max_freq = global.turbo_disabled ? 2412 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2413 2414 policy->min = policy->cpuinfo.min_freq; 2415 policy->max = policy->cpuinfo.max_freq; 2416 2417 intel_pstate_init_acpi_perf_limits(policy); 2418 2419 policy->fast_switch_possible = true; 2420 2421 return 0; 2422 } 2423 2424 static int intel_pstate_cpu_init(struct cpufreq_policy *policy) 2425 { 2426 int ret = __intel_pstate_cpu_init(policy); 2427 2428 if (ret) 2429 return ret; 2430 2431 /* 2432 * Set the policy to powersave to provide a valid fallback value in case 2433 * the default cpufreq governor is neither powersave nor performance. 2434 */ 2435 policy->policy = CPUFREQ_POLICY_POWERSAVE; 2436 2437 if (hwp_active) { 2438 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2439 2440 cpu->epp_cached = intel_pstate_get_epp(cpu, 0); 2441 } 2442 2443 return 0; 2444 } 2445 2446 static struct cpufreq_driver intel_pstate = { 2447 .flags = CPUFREQ_CONST_LOOPS, 2448 .verify = intel_pstate_verify_policy, 2449 .setpolicy = intel_pstate_set_policy, 2450 .suspend = intel_pstate_suspend, 2451 .resume = intel_pstate_resume, 2452 .init = intel_pstate_cpu_init, 2453 .exit = intel_pstate_cpu_exit, 2454 .stop_cpu = intel_pstate_stop_cpu, 2455 .offline = intel_pstate_cpu_offline, 2456 .online = intel_pstate_cpu_online, 2457 .update_limits = intel_pstate_update_limits, 2458 .name = "intel_pstate", 2459 }; 2460 2461 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy) 2462 { 2463 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2464 2465 intel_pstate_verify_cpu_policy(cpu, policy); 2466 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2467 2468 return 0; 2469 } 2470 2471 /* Use of trace in passive mode: 2472 * 2473 * In passive mode the trace core_busy field (also known as the 2474 * performance field, and lablelled as such on the graphs; also known as 2475 * core_avg_perf) is not needed and so is re-assigned to indicate if the 2476 * driver call was via the normal or fast switch path. Various graphs 2477 * output from the intel_pstate_tracer.py utility that include core_busy 2478 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%, 2479 * so we use 10 to indicate the normal path through the driver, and 2480 * 90 to indicate the fast switch path through the driver. 2481 * The scaled_busy field is not used, and is set to 0. 2482 */ 2483 2484 #define INTEL_PSTATE_TRACE_TARGET 10 2485 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90 2486 2487 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate) 2488 { 2489 struct sample *sample; 2490 2491 if (!trace_pstate_sample_enabled()) 2492 return; 2493 2494 if (!intel_pstate_sample(cpu, ktime_get())) 2495 return; 2496 2497 sample = &cpu->sample; 2498 trace_pstate_sample(trace_type, 2499 0, 2500 old_pstate, 2501 cpu->pstate.current_pstate, 2502 sample->mperf, 2503 sample->aperf, 2504 sample->tsc, 2505 get_avg_frequency(cpu), 2506 fp_toint(cpu->iowait_boost * 100)); 2507 } 2508 2509 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max, 2510 u32 desired, bool fast_switch) 2511 { 2512 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev; 2513 2514 value &= ~HWP_MIN_PERF(~0L); 2515 value |= HWP_MIN_PERF(min); 2516 2517 value &= ~HWP_MAX_PERF(~0L); 2518 value |= HWP_MAX_PERF(max); 2519 2520 value &= ~HWP_DESIRED_PERF(~0L); 2521 value |= HWP_DESIRED_PERF(desired); 2522 2523 if (value == prev) 2524 return; 2525 2526 WRITE_ONCE(cpu->hwp_req_cached, value); 2527 if (fast_switch) 2528 wrmsrl(MSR_HWP_REQUEST, value); 2529 else 2530 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 2531 } 2532 2533 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu, 2534 u32 target_pstate, bool fast_switch) 2535 { 2536 if (fast_switch) 2537 wrmsrl(MSR_IA32_PERF_CTL, 2538 pstate_funcs.get_val(cpu, target_pstate)); 2539 else 2540 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 2541 pstate_funcs.get_val(cpu, target_pstate)); 2542 } 2543 2544 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy, 2545 int target_pstate, bool fast_switch) 2546 { 2547 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2548 int old_pstate = cpu->pstate.current_pstate; 2549 2550 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2551 if (hwp_active) { 2552 int max_pstate = policy->strict_target ? 2553 target_pstate : cpu->max_perf_ratio; 2554 2555 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0, 2556 fast_switch); 2557 } else if (target_pstate != old_pstate) { 2558 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch); 2559 } 2560 2561 cpu->pstate.current_pstate = target_pstate; 2562 2563 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH : 2564 INTEL_PSTATE_TRACE_TARGET, old_pstate); 2565 2566 return target_pstate; 2567 } 2568 2569 static int intel_cpufreq_target(struct cpufreq_policy *policy, 2570 unsigned int target_freq, 2571 unsigned int relation) 2572 { 2573 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2574 struct cpufreq_freqs freqs; 2575 int target_pstate; 2576 2577 update_turbo_state(); 2578 2579 freqs.old = policy->cur; 2580 freqs.new = target_freq; 2581 2582 cpufreq_freq_transition_begin(policy, &freqs); 2583 2584 switch (relation) { 2585 case CPUFREQ_RELATION_L: 2586 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling); 2587 break; 2588 case CPUFREQ_RELATION_H: 2589 target_pstate = freqs.new / cpu->pstate.scaling; 2590 break; 2591 default: 2592 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling); 2593 break; 2594 } 2595 2596 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false); 2597 2598 freqs.new = target_pstate * cpu->pstate.scaling; 2599 2600 cpufreq_freq_transition_end(policy, &freqs, false); 2601 2602 return 0; 2603 } 2604 2605 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, 2606 unsigned int target_freq) 2607 { 2608 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2609 int target_pstate; 2610 2611 update_turbo_state(); 2612 2613 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling); 2614 2615 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true); 2616 2617 return target_pstate * cpu->pstate.scaling; 2618 } 2619 2620 static void intel_cpufreq_adjust_perf(unsigned int cpunum, 2621 unsigned long min_perf, 2622 unsigned long target_perf, 2623 unsigned long capacity) 2624 { 2625 struct cpudata *cpu = all_cpu_data[cpunum]; 2626 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 2627 int old_pstate = cpu->pstate.current_pstate; 2628 int cap_pstate, min_pstate, max_pstate, target_pstate; 2629 2630 update_turbo_state(); 2631 cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) : 2632 HWP_HIGHEST_PERF(hwp_cap); 2633 2634 /* Optimization: Avoid unnecessary divisions. */ 2635 2636 target_pstate = cap_pstate; 2637 if (target_perf < capacity) 2638 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity); 2639 2640 min_pstate = cap_pstate; 2641 if (min_perf < capacity) 2642 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity); 2643 2644 if (min_pstate < cpu->pstate.min_pstate) 2645 min_pstate = cpu->pstate.min_pstate; 2646 2647 if (min_pstate < cpu->min_perf_ratio) 2648 min_pstate = cpu->min_perf_ratio; 2649 2650 max_pstate = min(cap_pstate, cpu->max_perf_ratio); 2651 if (max_pstate < min_pstate) 2652 max_pstate = min_pstate; 2653 2654 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate); 2655 2656 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true); 2657 2658 cpu->pstate.current_pstate = target_pstate; 2659 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate); 2660 } 2661 2662 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) 2663 { 2664 struct freq_qos_request *req; 2665 struct cpudata *cpu; 2666 struct device *dev; 2667 int ret, freq; 2668 2669 dev = get_cpu_device(policy->cpu); 2670 if (!dev) 2671 return -ENODEV; 2672 2673 ret = __intel_pstate_cpu_init(policy); 2674 if (ret) 2675 return ret; 2676 2677 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; 2678 /* This reflects the intel_pstate_get_cpu_pstates() setting. */ 2679 policy->cur = policy->cpuinfo.min_freq; 2680 2681 req = kcalloc(2, sizeof(*req), GFP_KERNEL); 2682 if (!req) { 2683 ret = -ENOMEM; 2684 goto pstate_exit; 2685 } 2686 2687 cpu = all_cpu_data[policy->cpu]; 2688 2689 if (hwp_active) { 2690 u64 value; 2691 2692 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP; 2693 2694 intel_pstate_get_hwp_cap(cpu); 2695 2696 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value); 2697 WRITE_ONCE(cpu->hwp_req_cached, value); 2698 2699 cpu->epp_cached = intel_pstate_get_epp(cpu, value); 2700 } else { 2701 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY; 2702 } 2703 2704 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100); 2705 2706 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN, 2707 freq); 2708 if (ret < 0) { 2709 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret); 2710 goto free_req; 2711 } 2712 2713 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100); 2714 2715 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX, 2716 freq); 2717 if (ret < 0) { 2718 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret); 2719 goto remove_min_req; 2720 } 2721 2722 policy->driver_data = req; 2723 2724 return 0; 2725 2726 remove_min_req: 2727 freq_qos_remove_request(req); 2728 free_req: 2729 kfree(req); 2730 pstate_exit: 2731 intel_pstate_exit_perf_limits(policy); 2732 2733 return ret; 2734 } 2735 2736 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy) 2737 { 2738 struct freq_qos_request *req; 2739 2740 req = policy->driver_data; 2741 2742 freq_qos_remove_request(req + 1); 2743 freq_qos_remove_request(req); 2744 kfree(req); 2745 2746 return intel_pstate_cpu_exit(policy); 2747 } 2748 2749 static struct cpufreq_driver intel_cpufreq = { 2750 .flags = CPUFREQ_CONST_LOOPS, 2751 .verify = intel_cpufreq_verify_policy, 2752 .target = intel_cpufreq_target, 2753 .fast_switch = intel_cpufreq_fast_switch, 2754 .init = intel_cpufreq_cpu_init, 2755 .exit = intel_cpufreq_cpu_exit, 2756 .offline = intel_pstate_cpu_offline, 2757 .online = intel_pstate_cpu_online, 2758 .suspend = intel_pstate_suspend, 2759 .resume = intel_pstate_resume, 2760 .update_limits = intel_pstate_update_limits, 2761 .name = "intel_cpufreq", 2762 }; 2763 2764 static struct cpufreq_driver *default_driver; 2765 2766 static void intel_pstate_driver_cleanup(void) 2767 { 2768 unsigned int cpu; 2769 2770 get_online_cpus(); 2771 for_each_online_cpu(cpu) { 2772 if (all_cpu_data[cpu]) { 2773 if (intel_pstate_driver == &intel_pstate) 2774 intel_pstate_clear_update_util_hook(cpu); 2775 2776 kfree(all_cpu_data[cpu]); 2777 all_cpu_data[cpu] = NULL; 2778 } 2779 } 2780 put_online_cpus(); 2781 2782 intel_pstate_driver = NULL; 2783 } 2784 2785 static int intel_pstate_register_driver(struct cpufreq_driver *driver) 2786 { 2787 int ret; 2788 2789 if (driver == &intel_pstate) 2790 intel_pstate_sysfs_expose_hwp_dynamic_boost(); 2791 2792 memset(&global, 0, sizeof(global)); 2793 global.max_perf_pct = 100; 2794 2795 intel_pstate_driver = driver; 2796 ret = cpufreq_register_driver(intel_pstate_driver); 2797 if (ret) { 2798 intel_pstate_driver_cleanup(); 2799 return ret; 2800 } 2801 2802 global.min_perf_pct = min_perf_pct_min(); 2803 2804 return 0; 2805 } 2806 2807 static ssize_t intel_pstate_show_status(char *buf) 2808 { 2809 if (!intel_pstate_driver) 2810 return sprintf(buf, "off\n"); 2811 2812 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? 2813 "active" : "passive"); 2814 } 2815 2816 static int intel_pstate_update_status(const char *buf, size_t size) 2817 { 2818 if (size == 3 && !strncmp(buf, "off", size)) { 2819 if (!intel_pstate_driver) 2820 return -EINVAL; 2821 2822 if (hwp_active) 2823 return -EBUSY; 2824 2825 cpufreq_unregister_driver(intel_pstate_driver); 2826 intel_pstate_driver_cleanup(); 2827 return 0; 2828 } 2829 2830 if (size == 6 && !strncmp(buf, "active", size)) { 2831 if (intel_pstate_driver) { 2832 if (intel_pstate_driver == &intel_pstate) 2833 return 0; 2834 2835 cpufreq_unregister_driver(intel_pstate_driver); 2836 } 2837 2838 return intel_pstate_register_driver(&intel_pstate); 2839 } 2840 2841 if (size == 7 && !strncmp(buf, "passive", size)) { 2842 if (intel_pstate_driver) { 2843 if (intel_pstate_driver == &intel_cpufreq) 2844 return 0; 2845 2846 cpufreq_unregister_driver(intel_pstate_driver); 2847 intel_pstate_sysfs_hide_hwp_dynamic_boost(); 2848 } 2849 2850 return intel_pstate_register_driver(&intel_cpufreq); 2851 } 2852 2853 return -EINVAL; 2854 } 2855 2856 static int no_load __initdata; 2857 static int no_hwp __initdata; 2858 static int hwp_only __initdata; 2859 static unsigned int force_load __initdata; 2860 2861 static int __init intel_pstate_msrs_not_valid(void) 2862 { 2863 if (!pstate_funcs.get_max() || 2864 !pstate_funcs.get_min() || 2865 !pstate_funcs.get_turbo()) 2866 return -ENODEV; 2867 2868 return 0; 2869 } 2870 2871 static void __init copy_cpu_funcs(struct pstate_funcs *funcs) 2872 { 2873 pstate_funcs.get_max = funcs->get_max; 2874 pstate_funcs.get_max_physical = funcs->get_max_physical; 2875 pstate_funcs.get_min = funcs->get_min; 2876 pstate_funcs.get_turbo = funcs->get_turbo; 2877 pstate_funcs.get_scaling = funcs->get_scaling; 2878 pstate_funcs.get_val = funcs->get_val; 2879 pstate_funcs.get_vid = funcs->get_vid; 2880 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift; 2881 } 2882 2883 #ifdef CONFIG_ACPI 2884 2885 static bool __init intel_pstate_no_acpi_pss(void) 2886 { 2887 int i; 2888 2889 for_each_possible_cpu(i) { 2890 acpi_status status; 2891 union acpi_object *pss; 2892 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 2893 struct acpi_processor *pr = per_cpu(processors, i); 2894 2895 if (!pr) 2896 continue; 2897 2898 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 2899 if (ACPI_FAILURE(status)) 2900 continue; 2901 2902 pss = buffer.pointer; 2903 if (pss && pss->type == ACPI_TYPE_PACKAGE) { 2904 kfree(pss); 2905 return false; 2906 } 2907 2908 kfree(pss); 2909 } 2910 2911 pr_debug("ACPI _PSS not found\n"); 2912 return true; 2913 } 2914 2915 static bool __init intel_pstate_no_acpi_pcch(void) 2916 { 2917 acpi_status status; 2918 acpi_handle handle; 2919 2920 status = acpi_get_handle(NULL, "\\_SB", &handle); 2921 if (ACPI_FAILURE(status)) 2922 goto not_found; 2923 2924 if (acpi_has_method(handle, "PCCH")) 2925 return false; 2926 2927 not_found: 2928 pr_debug("ACPI PCCH not found\n"); 2929 return true; 2930 } 2931 2932 static bool __init intel_pstate_has_acpi_ppc(void) 2933 { 2934 int i; 2935 2936 for_each_possible_cpu(i) { 2937 struct acpi_processor *pr = per_cpu(processors, i); 2938 2939 if (!pr) 2940 continue; 2941 if (acpi_has_method(pr->handle, "_PPC")) 2942 return true; 2943 } 2944 pr_debug("ACPI _PPC not found\n"); 2945 return false; 2946 } 2947 2948 enum { 2949 PSS, 2950 PPC, 2951 }; 2952 2953 /* Hardware vendor-specific info that has its own power management modes */ 2954 static struct acpi_platform_list plat_info[] __initdata = { 2955 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS}, 2956 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2957 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2958 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2959 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2960 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2961 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2962 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2963 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2964 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2965 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2966 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2967 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2968 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2969 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 2970 { } /* End */ 2971 }; 2972 2973 #define BITMASK_OOB (BIT(8) | BIT(18)) 2974 2975 static bool __init intel_pstate_platform_pwr_mgmt_exists(void) 2976 { 2977 const struct x86_cpu_id *id; 2978 u64 misc_pwr; 2979 int idx; 2980 2981 id = x86_match_cpu(intel_pstate_cpu_oob_ids); 2982 if (id) { 2983 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); 2984 if (misc_pwr & BITMASK_OOB) { 2985 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n"); 2986 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n"); 2987 return true; 2988 } 2989 } 2990 2991 idx = acpi_match_platform_list(plat_info); 2992 if (idx < 0) 2993 return false; 2994 2995 switch (plat_info[idx].data) { 2996 case PSS: 2997 if (!intel_pstate_no_acpi_pss()) 2998 return false; 2999 3000 return intel_pstate_no_acpi_pcch(); 3001 case PPC: 3002 return intel_pstate_has_acpi_ppc() && !force_load; 3003 } 3004 3005 return false; 3006 } 3007 3008 static void intel_pstate_request_control_from_smm(void) 3009 { 3010 /* 3011 * It may be unsafe to request P-states control from SMM if _PPC support 3012 * has not been enabled. 3013 */ 3014 if (acpi_ppc) 3015 acpi_processor_pstate_control(); 3016 } 3017 #else /* CONFIG_ACPI not enabled */ 3018 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } 3019 static inline bool intel_pstate_has_acpi_ppc(void) { return false; } 3020 static inline void intel_pstate_request_control_from_smm(void) {} 3021 #endif /* CONFIG_ACPI */ 3022 3023 #define INTEL_PSTATE_HWP_BROADWELL 0x01 3024 3025 #define X86_MATCH_HWP(model, hwp_mode) \ 3026 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 3027 X86_FEATURE_HWP, hwp_mode) 3028 3029 static const struct x86_cpu_id hwp_support_ids[] __initconst = { 3030 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL), 3031 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL), 3032 X86_MATCH_HWP(ANY, 0), 3033 {} 3034 }; 3035 3036 static int __init intel_pstate_init(void) 3037 { 3038 const struct x86_cpu_id *id; 3039 int rc; 3040 3041 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 3042 return -ENODEV; 3043 3044 if (no_load) 3045 return -ENODEV; 3046 3047 id = x86_match_cpu(hwp_support_ids); 3048 if (id) { 3049 copy_cpu_funcs(&core_funcs); 3050 /* 3051 * Avoid enabling HWP for processors without EPP support, 3052 * because that means incomplete HWP implementation which is a 3053 * corner case and supporting it is generally problematic. 3054 */ 3055 if (!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) { 3056 hwp_active++; 3057 hwp_mode_bdw = id->driver_data; 3058 intel_pstate.attr = hwp_cpufreq_attrs; 3059 intel_cpufreq.attr = hwp_cpufreq_attrs; 3060 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS; 3061 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf; 3062 if (!default_driver) 3063 default_driver = &intel_pstate; 3064 3065 goto hwp_cpu_matched; 3066 } 3067 } else { 3068 id = x86_match_cpu(intel_pstate_cpu_ids); 3069 if (!id) { 3070 pr_info("CPU model not supported\n"); 3071 return -ENODEV; 3072 } 3073 3074 copy_cpu_funcs((struct pstate_funcs *)id->driver_data); 3075 } 3076 3077 if (intel_pstate_msrs_not_valid()) { 3078 pr_info("Invalid MSRs\n"); 3079 return -ENODEV; 3080 } 3081 /* Without HWP start in the passive mode. */ 3082 if (!default_driver) 3083 default_driver = &intel_cpufreq; 3084 3085 hwp_cpu_matched: 3086 /* 3087 * The Intel pstate driver will be ignored if the platform 3088 * firmware has its own power management modes. 3089 */ 3090 if (intel_pstate_platform_pwr_mgmt_exists()) { 3091 pr_info("P-states controlled by the platform\n"); 3092 return -ENODEV; 3093 } 3094 3095 if (!hwp_active && hwp_only) 3096 return -ENOTSUPP; 3097 3098 pr_info("Intel P-state driver initializing\n"); 3099 3100 all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus())); 3101 if (!all_cpu_data) 3102 return -ENOMEM; 3103 3104 intel_pstate_request_control_from_smm(); 3105 3106 intel_pstate_sysfs_expose_params(); 3107 3108 mutex_lock(&intel_pstate_driver_lock); 3109 rc = intel_pstate_register_driver(default_driver); 3110 mutex_unlock(&intel_pstate_driver_lock); 3111 if (rc) { 3112 intel_pstate_sysfs_remove(); 3113 return rc; 3114 } 3115 3116 if (hwp_active) { 3117 const struct x86_cpu_id *id; 3118 3119 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); 3120 if (id) { 3121 set_power_ctl_ee_state(false); 3122 pr_info("Disabling energy efficiency optimization\n"); 3123 } 3124 3125 pr_info("HWP enabled\n"); 3126 } 3127 3128 return 0; 3129 } 3130 device_initcall(intel_pstate_init); 3131 3132 static int __init intel_pstate_setup(char *str) 3133 { 3134 if (!str) 3135 return -EINVAL; 3136 3137 if (!strcmp(str, "disable")) 3138 no_load = 1; 3139 else if (!strcmp(str, "active")) 3140 default_driver = &intel_pstate; 3141 else if (!strcmp(str, "passive")) 3142 default_driver = &intel_cpufreq; 3143 3144 if (!strcmp(str, "no_hwp")) { 3145 pr_info("HWP disabled\n"); 3146 no_hwp = 1; 3147 } 3148 if (!strcmp(str, "force")) 3149 force_load = 1; 3150 if (!strcmp(str, "hwp_only")) 3151 hwp_only = 1; 3152 if (!strcmp(str, "per_cpu_perf_limits")) 3153 per_cpu_limits = true; 3154 3155 #ifdef CONFIG_ACPI 3156 if (!strcmp(str, "support_acpi_ppc")) 3157 acpi_ppc = true; 3158 #endif 3159 3160 return 0; 3161 } 3162 early_param("intel_pstate", intel_pstate_setup); 3163 3164 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); 3165 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); 3166 MODULE_LICENSE("GPL"); 3167