1 /* 2 * intel_pstate.c: Native P state management for Intel processors 3 * 4 * (C) Copyright 2012 Intel Corporation 5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/module.h> 16 #include <linux/ktime.h> 17 #include <linux/hrtimer.h> 18 #include <linux/tick.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/list.h> 22 #include <linux/cpu.h> 23 #include <linux/cpufreq.h> 24 #include <linux/sysfs.h> 25 #include <linux/types.h> 26 #include <linux/fs.h> 27 #include <linux/debugfs.h> 28 #include <linux/acpi.h> 29 #include <trace/events/power.h> 30 31 #include <asm/div64.h> 32 #include <asm/msr.h> 33 #include <asm/cpu_device_id.h> 34 35 #define BYT_RATIOS 0x66a 36 #define BYT_VIDS 0x66b 37 #define BYT_TURBO_RATIOS 0x66c 38 #define BYT_TURBO_VIDS 0x66d 39 40 41 #define FRAC_BITS 8 42 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) 43 #define fp_toint(X) ((X) >> FRAC_BITS) 44 45 46 static inline int32_t mul_fp(int32_t x, int32_t y) 47 { 48 return ((int64_t)x * (int64_t)y) >> FRAC_BITS; 49 } 50 51 static inline int32_t div_fp(int32_t x, int32_t y) 52 { 53 return div_s64((int64_t)x << FRAC_BITS, (int64_t)y); 54 } 55 56 struct sample { 57 int32_t core_pct_busy; 58 u64 aperf; 59 u64 mperf; 60 int freq; 61 ktime_t time; 62 }; 63 64 struct pstate_data { 65 int current_pstate; 66 int min_pstate; 67 int max_pstate; 68 int turbo_pstate; 69 }; 70 71 struct vid_data { 72 int min; 73 int max; 74 int turbo; 75 int32_t ratio; 76 }; 77 78 struct _pid { 79 int setpoint; 80 int32_t integral; 81 int32_t p_gain; 82 int32_t i_gain; 83 int32_t d_gain; 84 int deadband; 85 int32_t last_err; 86 }; 87 88 struct cpudata { 89 int cpu; 90 91 struct timer_list timer; 92 93 struct pstate_data pstate; 94 struct vid_data vid; 95 struct _pid pid; 96 97 ktime_t last_sample_time; 98 u64 prev_aperf; 99 u64 prev_mperf; 100 struct sample sample; 101 }; 102 103 static struct cpudata **all_cpu_data; 104 struct pstate_adjust_policy { 105 int sample_rate_ms; 106 int deadband; 107 int setpoint; 108 int p_gain_pct; 109 int d_gain_pct; 110 int i_gain_pct; 111 }; 112 113 struct pstate_funcs { 114 int (*get_max)(void); 115 int (*get_min)(void); 116 int (*get_turbo)(void); 117 void (*set)(struct cpudata*, int pstate); 118 void (*get_vid)(struct cpudata *); 119 }; 120 121 struct cpu_defaults { 122 struct pstate_adjust_policy pid_policy; 123 struct pstate_funcs funcs; 124 }; 125 126 static struct pstate_adjust_policy pid_params; 127 static struct pstate_funcs pstate_funcs; 128 129 struct perf_limits { 130 int no_turbo; 131 int max_perf_pct; 132 int min_perf_pct; 133 int32_t max_perf; 134 int32_t min_perf; 135 int max_policy_pct; 136 int max_sysfs_pct; 137 }; 138 139 static struct perf_limits limits = { 140 .no_turbo = 0, 141 .max_perf_pct = 100, 142 .max_perf = int_tofp(1), 143 .min_perf_pct = 0, 144 .min_perf = 0, 145 .max_policy_pct = 100, 146 .max_sysfs_pct = 100, 147 }; 148 149 static inline void pid_reset(struct _pid *pid, int setpoint, int busy, 150 int deadband, int integral) { 151 pid->setpoint = setpoint; 152 pid->deadband = deadband; 153 pid->integral = int_tofp(integral); 154 pid->last_err = int_tofp(setpoint) - int_tofp(busy); 155 } 156 157 static inline void pid_p_gain_set(struct _pid *pid, int percent) 158 { 159 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100)); 160 } 161 162 static inline void pid_i_gain_set(struct _pid *pid, int percent) 163 { 164 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100)); 165 } 166 167 static inline void pid_d_gain_set(struct _pid *pid, int percent) 168 { 169 170 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100)); 171 } 172 173 static signed int pid_calc(struct _pid *pid, int32_t busy) 174 { 175 signed int result; 176 int32_t pterm, dterm, fp_error; 177 int32_t integral_limit; 178 179 fp_error = int_tofp(pid->setpoint) - busy; 180 181 if (abs(fp_error) <= int_tofp(pid->deadband)) 182 return 0; 183 184 pterm = mul_fp(pid->p_gain, fp_error); 185 186 pid->integral += fp_error; 187 188 /* limit the integral term */ 189 integral_limit = int_tofp(30); 190 if (pid->integral > integral_limit) 191 pid->integral = integral_limit; 192 if (pid->integral < -integral_limit) 193 pid->integral = -integral_limit; 194 195 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err); 196 pid->last_err = fp_error; 197 198 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm; 199 if (result >= 0) 200 result = result + (1 << (FRAC_BITS-1)); 201 else 202 result = result - (1 << (FRAC_BITS-1)); 203 return (signed int)fp_toint(result); 204 } 205 206 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu) 207 { 208 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct); 209 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct); 210 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct); 211 212 pid_reset(&cpu->pid, 213 pid_params.setpoint, 214 100, 215 pid_params.deadband, 216 0); 217 } 218 219 static inline void intel_pstate_reset_all_pid(void) 220 { 221 unsigned int cpu; 222 for_each_online_cpu(cpu) { 223 if (all_cpu_data[cpu]) 224 intel_pstate_busy_pid_reset(all_cpu_data[cpu]); 225 } 226 } 227 228 /************************** debugfs begin ************************/ 229 static int pid_param_set(void *data, u64 val) 230 { 231 *(u32 *)data = val; 232 intel_pstate_reset_all_pid(); 233 return 0; 234 } 235 static int pid_param_get(void *data, u64 *val) 236 { 237 *val = *(u32 *)data; 238 return 0; 239 } 240 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, 241 pid_param_set, "%llu\n"); 242 243 struct pid_param { 244 char *name; 245 void *value; 246 }; 247 248 static struct pid_param pid_files[] = { 249 {"sample_rate_ms", &pid_params.sample_rate_ms}, 250 {"d_gain_pct", &pid_params.d_gain_pct}, 251 {"i_gain_pct", &pid_params.i_gain_pct}, 252 {"deadband", &pid_params.deadband}, 253 {"setpoint", &pid_params.setpoint}, 254 {"p_gain_pct", &pid_params.p_gain_pct}, 255 {NULL, NULL} 256 }; 257 258 static struct dentry *debugfs_parent; 259 static void intel_pstate_debug_expose_params(void) 260 { 261 int i = 0; 262 263 debugfs_parent = debugfs_create_dir("pstate_snb", NULL); 264 if (IS_ERR_OR_NULL(debugfs_parent)) 265 return; 266 while (pid_files[i].name) { 267 debugfs_create_file(pid_files[i].name, 0660, 268 debugfs_parent, pid_files[i].value, 269 &fops_pid_param); 270 i++; 271 } 272 } 273 274 /************************** debugfs end ************************/ 275 276 /************************** sysfs begin ************************/ 277 #define show_one(file_name, object) \ 278 static ssize_t show_##file_name \ 279 (struct kobject *kobj, struct attribute *attr, char *buf) \ 280 { \ 281 return sprintf(buf, "%u\n", limits.object); \ 282 } 283 284 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b, 285 const char *buf, size_t count) 286 { 287 unsigned int input; 288 int ret; 289 ret = sscanf(buf, "%u", &input); 290 if (ret != 1) 291 return -EINVAL; 292 limits.no_turbo = clamp_t(int, input, 0 , 1); 293 294 return count; 295 } 296 297 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b, 298 const char *buf, size_t count) 299 { 300 unsigned int input; 301 int ret; 302 ret = sscanf(buf, "%u", &input); 303 if (ret != 1) 304 return -EINVAL; 305 306 limits.max_sysfs_pct = clamp_t(int, input, 0 , 100); 307 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct); 308 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100)); 309 return count; 310 } 311 312 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b, 313 const char *buf, size_t count) 314 { 315 unsigned int input; 316 int ret; 317 ret = sscanf(buf, "%u", &input); 318 if (ret != 1) 319 return -EINVAL; 320 limits.min_perf_pct = clamp_t(int, input, 0 , 100); 321 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100)); 322 323 return count; 324 } 325 326 show_one(no_turbo, no_turbo); 327 show_one(max_perf_pct, max_perf_pct); 328 show_one(min_perf_pct, min_perf_pct); 329 330 define_one_global_rw(no_turbo); 331 define_one_global_rw(max_perf_pct); 332 define_one_global_rw(min_perf_pct); 333 334 static struct attribute *intel_pstate_attributes[] = { 335 &no_turbo.attr, 336 &max_perf_pct.attr, 337 &min_perf_pct.attr, 338 NULL 339 }; 340 341 static struct attribute_group intel_pstate_attr_group = { 342 .attrs = intel_pstate_attributes, 343 }; 344 static struct kobject *intel_pstate_kobject; 345 346 static void intel_pstate_sysfs_expose_params(void) 347 { 348 int rc; 349 350 intel_pstate_kobject = kobject_create_and_add("intel_pstate", 351 &cpu_subsys.dev_root->kobj); 352 BUG_ON(!intel_pstate_kobject); 353 rc = sysfs_create_group(intel_pstate_kobject, 354 &intel_pstate_attr_group); 355 BUG_ON(rc); 356 } 357 358 /************************** sysfs end ************************/ 359 static int byt_get_min_pstate(void) 360 { 361 u64 value; 362 rdmsrl(BYT_RATIOS, value); 363 return (value >> 8) & 0x3F; 364 } 365 366 static int byt_get_max_pstate(void) 367 { 368 u64 value; 369 rdmsrl(BYT_RATIOS, value); 370 return (value >> 16) & 0x3F; 371 } 372 373 static int byt_get_turbo_pstate(void) 374 { 375 u64 value; 376 rdmsrl(BYT_TURBO_RATIOS, value); 377 return value & 0x3F; 378 } 379 380 static void byt_set_pstate(struct cpudata *cpudata, int pstate) 381 { 382 u64 val; 383 int32_t vid_fp; 384 u32 vid; 385 386 val = pstate << 8; 387 if (limits.no_turbo) 388 val |= (u64)1 << 32; 389 390 vid_fp = cpudata->vid.min + mul_fp( 391 int_tofp(pstate - cpudata->pstate.min_pstate), 392 cpudata->vid.ratio); 393 394 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); 395 vid = fp_toint(vid_fp); 396 397 if (pstate > cpudata->pstate.max_pstate) 398 vid = cpudata->vid.turbo; 399 400 val |= vid; 401 402 wrmsrl(MSR_IA32_PERF_CTL, val); 403 } 404 405 static void byt_get_vid(struct cpudata *cpudata) 406 { 407 u64 value; 408 409 410 rdmsrl(BYT_VIDS, value); 411 cpudata->vid.min = int_tofp((value >> 8) & 0x3f); 412 cpudata->vid.max = int_tofp((value >> 16) & 0x3f); 413 cpudata->vid.ratio = div_fp( 414 cpudata->vid.max - cpudata->vid.min, 415 int_tofp(cpudata->pstate.max_pstate - 416 cpudata->pstate.min_pstate)); 417 418 rdmsrl(BYT_TURBO_VIDS, value); 419 cpudata->vid.turbo = value & 0x7f; 420 } 421 422 423 static int core_get_min_pstate(void) 424 { 425 u64 value; 426 rdmsrl(MSR_PLATFORM_INFO, value); 427 return (value >> 40) & 0xFF; 428 } 429 430 static int core_get_max_pstate(void) 431 { 432 u64 value; 433 rdmsrl(MSR_PLATFORM_INFO, value); 434 return (value >> 8) & 0xFF; 435 } 436 437 static int core_get_turbo_pstate(void) 438 { 439 u64 value; 440 int nont, ret; 441 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value); 442 nont = core_get_max_pstate(); 443 ret = ((value) & 255); 444 if (ret <= nont) 445 ret = nont; 446 return ret; 447 } 448 449 static void core_set_pstate(struct cpudata *cpudata, int pstate) 450 { 451 u64 val; 452 453 val = pstate << 8; 454 if (limits.no_turbo) 455 val |= (u64)1 << 32; 456 457 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val); 458 } 459 460 static struct cpu_defaults core_params = { 461 .pid_policy = { 462 .sample_rate_ms = 10, 463 .deadband = 0, 464 .setpoint = 97, 465 .p_gain_pct = 20, 466 .d_gain_pct = 0, 467 .i_gain_pct = 0, 468 }, 469 .funcs = { 470 .get_max = core_get_max_pstate, 471 .get_min = core_get_min_pstate, 472 .get_turbo = core_get_turbo_pstate, 473 .set = core_set_pstate, 474 }, 475 }; 476 477 static struct cpu_defaults byt_params = { 478 .pid_policy = { 479 .sample_rate_ms = 10, 480 .deadband = 0, 481 .setpoint = 97, 482 .p_gain_pct = 14, 483 .d_gain_pct = 0, 484 .i_gain_pct = 4, 485 }, 486 .funcs = { 487 .get_max = byt_get_max_pstate, 488 .get_min = byt_get_min_pstate, 489 .get_turbo = byt_get_turbo_pstate, 490 .set = byt_set_pstate, 491 .get_vid = byt_get_vid, 492 }, 493 }; 494 495 496 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max) 497 { 498 int max_perf = cpu->pstate.turbo_pstate; 499 int max_perf_adj; 500 int min_perf; 501 if (limits.no_turbo) 502 max_perf = cpu->pstate.max_pstate; 503 504 max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf)); 505 *max = clamp_t(int, max_perf_adj, 506 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate); 507 508 min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf)); 509 *min = clamp_t(int, min_perf, 510 cpu->pstate.min_pstate, max_perf); 511 } 512 513 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) 514 { 515 int max_perf, min_perf; 516 517 intel_pstate_get_min_max(cpu, &min_perf, &max_perf); 518 519 pstate = clamp_t(int, pstate, min_perf, max_perf); 520 521 if (pstate == cpu->pstate.current_pstate) 522 return; 523 524 trace_cpu_frequency(pstate * 100000, cpu->cpu); 525 526 cpu->pstate.current_pstate = pstate; 527 528 pstate_funcs.set(cpu, pstate); 529 } 530 531 static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps) 532 { 533 int target; 534 target = cpu->pstate.current_pstate + steps; 535 536 intel_pstate_set_pstate(cpu, target); 537 } 538 539 static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps) 540 { 541 int target; 542 target = cpu->pstate.current_pstate - steps; 543 intel_pstate_set_pstate(cpu, target); 544 } 545 546 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) 547 { 548 cpu->pstate.min_pstate = pstate_funcs.get_min(); 549 cpu->pstate.max_pstate = pstate_funcs.get_max(); 550 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(); 551 552 if (pstate_funcs.get_vid) 553 pstate_funcs.get_vid(cpu); 554 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); 555 } 556 557 static inline void intel_pstate_calc_busy(struct cpudata *cpu) 558 { 559 struct sample *sample = &cpu->sample; 560 int64_t core_pct; 561 int32_t rem; 562 563 core_pct = int_tofp(sample->aperf) * int_tofp(100); 564 core_pct = div_u64_rem(core_pct, int_tofp(sample->mperf), &rem); 565 566 if ((rem << 1) >= int_tofp(sample->mperf)) 567 core_pct += 1; 568 569 sample->freq = fp_toint( 570 mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct)); 571 572 sample->core_pct_busy = (int32_t)core_pct; 573 } 574 575 static inline void intel_pstate_sample(struct cpudata *cpu) 576 { 577 u64 aperf, mperf; 578 579 rdmsrl(MSR_IA32_APERF, aperf); 580 rdmsrl(MSR_IA32_MPERF, mperf); 581 582 aperf = aperf >> FRAC_BITS; 583 mperf = mperf >> FRAC_BITS; 584 585 cpu->last_sample_time = cpu->sample.time; 586 cpu->sample.time = ktime_get(); 587 cpu->sample.aperf = aperf; 588 cpu->sample.mperf = mperf; 589 cpu->sample.aperf -= cpu->prev_aperf; 590 cpu->sample.mperf -= cpu->prev_mperf; 591 592 intel_pstate_calc_busy(cpu); 593 594 cpu->prev_aperf = aperf; 595 cpu->prev_mperf = mperf; 596 } 597 598 static inline void intel_pstate_set_sample_time(struct cpudata *cpu) 599 { 600 int sample_time, delay; 601 602 sample_time = pid_params.sample_rate_ms; 603 delay = msecs_to_jiffies(sample_time); 604 mod_timer_pinned(&cpu->timer, jiffies + delay); 605 } 606 607 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu) 608 { 609 int32_t core_busy, max_pstate, current_pstate, sample_ratio; 610 u32 duration_us; 611 u32 sample_time; 612 613 core_busy = cpu->sample.core_pct_busy; 614 max_pstate = int_tofp(cpu->pstate.max_pstate); 615 current_pstate = int_tofp(cpu->pstate.current_pstate); 616 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate)); 617 618 sample_time = (pid_params.sample_rate_ms * USEC_PER_MSEC); 619 duration_us = (u32) ktime_us_delta(cpu->sample.time, 620 cpu->last_sample_time); 621 if (duration_us > sample_time * 3) { 622 sample_ratio = div_fp(int_tofp(sample_time), 623 int_tofp(duration_us)); 624 core_busy = mul_fp(core_busy, sample_ratio); 625 } 626 627 return core_busy; 628 } 629 630 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu) 631 { 632 int32_t busy_scaled; 633 struct _pid *pid; 634 signed int ctl = 0; 635 int steps; 636 637 pid = &cpu->pid; 638 busy_scaled = intel_pstate_get_scaled_busy(cpu); 639 640 ctl = pid_calc(pid, busy_scaled); 641 642 steps = abs(ctl); 643 644 if (ctl < 0) 645 intel_pstate_pstate_increase(cpu, steps); 646 else 647 intel_pstate_pstate_decrease(cpu, steps); 648 } 649 650 static void intel_pstate_timer_func(unsigned long __data) 651 { 652 struct cpudata *cpu = (struct cpudata *) __data; 653 struct sample *sample; 654 655 intel_pstate_sample(cpu); 656 657 sample = &cpu->sample; 658 659 intel_pstate_adjust_busy_pstate(cpu); 660 661 trace_pstate_sample(fp_toint(sample->core_pct_busy), 662 fp_toint(intel_pstate_get_scaled_busy(cpu)), 663 cpu->pstate.current_pstate, 664 sample->mperf, 665 sample->aperf, 666 sample->freq); 667 668 intel_pstate_set_sample_time(cpu); 669 } 670 671 #define ICPU(model, policy) \ 672 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\ 673 (unsigned long)&policy } 674 675 static const struct x86_cpu_id intel_pstate_cpu_ids[] = { 676 ICPU(0x2a, core_params), 677 ICPU(0x2d, core_params), 678 ICPU(0x37, byt_params), 679 ICPU(0x3a, core_params), 680 ICPU(0x3c, core_params), 681 ICPU(0x3d, core_params), 682 ICPU(0x3e, core_params), 683 ICPU(0x3f, core_params), 684 ICPU(0x45, core_params), 685 ICPU(0x46, core_params), 686 ICPU(0x4f, core_params), 687 ICPU(0x56, core_params), 688 {} 689 }; 690 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); 691 692 static int intel_pstate_init_cpu(unsigned int cpunum) 693 { 694 695 const struct x86_cpu_id *id; 696 struct cpudata *cpu; 697 698 id = x86_match_cpu(intel_pstate_cpu_ids); 699 if (!id) 700 return -ENODEV; 701 702 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL); 703 if (!all_cpu_data[cpunum]) 704 return -ENOMEM; 705 706 cpu = all_cpu_data[cpunum]; 707 708 intel_pstate_get_cpu_pstates(cpu); 709 710 cpu->cpu = cpunum; 711 712 init_timer_deferrable(&cpu->timer); 713 cpu->timer.function = intel_pstate_timer_func; 714 cpu->timer.data = 715 (unsigned long)cpu; 716 cpu->timer.expires = jiffies + HZ/100; 717 intel_pstate_busy_pid_reset(cpu); 718 intel_pstate_sample(cpu); 719 720 add_timer_on(&cpu->timer, cpunum); 721 722 pr_info("Intel pstate controlling: cpu %d\n", cpunum); 723 724 return 0; 725 } 726 727 static unsigned int intel_pstate_get(unsigned int cpu_num) 728 { 729 struct sample *sample; 730 struct cpudata *cpu; 731 732 cpu = all_cpu_data[cpu_num]; 733 if (!cpu) 734 return 0; 735 sample = &cpu->sample; 736 return sample->freq; 737 } 738 739 static int intel_pstate_set_policy(struct cpufreq_policy *policy) 740 { 741 struct cpudata *cpu; 742 743 cpu = all_cpu_data[policy->cpu]; 744 745 if (!policy->cpuinfo.max_freq) 746 return -ENODEV; 747 748 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) { 749 limits.min_perf_pct = 100; 750 limits.min_perf = int_tofp(1); 751 limits.max_perf_pct = 100; 752 limits.max_perf = int_tofp(1); 753 limits.no_turbo = 0; 754 return 0; 755 } 756 limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq; 757 limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100); 758 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100)); 759 760 limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq; 761 limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100); 762 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct); 763 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100)); 764 765 return 0; 766 } 767 768 static int intel_pstate_verify_policy(struct cpufreq_policy *policy) 769 { 770 cpufreq_verify_within_cpu_limits(policy); 771 772 if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) && 773 (policy->policy != CPUFREQ_POLICY_PERFORMANCE)) 774 return -EINVAL; 775 776 return 0; 777 } 778 779 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy) 780 { 781 int cpu_num = policy->cpu; 782 struct cpudata *cpu = all_cpu_data[cpu_num]; 783 784 pr_info("intel_pstate CPU %d exiting\n", cpu_num); 785 786 del_timer_sync(&all_cpu_data[cpu_num]->timer); 787 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); 788 kfree(all_cpu_data[cpu_num]); 789 all_cpu_data[cpu_num] = NULL; 790 } 791 792 static int intel_pstate_cpu_init(struct cpufreq_policy *policy) 793 { 794 struct cpudata *cpu; 795 int rc; 796 797 rc = intel_pstate_init_cpu(policy->cpu); 798 if (rc) 799 return rc; 800 801 cpu = all_cpu_data[policy->cpu]; 802 803 if (!limits.no_turbo && 804 limits.min_perf_pct == 100 && limits.max_perf_pct == 100) 805 policy->policy = CPUFREQ_POLICY_PERFORMANCE; 806 else 807 policy->policy = CPUFREQ_POLICY_POWERSAVE; 808 809 policy->min = cpu->pstate.min_pstate * 100000; 810 policy->max = cpu->pstate.turbo_pstate * 100000; 811 812 /* cpuinfo and default policy values */ 813 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000; 814 policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000; 815 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL; 816 cpumask_set_cpu(policy->cpu, policy->cpus); 817 818 return 0; 819 } 820 821 static struct cpufreq_driver intel_pstate_driver = { 822 .flags = CPUFREQ_CONST_LOOPS, 823 .verify = intel_pstate_verify_policy, 824 .setpolicy = intel_pstate_set_policy, 825 .get = intel_pstate_get, 826 .init = intel_pstate_cpu_init, 827 .stop_cpu = intel_pstate_stop_cpu, 828 .name = "intel_pstate", 829 }; 830 831 static int __initdata no_load; 832 833 static int intel_pstate_msrs_not_valid(void) 834 { 835 /* Check that all the msr's we are using are valid. */ 836 u64 aperf, mperf, tmp; 837 838 rdmsrl(MSR_IA32_APERF, aperf); 839 rdmsrl(MSR_IA32_MPERF, mperf); 840 841 if (!pstate_funcs.get_max() || 842 !pstate_funcs.get_min() || 843 !pstate_funcs.get_turbo()) 844 return -ENODEV; 845 846 rdmsrl(MSR_IA32_APERF, tmp); 847 if (!(tmp - aperf)) 848 return -ENODEV; 849 850 rdmsrl(MSR_IA32_MPERF, tmp); 851 if (!(tmp - mperf)) 852 return -ENODEV; 853 854 return 0; 855 } 856 857 static void copy_pid_params(struct pstate_adjust_policy *policy) 858 { 859 pid_params.sample_rate_ms = policy->sample_rate_ms; 860 pid_params.p_gain_pct = policy->p_gain_pct; 861 pid_params.i_gain_pct = policy->i_gain_pct; 862 pid_params.d_gain_pct = policy->d_gain_pct; 863 pid_params.deadband = policy->deadband; 864 pid_params.setpoint = policy->setpoint; 865 } 866 867 static void copy_cpu_funcs(struct pstate_funcs *funcs) 868 { 869 pstate_funcs.get_max = funcs->get_max; 870 pstate_funcs.get_min = funcs->get_min; 871 pstate_funcs.get_turbo = funcs->get_turbo; 872 pstate_funcs.set = funcs->set; 873 pstate_funcs.get_vid = funcs->get_vid; 874 } 875 876 #if IS_ENABLED(CONFIG_ACPI) 877 #include <acpi/processor.h> 878 879 static bool intel_pstate_no_acpi_pss(void) 880 { 881 int i; 882 883 for_each_possible_cpu(i) { 884 acpi_status status; 885 union acpi_object *pss; 886 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 887 struct acpi_processor *pr = per_cpu(processors, i); 888 889 if (!pr) 890 continue; 891 892 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 893 if (ACPI_FAILURE(status)) 894 continue; 895 896 pss = buffer.pointer; 897 if (pss && pss->type == ACPI_TYPE_PACKAGE) { 898 kfree(pss); 899 return false; 900 } 901 902 kfree(pss); 903 } 904 905 return true; 906 } 907 908 struct hw_vendor_info { 909 u16 valid; 910 char oem_id[ACPI_OEM_ID_SIZE]; 911 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE]; 912 }; 913 914 /* Hardware vendor-specific info that has its own power management modes */ 915 static struct hw_vendor_info vendor_info[] = { 916 {1, "HP ", "ProLiant"}, 917 {0, "", ""}, 918 }; 919 920 static bool intel_pstate_platform_pwr_mgmt_exists(void) 921 { 922 struct acpi_table_header hdr; 923 struct hw_vendor_info *v_info; 924 925 if (acpi_disabled 926 || ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr))) 927 return false; 928 929 for (v_info = vendor_info; v_info->valid; v_info++) { 930 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) 931 && !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) 932 && intel_pstate_no_acpi_pss()) 933 return true; 934 } 935 936 return false; 937 } 938 #else /* CONFIG_ACPI not enabled */ 939 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } 940 #endif /* CONFIG_ACPI */ 941 942 static int __init intel_pstate_init(void) 943 { 944 int cpu, rc = 0; 945 const struct x86_cpu_id *id; 946 struct cpu_defaults *cpu_info; 947 948 if (no_load) 949 return -ENODEV; 950 951 id = x86_match_cpu(intel_pstate_cpu_ids); 952 if (!id) 953 return -ENODEV; 954 955 /* 956 * The Intel pstate driver will be ignored if the platform 957 * firmware has its own power management modes. 958 */ 959 if (intel_pstate_platform_pwr_mgmt_exists()) 960 return -ENODEV; 961 962 cpu_info = (struct cpu_defaults *)id->driver_data; 963 964 copy_pid_params(&cpu_info->pid_policy); 965 copy_cpu_funcs(&cpu_info->funcs); 966 967 if (intel_pstate_msrs_not_valid()) 968 return -ENODEV; 969 970 pr_info("Intel P-state driver initializing.\n"); 971 972 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus()); 973 if (!all_cpu_data) 974 return -ENOMEM; 975 976 rc = cpufreq_register_driver(&intel_pstate_driver); 977 if (rc) 978 goto out; 979 980 intel_pstate_debug_expose_params(); 981 intel_pstate_sysfs_expose_params(); 982 983 return rc; 984 out: 985 get_online_cpus(); 986 for_each_online_cpu(cpu) { 987 if (all_cpu_data[cpu]) { 988 del_timer_sync(&all_cpu_data[cpu]->timer); 989 kfree(all_cpu_data[cpu]); 990 } 991 } 992 993 put_online_cpus(); 994 vfree(all_cpu_data); 995 return -ENODEV; 996 } 997 device_initcall(intel_pstate_init); 998 999 static int __init intel_pstate_setup(char *str) 1000 { 1001 if (!str) 1002 return -EINVAL; 1003 1004 if (!strcmp(str, "disable")) 1005 no_load = 1; 1006 return 0; 1007 } 1008 early_param("intel_pstate", intel_pstate_setup); 1009 1010 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); 1011 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); 1012 MODULE_LICENSE("GPL"); 1013