1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29 
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35 
36 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
37 
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
41 
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46 
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50 
51 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
52 
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57 
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62 
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65 	return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67 
68 static inline int ceiling_fp(int32_t x)
69 {
70 	int mask, ret;
71 
72 	ret = fp_toint(x);
73 	mask = (1 << FRAC_BITS) - 1;
74 	if (x & mask)
75 		ret += 1;
76 	return ret;
77 }
78 
79 static inline int32_t percent_fp(int percent)
80 {
81 	return div_fp(percent, 100);
82 }
83 
84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86 	return (x * y) >> EXT_FRAC_BITS;
87 }
88 
89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91 	return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93 
94 static inline int32_t percent_ext_fp(int percent)
95 {
96 	return div_ext_fp(percent, 100);
97 }
98 
99 /**
100  * struct sample -	Store performance sample
101  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
102  *			performance during last sample period
103  * @busy_scaled:	Scaled busy value which is used to calculate next
104  *			P state. This can be different than core_avg_perf
105  *			to account for cpu idle period
106  * @aperf:		Difference of actual performance frequency clock count
107  *			read from APERF MSR between last and current sample
108  * @mperf:		Difference of maximum performance frequency clock count
109  *			read from MPERF MSR between last and current sample
110  * @tsc:		Difference of time stamp counter between last and
111  *			current sample
112  * @time:		Current time from scheduler
113  *
114  * This structure is used in the cpudata structure to store performance sample
115  * data for choosing next P State.
116  */
117 struct sample {
118 	int32_t core_avg_perf;
119 	int32_t busy_scaled;
120 	u64 aperf;
121 	u64 mperf;
122 	u64 tsc;
123 	u64 time;
124 };
125 
126 /**
127  * struct pstate_data - Store P state data
128  * @current_pstate:	Current requested P state
129  * @min_pstate:		Min P state possible for this platform
130  * @max_pstate:		Max P state possible for this platform
131  * @max_pstate_physical:This is physical Max P state for a processor
132  *			This can be higher than the max_pstate which can
133  *			be limited by platform thermal design power limits
134  * @scaling:		Scaling factor to  convert frequency to cpufreq
135  *			frequency units
136  * @turbo_pstate:	Max Turbo P state possible for this platform
137  * @max_freq:		@max_pstate frequency in cpufreq units
138  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
139  *
140  * Stores the per cpu model P state limits and current P state.
141  */
142 struct pstate_data {
143 	int	current_pstate;
144 	int	min_pstate;
145 	int	max_pstate;
146 	int	max_pstate_physical;
147 	int	scaling;
148 	int	turbo_pstate;
149 	unsigned int max_freq;
150 	unsigned int turbo_freq;
151 };
152 
153 /**
154  * struct vid_data -	Stores voltage information data
155  * @min:		VID data for this platform corresponding to
156  *			the lowest P state
157  * @max:		VID data corresponding to the highest P State.
158  * @turbo:		VID data for turbo P state
159  * @ratio:		Ratio of (vid max - vid min) /
160  *			(max P state - Min P State)
161  *
162  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
163  * This data is used in Atom platforms, where in addition to target P state,
164  * the voltage data needs to be specified to select next P State.
165  */
166 struct vid_data {
167 	int min;
168 	int max;
169 	int turbo;
170 	int32_t ratio;
171 };
172 
173 /**
174  * struct global_params - Global parameters, mostly tunable via sysfs.
175  * @no_turbo:		Whether or not to use turbo P-states.
176  * @turbo_disabled:	Whether or not turbo P-states are available at all,
177  *			based on the MSR_IA32_MISC_ENABLE value and whether or
178  *			not the maximum reported turbo P-state is different from
179  *			the maximum reported non-turbo one.
180  * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
181  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
182  *			P-state capacity.
183  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
184  *			P-state capacity.
185  */
186 struct global_params {
187 	bool no_turbo;
188 	bool turbo_disabled;
189 	bool turbo_disabled_mf;
190 	int max_perf_pct;
191 	int min_perf_pct;
192 };
193 
194 /**
195  * struct cpudata -	Per CPU instance data storage
196  * @cpu:		CPU number for this instance data
197  * @policy:		CPUFreq policy value
198  * @update_util:	CPUFreq utility callback information
199  * @update_util_set:	CPUFreq utility callback is set
200  * @iowait_boost:	iowait-related boost fraction
201  * @last_update:	Time of the last update.
202  * @pstate:		Stores P state limits for this CPU
203  * @vid:		Stores VID limits for this CPU
204  * @last_sample_time:	Last Sample time
205  * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
206  * @prev_aperf:		Last APERF value read from APERF MSR
207  * @prev_mperf:		Last MPERF value read from MPERF MSR
208  * @prev_tsc:		Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *			current sample
211  * @sample:		Storage for storing last Sample data
212  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
215  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:	Last saved HWP energy performance preference
217  *			(EPP) or energy performance bias (EPB),
218  *			when policy switched to performance
219  * @epp_policy:		Last saved policy used to set EPP/EPB
220  * @epp_default:	Power on default HWP energy performance
221  *			preference/bias
222  * @epp_cached		Cached HWP energy-performance preference value
223  * @hwp_req_cached:	Cached value of the last HWP Request MSR
224  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
225  * @last_io_update:	Last time when IO wake flag was set
226  * @sched_flags:	Store scheduler flags for possible cross CPU update
227  * @hwp_boost_min:	Last HWP boosted min performance
228  * @suspended:		Whether or not the driver has been suspended.
229  *
230  * This structure stores per CPU instance data for all CPUs.
231  */
232 struct cpudata {
233 	int cpu;
234 
235 	unsigned int policy;
236 	struct update_util_data update_util;
237 	bool   update_util_set;
238 
239 	struct pstate_data pstate;
240 	struct vid_data vid;
241 
242 	u64	last_update;
243 	u64	last_sample_time;
244 	u64	aperf_mperf_shift;
245 	u64	prev_aperf;
246 	u64	prev_mperf;
247 	u64	prev_tsc;
248 	u64	prev_cummulative_iowait;
249 	struct sample sample;
250 	int32_t	min_perf_ratio;
251 	int32_t	max_perf_ratio;
252 #ifdef CONFIG_ACPI
253 	struct acpi_processor_performance acpi_perf_data;
254 	bool valid_pss_table;
255 #endif
256 	unsigned int iowait_boost;
257 	s16 epp_powersave;
258 	s16 epp_policy;
259 	s16 epp_default;
260 	s16 epp_cached;
261 	u64 hwp_req_cached;
262 	u64 hwp_cap_cached;
263 	u64 last_io_update;
264 	unsigned int sched_flags;
265 	u32 hwp_boost_min;
266 	bool suspended;
267 };
268 
269 static struct cpudata **all_cpu_data;
270 
271 /**
272  * struct pstate_funcs - Per CPU model specific callbacks
273  * @get_max:		Callback to get maximum non turbo effective P state
274  * @get_max_physical:	Callback to get maximum non turbo physical P state
275  * @get_min:		Callback to get minimum P state
276  * @get_turbo:		Callback to get turbo P state
277  * @get_scaling:	Callback to get frequency scaling factor
278  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
279  * @get_val:		Callback to convert P state to actual MSR write value
280  * @get_vid:		Callback to get VID data for Atom platforms
281  *
282  * Core and Atom CPU models have different way to get P State limits. This
283  * structure is used to store those callbacks.
284  */
285 struct pstate_funcs {
286 	int (*get_max)(void);
287 	int (*get_max_physical)(void);
288 	int (*get_min)(void);
289 	int (*get_turbo)(void);
290 	int (*get_scaling)(void);
291 	int (*get_aperf_mperf_shift)(void);
292 	u64 (*get_val)(struct cpudata*, int pstate);
293 	void (*get_vid)(struct cpudata *);
294 };
295 
296 static struct pstate_funcs pstate_funcs __read_mostly;
297 
298 static int hwp_active __read_mostly;
299 static int hwp_mode_bdw __read_mostly;
300 static bool per_cpu_limits __read_mostly;
301 static bool hwp_boost __read_mostly;
302 
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304 
305 #ifdef CONFIG_ACPI
306 static bool acpi_ppc;
307 #endif
308 
309 static struct global_params global;
310 
311 static DEFINE_MUTEX(intel_pstate_driver_lock);
312 static DEFINE_MUTEX(intel_pstate_limits_lock);
313 
314 #ifdef CONFIG_ACPI
315 
316 static bool intel_pstate_acpi_pm_profile_server(void)
317 {
318 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
319 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
320 		return true;
321 
322 	return false;
323 }
324 
325 static bool intel_pstate_get_ppc_enable_status(void)
326 {
327 	if (intel_pstate_acpi_pm_profile_server())
328 		return true;
329 
330 	return acpi_ppc;
331 }
332 
333 #ifdef CONFIG_ACPI_CPPC_LIB
334 
335 /* The work item is needed to avoid CPU hotplug locking issues */
336 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
337 {
338 	sched_set_itmt_support();
339 }
340 
341 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
342 
343 static void intel_pstate_set_itmt_prio(int cpu)
344 {
345 	struct cppc_perf_caps cppc_perf;
346 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
347 	int ret;
348 
349 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
350 	if (ret)
351 		return;
352 
353 	/*
354 	 * The priorities can be set regardless of whether or not
355 	 * sched_set_itmt_support(true) has been called and it is valid to
356 	 * update them at any time after it has been called.
357 	 */
358 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
359 
360 	if (max_highest_perf <= min_highest_perf) {
361 		if (cppc_perf.highest_perf > max_highest_perf)
362 			max_highest_perf = cppc_perf.highest_perf;
363 
364 		if (cppc_perf.highest_perf < min_highest_perf)
365 			min_highest_perf = cppc_perf.highest_perf;
366 
367 		if (max_highest_perf > min_highest_perf) {
368 			/*
369 			 * This code can be run during CPU online under the
370 			 * CPU hotplug locks, so sched_set_itmt_support()
371 			 * cannot be called from here.  Queue up a work item
372 			 * to invoke it.
373 			 */
374 			schedule_work(&sched_itmt_work);
375 		}
376 	}
377 }
378 
379 static int intel_pstate_get_cppc_guranteed(int cpu)
380 {
381 	struct cppc_perf_caps cppc_perf;
382 	int ret;
383 
384 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
385 	if (ret)
386 		return ret;
387 
388 	if (cppc_perf.guaranteed_perf)
389 		return cppc_perf.guaranteed_perf;
390 
391 	return cppc_perf.nominal_perf;
392 }
393 
394 #else /* CONFIG_ACPI_CPPC_LIB */
395 static void intel_pstate_set_itmt_prio(int cpu)
396 {
397 }
398 #endif /* CONFIG_ACPI_CPPC_LIB */
399 
400 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
401 {
402 	struct cpudata *cpu;
403 	int ret;
404 	int i;
405 
406 	if (hwp_active) {
407 		intel_pstate_set_itmt_prio(policy->cpu);
408 		return;
409 	}
410 
411 	if (!intel_pstate_get_ppc_enable_status())
412 		return;
413 
414 	cpu = all_cpu_data[policy->cpu];
415 
416 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
417 						  policy->cpu);
418 	if (ret)
419 		return;
420 
421 	/*
422 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
423 	 * guarantee that the states returned by it map to the states in our
424 	 * list directly.
425 	 */
426 	if (cpu->acpi_perf_data.control_register.space_id !=
427 						ACPI_ADR_SPACE_FIXED_HARDWARE)
428 		goto err;
429 
430 	/*
431 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
432 	 * usual without taking _PSS into account
433 	 */
434 	if (cpu->acpi_perf_data.state_count < 2)
435 		goto err;
436 
437 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
438 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
439 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
440 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
441 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
442 			 (u32) cpu->acpi_perf_data.states[i].power,
443 			 (u32) cpu->acpi_perf_data.states[i].control);
444 	}
445 
446 	/*
447 	 * The _PSS table doesn't contain whole turbo frequency range.
448 	 * This just contains +1 MHZ above the max non turbo frequency,
449 	 * with control value corresponding to max turbo ratio. But
450 	 * when cpufreq set policy is called, it will call with this
451 	 * max frequency, which will cause a reduced performance as
452 	 * this driver uses real max turbo frequency as the max
453 	 * frequency. So correct this frequency in _PSS table to
454 	 * correct max turbo frequency based on the turbo state.
455 	 * Also need to convert to MHz as _PSS freq is in MHz.
456 	 */
457 	if (!global.turbo_disabled)
458 		cpu->acpi_perf_data.states[0].core_frequency =
459 					policy->cpuinfo.max_freq / 1000;
460 	cpu->valid_pss_table = true;
461 	pr_debug("_PPC limits will be enforced\n");
462 
463 	return;
464 
465  err:
466 	cpu->valid_pss_table = false;
467 	acpi_processor_unregister_performance(policy->cpu);
468 }
469 
470 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
471 {
472 	struct cpudata *cpu;
473 
474 	cpu = all_cpu_data[policy->cpu];
475 	if (!cpu->valid_pss_table)
476 		return;
477 
478 	acpi_processor_unregister_performance(policy->cpu);
479 }
480 #else /* CONFIG_ACPI */
481 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
482 {
483 }
484 
485 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
486 {
487 }
488 
489 static inline bool intel_pstate_acpi_pm_profile_server(void)
490 {
491 	return false;
492 }
493 #endif /* CONFIG_ACPI */
494 
495 #ifndef CONFIG_ACPI_CPPC_LIB
496 static int intel_pstate_get_cppc_guranteed(int cpu)
497 {
498 	return -ENOTSUPP;
499 }
500 #endif /* CONFIG_ACPI_CPPC_LIB */
501 
502 static inline void update_turbo_state(void)
503 {
504 	u64 misc_en;
505 	struct cpudata *cpu;
506 
507 	cpu = all_cpu_data[0];
508 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
509 	global.turbo_disabled =
510 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
511 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
512 }
513 
514 static int min_perf_pct_min(void)
515 {
516 	struct cpudata *cpu = all_cpu_data[0];
517 	int turbo_pstate = cpu->pstate.turbo_pstate;
518 
519 	return turbo_pstate ?
520 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
521 }
522 
523 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
524 {
525 	u64 epb;
526 	int ret;
527 
528 	if (!boot_cpu_has(X86_FEATURE_EPB))
529 		return -ENXIO;
530 
531 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
532 	if (ret)
533 		return (s16)ret;
534 
535 	return (s16)(epb & 0x0f);
536 }
537 
538 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
539 {
540 	s16 epp;
541 
542 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
543 		/*
544 		 * When hwp_req_data is 0, means that caller didn't read
545 		 * MSR_HWP_REQUEST, so need to read and get EPP.
546 		 */
547 		if (!hwp_req_data) {
548 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
549 					    &hwp_req_data);
550 			if (epp)
551 				return epp;
552 		}
553 		epp = (hwp_req_data >> 24) & 0xff;
554 	} else {
555 		/* When there is no EPP present, HWP uses EPB settings */
556 		epp = intel_pstate_get_epb(cpu_data);
557 	}
558 
559 	return epp;
560 }
561 
562 static int intel_pstate_set_epb(int cpu, s16 pref)
563 {
564 	u64 epb;
565 	int ret;
566 
567 	if (!boot_cpu_has(X86_FEATURE_EPB))
568 		return -ENXIO;
569 
570 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
571 	if (ret)
572 		return ret;
573 
574 	epb = (epb & ~0x0f) | pref;
575 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
576 
577 	return 0;
578 }
579 
580 /*
581  * EPP/EPB display strings corresponding to EPP index in the
582  * energy_perf_strings[]
583  *	index		String
584  *-------------------------------------
585  *	0		default
586  *	1		performance
587  *	2		balance_performance
588  *	3		balance_power
589  *	4		power
590  */
591 static const char * const energy_perf_strings[] = {
592 	"default",
593 	"performance",
594 	"balance_performance",
595 	"balance_power",
596 	"power",
597 	NULL
598 };
599 static const unsigned int epp_values[] = {
600 	HWP_EPP_PERFORMANCE,
601 	HWP_EPP_BALANCE_PERFORMANCE,
602 	HWP_EPP_BALANCE_POWERSAVE,
603 	HWP_EPP_POWERSAVE
604 };
605 
606 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
607 {
608 	s16 epp;
609 	int index = -EINVAL;
610 
611 	*raw_epp = 0;
612 	epp = intel_pstate_get_epp(cpu_data, 0);
613 	if (epp < 0)
614 		return epp;
615 
616 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
617 		if (epp == HWP_EPP_PERFORMANCE)
618 			return 1;
619 		if (epp == HWP_EPP_BALANCE_PERFORMANCE)
620 			return 2;
621 		if (epp == HWP_EPP_BALANCE_POWERSAVE)
622 			return 3;
623 		if (epp == HWP_EPP_POWERSAVE)
624 			return 4;
625 		*raw_epp = epp;
626 		return 0;
627 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
628 		/*
629 		 * Range:
630 		 *	0x00-0x03	:	Performance
631 		 *	0x04-0x07	:	Balance performance
632 		 *	0x08-0x0B	:	Balance power
633 		 *	0x0C-0x0F	:	Power
634 		 * The EPB is a 4 bit value, but our ranges restrict the
635 		 * value which can be set. Here only using top two bits
636 		 * effectively.
637 		 */
638 		index = (epp >> 2) + 1;
639 	}
640 
641 	return index;
642 }
643 
644 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
645 {
646 	int ret;
647 
648 	/*
649 	 * Use the cached HWP Request MSR value, because in the active mode the
650 	 * register itself may be updated by intel_pstate_hwp_boost_up() or
651 	 * intel_pstate_hwp_boost_down() at any time.
652 	 */
653 	u64 value = READ_ONCE(cpu->hwp_req_cached);
654 
655 	value &= ~GENMASK_ULL(31, 24);
656 	value |= (u64)epp << 24;
657 	/*
658 	 * The only other updater of hwp_req_cached in the active mode,
659 	 * intel_pstate_hwp_set(), is called under the same lock as this
660 	 * function, so it cannot run in parallel with the update below.
661 	 */
662 	WRITE_ONCE(cpu->hwp_req_cached, value);
663 	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
664 	if (!ret)
665 		cpu->epp_cached = epp;
666 
667 	return ret;
668 }
669 
670 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
671 					      int pref_index, bool use_raw,
672 					      u32 raw_epp)
673 {
674 	int epp = -EINVAL;
675 	int ret;
676 
677 	if (!pref_index)
678 		epp = cpu_data->epp_default;
679 
680 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
681 		if (use_raw)
682 			epp = raw_epp;
683 		else if (epp == -EINVAL)
684 			epp = epp_values[pref_index - 1];
685 
686 		/*
687 		 * To avoid confusion, refuse to set EPP to any values different
688 		 * from 0 (performance) if the current policy is "performance",
689 		 * because those values would be overridden.
690 		 */
691 		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
692 			return -EBUSY;
693 
694 		ret = intel_pstate_set_epp(cpu_data, epp);
695 	} else {
696 		if (epp == -EINVAL)
697 			epp = (pref_index - 1) << 2;
698 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
699 	}
700 
701 	return ret;
702 }
703 
704 static ssize_t show_energy_performance_available_preferences(
705 				struct cpufreq_policy *policy, char *buf)
706 {
707 	int i = 0;
708 	int ret = 0;
709 
710 	while (energy_perf_strings[i] != NULL)
711 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
712 
713 	ret += sprintf(&buf[ret], "\n");
714 
715 	return ret;
716 }
717 
718 cpufreq_freq_attr_ro(energy_performance_available_preferences);
719 
720 static struct cpufreq_driver intel_pstate;
721 
722 static ssize_t store_energy_performance_preference(
723 		struct cpufreq_policy *policy, const char *buf, size_t count)
724 {
725 	struct cpudata *cpu = all_cpu_data[policy->cpu];
726 	char str_preference[21];
727 	bool raw = false;
728 	ssize_t ret;
729 	u32 epp = 0;
730 
731 	ret = sscanf(buf, "%20s", str_preference);
732 	if (ret != 1)
733 		return -EINVAL;
734 
735 	ret = match_string(energy_perf_strings, -1, str_preference);
736 	if (ret < 0) {
737 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
738 			return ret;
739 
740 		ret = kstrtouint(buf, 10, &epp);
741 		if (ret)
742 			return ret;
743 
744 		if (epp > 255)
745 			return -EINVAL;
746 
747 		raw = true;
748 	}
749 
750 	/*
751 	 * This function runs with the policy R/W semaphore held, which
752 	 * guarantees that the driver pointer will not change while it is
753 	 * running.
754 	 */
755 	if (!intel_pstate_driver)
756 		return -EAGAIN;
757 
758 	mutex_lock(&intel_pstate_limits_lock);
759 
760 	if (intel_pstate_driver == &intel_pstate) {
761 		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
762 	} else {
763 		/*
764 		 * In the passive mode the governor needs to be stopped on the
765 		 * target CPU before the EPP update and restarted after it,
766 		 * which is super-heavy-weight, so make sure it is worth doing
767 		 * upfront.
768 		 */
769 		if (!raw)
770 			epp = ret ? epp_values[ret - 1] : cpu->epp_default;
771 
772 		if (cpu->epp_cached != epp) {
773 			int err;
774 
775 			cpufreq_stop_governor(policy);
776 			ret = intel_pstate_set_epp(cpu, epp);
777 			err = cpufreq_start_governor(policy);
778 			if (!ret)
779 				ret = err;
780 		}
781 	}
782 
783 	mutex_unlock(&intel_pstate_limits_lock);
784 
785 	return ret ?: count;
786 }
787 
788 static ssize_t show_energy_performance_preference(
789 				struct cpufreq_policy *policy, char *buf)
790 {
791 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
792 	int preference, raw_epp;
793 
794 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
795 	if (preference < 0)
796 		return preference;
797 
798 	if (raw_epp)
799 		return  sprintf(buf, "%d\n", raw_epp);
800 	else
801 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
802 }
803 
804 cpufreq_freq_attr_rw(energy_performance_preference);
805 
806 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
807 {
808 	struct cpudata *cpu;
809 	u64 cap;
810 	int ratio;
811 
812 	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
813 	if (ratio <= 0) {
814 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
815 		ratio = HWP_GUARANTEED_PERF(cap);
816 	}
817 
818 	cpu = all_cpu_data[policy->cpu];
819 
820 	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
821 }
822 
823 cpufreq_freq_attr_ro(base_frequency);
824 
825 static struct freq_attr *hwp_cpufreq_attrs[] = {
826 	&energy_performance_preference,
827 	&energy_performance_available_preferences,
828 	&base_frequency,
829 	NULL,
830 };
831 
832 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
833 				     int *current_max)
834 {
835 	u64 cap;
836 
837 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
838 	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
839 	if (global.no_turbo || global.turbo_disabled)
840 		*current_max = HWP_GUARANTEED_PERF(cap);
841 	else
842 		*current_max = HWP_HIGHEST_PERF(cap);
843 
844 	*phy_max = HWP_HIGHEST_PERF(cap);
845 }
846 
847 static void intel_pstate_hwp_set(unsigned int cpu)
848 {
849 	struct cpudata *cpu_data = all_cpu_data[cpu];
850 	int max, min;
851 	u64 value;
852 	s16 epp;
853 
854 	max = cpu_data->max_perf_ratio;
855 	min = cpu_data->min_perf_ratio;
856 
857 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
858 		min = max;
859 
860 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
861 
862 	value &= ~HWP_MIN_PERF(~0L);
863 	value |= HWP_MIN_PERF(min);
864 
865 	value &= ~HWP_MAX_PERF(~0L);
866 	value |= HWP_MAX_PERF(max);
867 
868 	if (cpu_data->epp_policy == cpu_data->policy)
869 		goto skip_epp;
870 
871 	cpu_data->epp_policy = cpu_data->policy;
872 
873 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
874 		epp = intel_pstate_get_epp(cpu_data, value);
875 		cpu_data->epp_powersave = epp;
876 		/* If EPP read was failed, then don't try to write */
877 		if (epp < 0)
878 			goto skip_epp;
879 
880 		epp = 0;
881 	} else {
882 		/* skip setting EPP, when saved value is invalid */
883 		if (cpu_data->epp_powersave < 0)
884 			goto skip_epp;
885 
886 		/*
887 		 * No need to restore EPP when it is not zero. This
888 		 * means:
889 		 *  - Policy is not changed
890 		 *  - user has manually changed
891 		 *  - Error reading EPB
892 		 */
893 		epp = intel_pstate_get_epp(cpu_data, value);
894 		if (epp)
895 			goto skip_epp;
896 
897 		epp = cpu_data->epp_powersave;
898 	}
899 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
900 		value &= ~GENMASK_ULL(31, 24);
901 		value |= (u64)epp << 24;
902 	} else {
903 		intel_pstate_set_epb(cpu, epp);
904 	}
905 skip_epp:
906 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
907 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
908 }
909 
910 static void intel_pstate_hwp_offline(struct cpudata *cpu)
911 {
912 	u64 value = READ_ONCE(cpu->hwp_req_cached);
913 	int min_perf;
914 
915 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
916 		/*
917 		 * In case the EPP has been set to "performance" by the
918 		 * active mode "performance" scaling algorithm, replace that
919 		 * temporary value with the cached EPP one.
920 		 */
921 		value &= ~GENMASK_ULL(31, 24);
922 		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
923 		WRITE_ONCE(cpu->hwp_req_cached, value);
924 	}
925 
926 	value &= ~GENMASK_ULL(31, 0);
927 	min_perf = HWP_LOWEST_PERF(cpu->hwp_cap_cached);
928 
929 	/* Set hwp_max = hwp_min */
930 	value |= HWP_MAX_PERF(min_perf);
931 	value |= HWP_MIN_PERF(min_perf);
932 
933 	/* Set EPP to min */
934 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
935 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
936 
937 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
938 }
939 
940 #define POWER_CTL_EE_ENABLE	1
941 #define POWER_CTL_EE_DISABLE	2
942 
943 static int power_ctl_ee_state;
944 
945 static void set_power_ctl_ee_state(bool input)
946 {
947 	u64 power_ctl;
948 
949 	mutex_lock(&intel_pstate_driver_lock);
950 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
951 	if (input) {
952 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
953 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
954 	} else {
955 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
956 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
957 	}
958 	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
959 	mutex_unlock(&intel_pstate_driver_lock);
960 }
961 
962 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
963 
964 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
965 {
966 	intel_pstate_hwp_enable(cpu);
967 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
968 }
969 
970 static int intel_pstate_suspend(struct cpufreq_policy *policy)
971 {
972 	struct cpudata *cpu = all_cpu_data[policy->cpu];
973 
974 	pr_debug("CPU %d suspending\n", cpu->cpu);
975 
976 	cpu->suspended = true;
977 
978 	return 0;
979 }
980 
981 static int intel_pstate_resume(struct cpufreq_policy *policy)
982 {
983 	struct cpudata *cpu = all_cpu_data[policy->cpu];
984 
985 	pr_debug("CPU %d resuming\n", cpu->cpu);
986 
987 	/* Only restore if the system default is changed */
988 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
989 		set_power_ctl_ee_state(true);
990 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
991 		set_power_ctl_ee_state(false);
992 
993 	if (cpu->suspended && hwp_active) {
994 		mutex_lock(&intel_pstate_limits_lock);
995 
996 		/* Re-enable HWP, because "online" has not done that. */
997 		intel_pstate_hwp_reenable(cpu);
998 
999 		mutex_unlock(&intel_pstate_limits_lock);
1000 	}
1001 
1002 	cpu->suspended = false;
1003 
1004 	return 0;
1005 }
1006 
1007 static void intel_pstate_update_policies(void)
1008 {
1009 	int cpu;
1010 
1011 	for_each_possible_cpu(cpu)
1012 		cpufreq_update_policy(cpu);
1013 }
1014 
1015 static void intel_pstate_update_max_freq(unsigned int cpu)
1016 {
1017 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1018 	struct cpudata *cpudata;
1019 
1020 	if (!policy)
1021 		return;
1022 
1023 	cpudata = all_cpu_data[cpu];
1024 	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1025 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1026 
1027 	refresh_frequency_limits(policy);
1028 
1029 	cpufreq_cpu_release(policy);
1030 }
1031 
1032 static void intel_pstate_update_limits(unsigned int cpu)
1033 {
1034 	mutex_lock(&intel_pstate_driver_lock);
1035 
1036 	update_turbo_state();
1037 	/*
1038 	 * If turbo has been turned on or off globally, policy limits for
1039 	 * all CPUs need to be updated to reflect that.
1040 	 */
1041 	if (global.turbo_disabled_mf != global.turbo_disabled) {
1042 		global.turbo_disabled_mf = global.turbo_disabled;
1043 		arch_set_max_freq_ratio(global.turbo_disabled);
1044 		for_each_possible_cpu(cpu)
1045 			intel_pstate_update_max_freq(cpu);
1046 	} else {
1047 		cpufreq_update_policy(cpu);
1048 	}
1049 
1050 	mutex_unlock(&intel_pstate_driver_lock);
1051 }
1052 
1053 /************************** sysfs begin ************************/
1054 #define show_one(file_name, object)					\
1055 	static ssize_t show_##file_name					\
1056 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1057 	{								\
1058 		return sprintf(buf, "%u\n", global.object);		\
1059 	}
1060 
1061 static ssize_t intel_pstate_show_status(char *buf);
1062 static int intel_pstate_update_status(const char *buf, size_t size);
1063 
1064 static ssize_t show_status(struct kobject *kobj,
1065 			   struct kobj_attribute *attr, char *buf)
1066 {
1067 	ssize_t ret;
1068 
1069 	mutex_lock(&intel_pstate_driver_lock);
1070 	ret = intel_pstate_show_status(buf);
1071 	mutex_unlock(&intel_pstate_driver_lock);
1072 
1073 	return ret;
1074 }
1075 
1076 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1077 			    const char *buf, size_t count)
1078 {
1079 	char *p = memchr(buf, '\n', count);
1080 	int ret;
1081 
1082 	mutex_lock(&intel_pstate_driver_lock);
1083 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1084 	mutex_unlock(&intel_pstate_driver_lock);
1085 
1086 	return ret < 0 ? ret : count;
1087 }
1088 
1089 static ssize_t show_turbo_pct(struct kobject *kobj,
1090 				struct kobj_attribute *attr, char *buf)
1091 {
1092 	struct cpudata *cpu;
1093 	int total, no_turbo, turbo_pct;
1094 	uint32_t turbo_fp;
1095 
1096 	mutex_lock(&intel_pstate_driver_lock);
1097 
1098 	if (!intel_pstate_driver) {
1099 		mutex_unlock(&intel_pstate_driver_lock);
1100 		return -EAGAIN;
1101 	}
1102 
1103 	cpu = all_cpu_data[0];
1104 
1105 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1106 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1107 	turbo_fp = div_fp(no_turbo, total);
1108 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1109 
1110 	mutex_unlock(&intel_pstate_driver_lock);
1111 
1112 	return sprintf(buf, "%u\n", turbo_pct);
1113 }
1114 
1115 static ssize_t show_num_pstates(struct kobject *kobj,
1116 				struct kobj_attribute *attr, char *buf)
1117 {
1118 	struct cpudata *cpu;
1119 	int total;
1120 
1121 	mutex_lock(&intel_pstate_driver_lock);
1122 
1123 	if (!intel_pstate_driver) {
1124 		mutex_unlock(&intel_pstate_driver_lock);
1125 		return -EAGAIN;
1126 	}
1127 
1128 	cpu = all_cpu_data[0];
1129 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1130 
1131 	mutex_unlock(&intel_pstate_driver_lock);
1132 
1133 	return sprintf(buf, "%u\n", total);
1134 }
1135 
1136 static ssize_t show_no_turbo(struct kobject *kobj,
1137 			     struct kobj_attribute *attr, char *buf)
1138 {
1139 	ssize_t ret;
1140 
1141 	mutex_lock(&intel_pstate_driver_lock);
1142 
1143 	if (!intel_pstate_driver) {
1144 		mutex_unlock(&intel_pstate_driver_lock);
1145 		return -EAGAIN;
1146 	}
1147 
1148 	update_turbo_state();
1149 	if (global.turbo_disabled)
1150 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1151 	else
1152 		ret = sprintf(buf, "%u\n", global.no_turbo);
1153 
1154 	mutex_unlock(&intel_pstate_driver_lock);
1155 
1156 	return ret;
1157 }
1158 
1159 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1160 			      const char *buf, size_t count)
1161 {
1162 	unsigned int input;
1163 	int ret;
1164 
1165 	ret = sscanf(buf, "%u", &input);
1166 	if (ret != 1)
1167 		return -EINVAL;
1168 
1169 	mutex_lock(&intel_pstate_driver_lock);
1170 
1171 	if (!intel_pstate_driver) {
1172 		mutex_unlock(&intel_pstate_driver_lock);
1173 		return -EAGAIN;
1174 	}
1175 
1176 	mutex_lock(&intel_pstate_limits_lock);
1177 
1178 	update_turbo_state();
1179 	if (global.turbo_disabled) {
1180 		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1181 		mutex_unlock(&intel_pstate_limits_lock);
1182 		mutex_unlock(&intel_pstate_driver_lock);
1183 		return -EPERM;
1184 	}
1185 
1186 	global.no_turbo = clamp_t(int, input, 0, 1);
1187 
1188 	if (global.no_turbo) {
1189 		struct cpudata *cpu = all_cpu_data[0];
1190 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1191 
1192 		/* Squash the global minimum into the permitted range. */
1193 		if (global.min_perf_pct > pct)
1194 			global.min_perf_pct = pct;
1195 	}
1196 
1197 	mutex_unlock(&intel_pstate_limits_lock);
1198 
1199 	intel_pstate_update_policies();
1200 
1201 	mutex_unlock(&intel_pstate_driver_lock);
1202 
1203 	return count;
1204 }
1205 
1206 static void update_qos_request(enum freq_qos_req_type type)
1207 {
1208 	int max_state, turbo_max, freq, i, perf_pct;
1209 	struct freq_qos_request *req;
1210 	struct cpufreq_policy *policy;
1211 
1212 	for_each_possible_cpu(i) {
1213 		struct cpudata *cpu = all_cpu_data[i];
1214 
1215 		policy = cpufreq_cpu_get(i);
1216 		if (!policy)
1217 			continue;
1218 
1219 		req = policy->driver_data;
1220 		cpufreq_cpu_put(policy);
1221 
1222 		if (!req)
1223 			continue;
1224 
1225 		if (hwp_active)
1226 			intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
1227 		else
1228 			turbo_max = cpu->pstate.turbo_pstate;
1229 
1230 		if (type == FREQ_QOS_MIN) {
1231 			perf_pct = global.min_perf_pct;
1232 		} else {
1233 			req++;
1234 			perf_pct = global.max_perf_pct;
1235 		}
1236 
1237 		freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1238 		freq *= cpu->pstate.scaling;
1239 
1240 		if (freq_qos_update_request(req, freq) < 0)
1241 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1242 	}
1243 }
1244 
1245 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1246 				  const char *buf, size_t count)
1247 {
1248 	unsigned int input;
1249 	int ret;
1250 
1251 	ret = sscanf(buf, "%u", &input);
1252 	if (ret != 1)
1253 		return -EINVAL;
1254 
1255 	mutex_lock(&intel_pstate_driver_lock);
1256 
1257 	if (!intel_pstate_driver) {
1258 		mutex_unlock(&intel_pstate_driver_lock);
1259 		return -EAGAIN;
1260 	}
1261 
1262 	mutex_lock(&intel_pstate_limits_lock);
1263 
1264 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1265 
1266 	mutex_unlock(&intel_pstate_limits_lock);
1267 
1268 	if (intel_pstate_driver == &intel_pstate)
1269 		intel_pstate_update_policies();
1270 	else
1271 		update_qos_request(FREQ_QOS_MAX);
1272 
1273 	mutex_unlock(&intel_pstate_driver_lock);
1274 
1275 	return count;
1276 }
1277 
1278 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1279 				  const char *buf, size_t count)
1280 {
1281 	unsigned int input;
1282 	int ret;
1283 
1284 	ret = sscanf(buf, "%u", &input);
1285 	if (ret != 1)
1286 		return -EINVAL;
1287 
1288 	mutex_lock(&intel_pstate_driver_lock);
1289 
1290 	if (!intel_pstate_driver) {
1291 		mutex_unlock(&intel_pstate_driver_lock);
1292 		return -EAGAIN;
1293 	}
1294 
1295 	mutex_lock(&intel_pstate_limits_lock);
1296 
1297 	global.min_perf_pct = clamp_t(int, input,
1298 				      min_perf_pct_min(), global.max_perf_pct);
1299 
1300 	mutex_unlock(&intel_pstate_limits_lock);
1301 
1302 	if (intel_pstate_driver == &intel_pstate)
1303 		intel_pstate_update_policies();
1304 	else
1305 		update_qos_request(FREQ_QOS_MIN);
1306 
1307 	mutex_unlock(&intel_pstate_driver_lock);
1308 
1309 	return count;
1310 }
1311 
1312 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1313 				struct kobj_attribute *attr, char *buf)
1314 {
1315 	return sprintf(buf, "%u\n", hwp_boost);
1316 }
1317 
1318 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1319 				       struct kobj_attribute *b,
1320 				       const char *buf, size_t count)
1321 {
1322 	unsigned int input;
1323 	int ret;
1324 
1325 	ret = kstrtouint(buf, 10, &input);
1326 	if (ret)
1327 		return ret;
1328 
1329 	mutex_lock(&intel_pstate_driver_lock);
1330 	hwp_boost = !!input;
1331 	intel_pstate_update_policies();
1332 	mutex_unlock(&intel_pstate_driver_lock);
1333 
1334 	return count;
1335 }
1336 
1337 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1338 				      char *buf)
1339 {
1340 	u64 power_ctl;
1341 	int enable;
1342 
1343 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1344 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1345 	return sprintf(buf, "%d\n", !enable);
1346 }
1347 
1348 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1349 				       const char *buf, size_t count)
1350 {
1351 	bool input;
1352 	int ret;
1353 
1354 	ret = kstrtobool(buf, &input);
1355 	if (ret)
1356 		return ret;
1357 
1358 	set_power_ctl_ee_state(input);
1359 
1360 	return count;
1361 }
1362 
1363 show_one(max_perf_pct, max_perf_pct);
1364 show_one(min_perf_pct, min_perf_pct);
1365 
1366 define_one_global_rw(status);
1367 define_one_global_rw(no_turbo);
1368 define_one_global_rw(max_perf_pct);
1369 define_one_global_rw(min_perf_pct);
1370 define_one_global_ro(turbo_pct);
1371 define_one_global_ro(num_pstates);
1372 define_one_global_rw(hwp_dynamic_boost);
1373 define_one_global_rw(energy_efficiency);
1374 
1375 static struct attribute *intel_pstate_attributes[] = {
1376 	&status.attr,
1377 	&no_turbo.attr,
1378 	&turbo_pct.attr,
1379 	&num_pstates.attr,
1380 	NULL
1381 };
1382 
1383 static const struct attribute_group intel_pstate_attr_group = {
1384 	.attrs = intel_pstate_attributes,
1385 };
1386 
1387 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1388 
1389 static struct kobject *intel_pstate_kobject;
1390 
1391 static void __init intel_pstate_sysfs_expose_params(void)
1392 {
1393 	int rc;
1394 
1395 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1396 						&cpu_subsys.dev_root->kobj);
1397 	if (WARN_ON(!intel_pstate_kobject))
1398 		return;
1399 
1400 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1401 	if (WARN_ON(rc))
1402 		return;
1403 
1404 	/*
1405 	 * If per cpu limits are enforced there are no global limits, so
1406 	 * return without creating max/min_perf_pct attributes
1407 	 */
1408 	if (per_cpu_limits)
1409 		return;
1410 
1411 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1412 	WARN_ON(rc);
1413 
1414 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1415 	WARN_ON(rc);
1416 
1417 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1418 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1419 		WARN_ON(rc);
1420 	}
1421 }
1422 
1423 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1424 {
1425 	int rc;
1426 
1427 	if (!hwp_active)
1428 		return;
1429 
1430 	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1431 	WARN_ON_ONCE(rc);
1432 }
1433 
1434 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1435 {
1436 	if (!hwp_active)
1437 		return;
1438 
1439 	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1440 }
1441 
1442 /************************** sysfs end ************************/
1443 
1444 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1445 {
1446 	/* First disable HWP notification interrupt as we don't process them */
1447 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1448 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1449 
1450 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1451 	if (cpudata->epp_default == -EINVAL)
1452 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1453 }
1454 
1455 static int atom_get_min_pstate(void)
1456 {
1457 	u64 value;
1458 
1459 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1460 	return (value >> 8) & 0x7F;
1461 }
1462 
1463 static int atom_get_max_pstate(void)
1464 {
1465 	u64 value;
1466 
1467 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1468 	return (value >> 16) & 0x7F;
1469 }
1470 
1471 static int atom_get_turbo_pstate(void)
1472 {
1473 	u64 value;
1474 
1475 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1476 	return value & 0x7F;
1477 }
1478 
1479 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1480 {
1481 	u64 val;
1482 	int32_t vid_fp;
1483 	u32 vid;
1484 
1485 	val = (u64)pstate << 8;
1486 	if (global.no_turbo && !global.turbo_disabled)
1487 		val |= (u64)1 << 32;
1488 
1489 	vid_fp = cpudata->vid.min + mul_fp(
1490 		int_tofp(pstate - cpudata->pstate.min_pstate),
1491 		cpudata->vid.ratio);
1492 
1493 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1494 	vid = ceiling_fp(vid_fp);
1495 
1496 	if (pstate > cpudata->pstate.max_pstate)
1497 		vid = cpudata->vid.turbo;
1498 
1499 	return val | vid;
1500 }
1501 
1502 static int silvermont_get_scaling(void)
1503 {
1504 	u64 value;
1505 	int i;
1506 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1507 	static int silvermont_freq_table[] = {
1508 		83300, 100000, 133300, 116700, 80000};
1509 
1510 	rdmsrl(MSR_FSB_FREQ, value);
1511 	i = value & 0x7;
1512 	WARN_ON(i > 4);
1513 
1514 	return silvermont_freq_table[i];
1515 }
1516 
1517 static int airmont_get_scaling(void)
1518 {
1519 	u64 value;
1520 	int i;
1521 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1522 	static int airmont_freq_table[] = {
1523 		83300, 100000, 133300, 116700, 80000,
1524 		93300, 90000, 88900, 87500};
1525 
1526 	rdmsrl(MSR_FSB_FREQ, value);
1527 	i = value & 0xF;
1528 	WARN_ON(i > 8);
1529 
1530 	return airmont_freq_table[i];
1531 }
1532 
1533 static void atom_get_vid(struct cpudata *cpudata)
1534 {
1535 	u64 value;
1536 
1537 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1538 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1539 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1540 	cpudata->vid.ratio = div_fp(
1541 		cpudata->vid.max - cpudata->vid.min,
1542 		int_tofp(cpudata->pstate.max_pstate -
1543 			cpudata->pstate.min_pstate));
1544 
1545 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1546 	cpudata->vid.turbo = value & 0x7f;
1547 }
1548 
1549 static int core_get_min_pstate(void)
1550 {
1551 	u64 value;
1552 
1553 	rdmsrl(MSR_PLATFORM_INFO, value);
1554 	return (value >> 40) & 0xFF;
1555 }
1556 
1557 static int core_get_max_pstate_physical(void)
1558 {
1559 	u64 value;
1560 
1561 	rdmsrl(MSR_PLATFORM_INFO, value);
1562 	return (value >> 8) & 0xFF;
1563 }
1564 
1565 static int core_get_tdp_ratio(u64 plat_info)
1566 {
1567 	/* Check how many TDP levels present */
1568 	if (plat_info & 0x600000000) {
1569 		u64 tdp_ctrl;
1570 		u64 tdp_ratio;
1571 		int tdp_msr;
1572 		int err;
1573 
1574 		/* Get the TDP level (0, 1, 2) to get ratios */
1575 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1576 		if (err)
1577 			return err;
1578 
1579 		/* TDP MSR are continuous starting at 0x648 */
1580 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1581 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1582 		if (err)
1583 			return err;
1584 
1585 		/* For level 1 and 2, bits[23:16] contain the ratio */
1586 		if (tdp_ctrl & 0x03)
1587 			tdp_ratio >>= 16;
1588 
1589 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1590 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1591 
1592 		return (int)tdp_ratio;
1593 	}
1594 
1595 	return -ENXIO;
1596 }
1597 
1598 static int core_get_max_pstate(void)
1599 {
1600 	u64 tar;
1601 	u64 plat_info;
1602 	int max_pstate;
1603 	int tdp_ratio;
1604 	int err;
1605 
1606 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1607 	max_pstate = (plat_info >> 8) & 0xFF;
1608 
1609 	tdp_ratio = core_get_tdp_ratio(plat_info);
1610 	if (tdp_ratio <= 0)
1611 		return max_pstate;
1612 
1613 	if (hwp_active) {
1614 		/* Turbo activation ratio is not used on HWP platforms */
1615 		return tdp_ratio;
1616 	}
1617 
1618 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1619 	if (!err) {
1620 		int tar_levels;
1621 
1622 		/* Do some sanity checking for safety */
1623 		tar_levels = tar & 0xff;
1624 		if (tdp_ratio - 1 == tar_levels) {
1625 			max_pstate = tar_levels;
1626 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1627 		}
1628 	}
1629 
1630 	return max_pstate;
1631 }
1632 
1633 static int core_get_turbo_pstate(void)
1634 {
1635 	u64 value;
1636 	int nont, ret;
1637 
1638 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1639 	nont = core_get_max_pstate();
1640 	ret = (value) & 255;
1641 	if (ret <= nont)
1642 		ret = nont;
1643 	return ret;
1644 }
1645 
1646 static inline int core_get_scaling(void)
1647 {
1648 	return 100000;
1649 }
1650 
1651 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1652 {
1653 	u64 val;
1654 
1655 	val = (u64)pstate << 8;
1656 	if (global.no_turbo && !global.turbo_disabled)
1657 		val |= (u64)1 << 32;
1658 
1659 	return val;
1660 }
1661 
1662 static int knl_get_aperf_mperf_shift(void)
1663 {
1664 	return 10;
1665 }
1666 
1667 static int knl_get_turbo_pstate(void)
1668 {
1669 	u64 value;
1670 	int nont, ret;
1671 
1672 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1673 	nont = core_get_max_pstate();
1674 	ret = (((value) >> 8) & 0xFF);
1675 	if (ret <= nont)
1676 		ret = nont;
1677 	return ret;
1678 }
1679 
1680 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1681 {
1682 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1683 	cpu->pstate.current_pstate = pstate;
1684 	/*
1685 	 * Generally, there is no guarantee that this code will always run on
1686 	 * the CPU being updated, so force the register update to run on the
1687 	 * right CPU.
1688 	 */
1689 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1690 		      pstate_funcs.get_val(cpu, pstate));
1691 }
1692 
1693 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1694 {
1695 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1696 }
1697 
1698 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1699 {
1700 	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1701 
1702 	update_turbo_state();
1703 	intel_pstate_set_pstate(cpu, pstate);
1704 }
1705 
1706 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1707 {
1708 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1709 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1710 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1711 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1712 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1713 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1714 
1715 	if (hwp_active && !hwp_mode_bdw) {
1716 		unsigned int phy_max, current_max;
1717 
1718 		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1719 		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1720 		cpu->pstate.turbo_pstate = phy_max;
1721 	} else {
1722 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1723 	}
1724 
1725 	if (pstate_funcs.get_aperf_mperf_shift)
1726 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1727 
1728 	if (pstate_funcs.get_vid)
1729 		pstate_funcs.get_vid(cpu);
1730 
1731 	intel_pstate_set_min_pstate(cpu);
1732 }
1733 
1734 /*
1735  * Long hold time will keep high perf limits for long time,
1736  * which negatively impacts perf/watt for some workloads,
1737  * like specpower. 3ms is based on experiements on some
1738  * workoads.
1739  */
1740 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1741 
1742 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1743 {
1744 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1745 	u32 max_limit = (hwp_req & 0xff00) >> 8;
1746 	u32 min_limit = (hwp_req & 0xff);
1747 	u32 boost_level1;
1748 
1749 	/*
1750 	 * Cases to consider (User changes via sysfs or boot time):
1751 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1752 	 *	No boost, return.
1753 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1754 	 *     Should result in one level boost only for P0.
1755 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1756 	 *     Should result in two level boost:
1757 	 *         (min + p1)/2 and P1.
1758 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1759 	 *     Should result in three level boost:
1760 	 *        (min + p1)/2, P1 and P0.
1761 	 */
1762 
1763 	/* If max and min are equal or already at max, nothing to boost */
1764 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1765 		return;
1766 
1767 	if (!cpu->hwp_boost_min)
1768 		cpu->hwp_boost_min = min_limit;
1769 
1770 	/* level at half way mark between min and guranteed */
1771 	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1772 
1773 	if (cpu->hwp_boost_min < boost_level1)
1774 		cpu->hwp_boost_min = boost_level1;
1775 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1776 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1777 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1778 		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1779 		cpu->hwp_boost_min = max_limit;
1780 	else
1781 		return;
1782 
1783 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1784 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
1785 	cpu->last_update = cpu->sample.time;
1786 }
1787 
1788 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1789 {
1790 	if (cpu->hwp_boost_min) {
1791 		bool expired;
1792 
1793 		/* Check if we are idle for hold time to boost down */
1794 		expired = time_after64(cpu->sample.time, cpu->last_update +
1795 				       hwp_boost_hold_time_ns);
1796 		if (expired) {
1797 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1798 			cpu->hwp_boost_min = 0;
1799 		}
1800 	}
1801 	cpu->last_update = cpu->sample.time;
1802 }
1803 
1804 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1805 						      u64 time)
1806 {
1807 	cpu->sample.time = time;
1808 
1809 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1810 		bool do_io = false;
1811 
1812 		cpu->sched_flags = 0;
1813 		/*
1814 		 * Set iowait_boost flag and update time. Since IO WAIT flag
1815 		 * is set all the time, we can't just conclude that there is
1816 		 * some IO bound activity is scheduled on this CPU with just
1817 		 * one occurrence. If we receive at least two in two
1818 		 * consecutive ticks, then we treat as boost candidate.
1819 		 */
1820 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1821 			do_io = true;
1822 
1823 		cpu->last_io_update = time;
1824 
1825 		if (do_io)
1826 			intel_pstate_hwp_boost_up(cpu);
1827 
1828 	} else {
1829 		intel_pstate_hwp_boost_down(cpu);
1830 	}
1831 }
1832 
1833 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1834 						u64 time, unsigned int flags)
1835 {
1836 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1837 
1838 	cpu->sched_flags |= flags;
1839 
1840 	if (smp_processor_id() == cpu->cpu)
1841 		intel_pstate_update_util_hwp_local(cpu, time);
1842 }
1843 
1844 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1845 {
1846 	struct sample *sample = &cpu->sample;
1847 
1848 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1849 }
1850 
1851 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1852 {
1853 	u64 aperf, mperf;
1854 	unsigned long flags;
1855 	u64 tsc;
1856 
1857 	local_irq_save(flags);
1858 	rdmsrl(MSR_IA32_APERF, aperf);
1859 	rdmsrl(MSR_IA32_MPERF, mperf);
1860 	tsc = rdtsc();
1861 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1862 		local_irq_restore(flags);
1863 		return false;
1864 	}
1865 	local_irq_restore(flags);
1866 
1867 	cpu->last_sample_time = cpu->sample.time;
1868 	cpu->sample.time = time;
1869 	cpu->sample.aperf = aperf;
1870 	cpu->sample.mperf = mperf;
1871 	cpu->sample.tsc =  tsc;
1872 	cpu->sample.aperf -= cpu->prev_aperf;
1873 	cpu->sample.mperf -= cpu->prev_mperf;
1874 	cpu->sample.tsc -= cpu->prev_tsc;
1875 
1876 	cpu->prev_aperf = aperf;
1877 	cpu->prev_mperf = mperf;
1878 	cpu->prev_tsc = tsc;
1879 	/*
1880 	 * First time this function is invoked in a given cycle, all of the
1881 	 * previous sample data fields are equal to zero or stale and they must
1882 	 * be populated with meaningful numbers for things to work, so assume
1883 	 * that sample.time will always be reset before setting the utilization
1884 	 * update hook and make the caller skip the sample then.
1885 	 */
1886 	if (cpu->last_sample_time) {
1887 		intel_pstate_calc_avg_perf(cpu);
1888 		return true;
1889 	}
1890 	return false;
1891 }
1892 
1893 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1894 {
1895 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1896 }
1897 
1898 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1899 {
1900 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1901 			  cpu->sample.core_avg_perf);
1902 }
1903 
1904 static inline int32_t get_target_pstate(struct cpudata *cpu)
1905 {
1906 	struct sample *sample = &cpu->sample;
1907 	int32_t busy_frac;
1908 	int target, avg_pstate;
1909 
1910 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1911 			   sample->tsc);
1912 
1913 	if (busy_frac < cpu->iowait_boost)
1914 		busy_frac = cpu->iowait_boost;
1915 
1916 	sample->busy_scaled = busy_frac * 100;
1917 
1918 	target = global.no_turbo || global.turbo_disabled ?
1919 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1920 	target += target >> 2;
1921 	target = mul_fp(target, busy_frac);
1922 	if (target < cpu->pstate.min_pstate)
1923 		target = cpu->pstate.min_pstate;
1924 
1925 	/*
1926 	 * If the average P-state during the previous cycle was higher than the
1927 	 * current target, add 50% of the difference to the target to reduce
1928 	 * possible performance oscillations and offset possible performance
1929 	 * loss related to moving the workload from one CPU to another within
1930 	 * a package/module.
1931 	 */
1932 	avg_pstate = get_avg_pstate(cpu);
1933 	if (avg_pstate > target)
1934 		target += (avg_pstate - target) >> 1;
1935 
1936 	return target;
1937 }
1938 
1939 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1940 {
1941 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1942 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1943 
1944 	return clamp_t(int, pstate, min_pstate, max_pstate);
1945 }
1946 
1947 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1948 {
1949 	if (pstate == cpu->pstate.current_pstate)
1950 		return;
1951 
1952 	cpu->pstate.current_pstate = pstate;
1953 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1954 }
1955 
1956 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1957 {
1958 	int from = cpu->pstate.current_pstate;
1959 	struct sample *sample;
1960 	int target_pstate;
1961 
1962 	update_turbo_state();
1963 
1964 	target_pstate = get_target_pstate(cpu);
1965 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1966 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1967 	intel_pstate_update_pstate(cpu, target_pstate);
1968 
1969 	sample = &cpu->sample;
1970 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1971 		fp_toint(sample->busy_scaled),
1972 		from,
1973 		cpu->pstate.current_pstate,
1974 		sample->mperf,
1975 		sample->aperf,
1976 		sample->tsc,
1977 		get_avg_frequency(cpu),
1978 		fp_toint(cpu->iowait_boost * 100));
1979 }
1980 
1981 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1982 				     unsigned int flags)
1983 {
1984 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1985 	u64 delta_ns;
1986 
1987 	/* Don't allow remote callbacks */
1988 	if (smp_processor_id() != cpu->cpu)
1989 		return;
1990 
1991 	delta_ns = time - cpu->last_update;
1992 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1993 		/* Start over if the CPU may have been idle. */
1994 		if (delta_ns > TICK_NSEC) {
1995 			cpu->iowait_boost = ONE_EIGHTH_FP;
1996 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1997 			cpu->iowait_boost <<= 1;
1998 			if (cpu->iowait_boost > int_tofp(1))
1999 				cpu->iowait_boost = int_tofp(1);
2000 		} else {
2001 			cpu->iowait_boost = ONE_EIGHTH_FP;
2002 		}
2003 	} else if (cpu->iowait_boost) {
2004 		/* Clear iowait_boost if the CPU may have been idle. */
2005 		if (delta_ns > TICK_NSEC)
2006 			cpu->iowait_boost = 0;
2007 		else
2008 			cpu->iowait_boost >>= 1;
2009 	}
2010 	cpu->last_update = time;
2011 	delta_ns = time - cpu->sample.time;
2012 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2013 		return;
2014 
2015 	if (intel_pstate_sample(cpu, time))
2016 		intel_pstate_adjust_pstate(cpu);
2017 }
2018 
2019 static struct pstate_funcs core_funcs = {
2020 	.get_max = core_get_max_pstate,
2021 	.get_max_physical = core_get_max_pstate_physical,
2022 	.get_min = core_get_min_pstate,
2023 	.get_turbo = core_get_turbo_pstate,
2024 	.get_scaling = core_get_scaling,
2025 	.get_val = core_get_val,
2026 };
2027 
2028 static const struct pstate_funcs silvermont_funcs = {
2029 	.get_max = atom_get_max_pstate,
2030 	.get_max_physical = atom_get_max_pstate,
2031 	.get_min = atom_get_min_pstate,
2032 	.get_turbo = atom_get_turbo_pstate,
2033 	.get_val = atom_get_val,
2034 	.get_scaling = silvermont_get_scaling,
2035 	.get_vid = atom_get_vid,
2036 };
2037 
2038 static const struct pstate_funcs airmont_funcs = {
2039 	.get_max = atom_get_max_pstate,
2040 	.get_max_physical = atom_get_max_pstate,
2041 	.get_min = atom_get_min_pstate,
2042 	.get_turbo = atom_get_turbo_pstate,
2043 	.get_val = atom_get_val,
2044 	.get_scaling = airmont_get_scaling,
2045 	.get_vid = atom_get_vid,
2046 };
2047 
2048 static const struct pstate_funcs knl_funcs = {
2049 	.get_max = core_get_max_pstate,
2050 	.get_max_physical = core_get_max_pstate_physical,
2051 	.get_min = core_get_min_pstate,
2052 	.get_turbo = knl_get_turbo_pstate,
2053 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2054 	.get_scaling = core_get_scaling,
2055 	.get_val = core_get_val,
2056 };
2057 
2058 #define X86_MATCH(model, policy)					 \
2059 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2060 					   X86_FEATURE_APERFMPERF, &policy)
2061 
2062 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2063 	X86_MATCH(SANDYBRIDGE,		core_funcs),
2064 	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
2065 	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
2066 	X86_MATCH(IVYBRIDGE,		core_funcs),
2067 	X86_MATCH(HASWELL,		core_funcs),
2068 	X86_MATCH(BROADWELL,		core_funcs),
2069 	X86_MATCH(IVYBRIDGE_X,		core_funcs),
2070 	X86_MATCH(HASWELL_X,		core_funcs),
2071 	X86_MATCH(HASWELL_L,		core_funcs),
2072 	X86_MATCH(HASWELL_G,		core_funcs),
2073 	X86_MATCH(BROADWELL_G,		core_funcs),
2074 	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
2075 	X86_MATCH(SKYLAKE_L,		core_funcs),
2076 	X86_MATCH(BROADWELL_X,		core_funcs),
2077 	X86_MATCH(SKYLAKE,		core_funcs),
2078 	X86_MATCH(BROADWELL_D,		core_funcs),
2079 	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
2080 	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
2081 	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
2082 	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
2083 	X86_MATCH(SKYLAKE_X,		core_funcs),
2084 	{}
2085 };
2086 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2087 
2088 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2089 	X86_MATCH(BROADWELL_D,		core_funcs),
2090 	X86_MATCH(BROADWELL_X,		core_funcs),
2091 	X86_MATCH(SKYLAKE_X,		core_funcs),
2092 	{}
2093 };
2094 
2095 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2096 	X86_MATCH(KABYLAKE,		core_funcs),
2097 	{}
2098 };
2099 
2100 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2101 	X86_MATCH(SKYLAKE_X,		core_funcs),
2102 	X86_MATCH(SKYLAKE,		core_funcs),
2103 	{}
2104 };
2105 
2106 static int intel_pstate_init_cpu(unsigned int cpunum)
2107 {
2108 	struct cpudata *cpu;
2109 
2110 	cpu = all_cpu_data[cpunum];
2111 
2112 	if (!cpu) {
2113 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2114 		if (!cpu)
2115 			return -ENOMEM;
2116 
2117 		all_cpu_data[cpunum] = cpu;
2118 
2119 		cpu->cpu = cpunum;
2120 
2121 		cpu->epp_default = -EINVAL;
2122 
2123 		if (hwp_active) {
2124 			const struct x86_cpu_id *id;
2125 
2126 			intel_pstate_hwp_enable(cpu);
2127 
2128 			id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2129 			if (id && intel_pstate_acpi_pm_profile_server())
2130 				hwp_boost = true;
2131 		}
2132 	} else if (hwp_active) {
2133 		/*
2134 		 * Re-enable HWP in case this happens after a resume from ACPI
2135 		 * S3 if the CPU was offline during the whole system/resume
2136 		 * cycle.
2137 		 */
2138 		intel_pstate_hwp_reenable(cpu);
2139 	}
2140 
2141 	cpu->epp_powersave = -EINVAL;
2142 	cpu->epp_policy = 0;
2143 
2144 	intel_pstate_get_cpu_pstates(cpu);
2145 
2146 	pr_debug("controlling: cpu %d\n", cpunum);
2147 
2148 	return 0;
2149 }
2150 
2151 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2152 {
2153 	struct cpudata *cpu = all_cpu_data[cpu_num];
2154 
2155 	if (hwp_active && !hwp_boost)
2156 		return;
2157 
2158 	if (cpu->update_util_set)
2159 		return;
2160 
2161 	/* Prevent intel_pstate_update_util() from using stale data. */
2162 	cpu->sample.time = 0;
2163 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2164 				     (hwp_active ?
2165 				      intel_pstate_update_util_hwp :
2166 				      intel_pstate_update_util));
2167 	cpu->update_util_set = true;
2168 }
2169 
2170 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2171 {
2172 	struct cpudata *cpu_data = all_cpu_data[cpu];
2173 
2174 	if (!cpu_data->update_util_set)
2175 		return;
2176 
2177 	cpufreq_remove_update_util_hook(cpu);
2178 	cpu_data->update_util_set = false;
2179 	synchronize_rcu();
2180 }
2181 
2182 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2183 {
2184 	return global.turbo_disabled || global.no_turbo ?
2185 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2186 }
2187 
2188 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2189 					    unsigned int policy_min,
2190 					    unsigned int policy_max)
2191 {
2192 	int max_freq = intel_pstate_get_max_freq(cpu);
2193 	int32_t max_policy_perf, min_policy_perf;
2194 	int max_state, turbo_max;
2195 
2196 	/*
2197 	 * HWP needs some special consideration, because on BDX the
2198 	 * HWP_REQUEST uses abstract value to represent performance
2199 	 * rather than pure ratios.
2200 	 */
2201 	if (hwp_active) {
2202 		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2203 	} else {
2204 		max_state = global.no_turbo || global.turbo_disabled ?
2205 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2206 		turbo_max = cpu->pstate.turbo_pstate;
2207 	}
2208 
2209 	max_policy_perf = max_state * policy_max / max_freq;
2210 	if (policy_max == policy_min) {
2211 		min_policy_perf = max_policy_perf;
2212 	} else {
2213 		min_policy_perf = max_state * policy_min / max_freq;
2214 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2215 					  0, max_policy_perf);
2216 	}
2217 
2218 	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2219 		 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2220 
2221 	/* Normalize user input to [min_perf, max_perf] */
2222 	if (per_cpu_limits) {
2223 		cpu->min_perf_ratio = min_policy_perf;
2224 		cpu->max_perf_ratio = max_policy_perf;
2225 	} else {
2226 		int32_t global_min, global_max;
2227 
2228 		/* Global limits are in percent of the maximum turbo P-state. */
2229 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2230 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2231 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2232 
2233 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2234 			 global_min, global_max);
2235 
2236 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2237 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2238 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2239 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2240 
2241 		/* Make sure min_perf <= max_perf */
2242 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2243 					  cpu->max_perf_ratio);
2244 
2245 	}
2246 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2247 		 cpu->max_perf_ratio,
2248 		 cpu->min_perf_ratio);
2249 }
2250 
2251 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2252 {
2253 	struct cpudata *cpu;
2254 
2255 	if (!policy->cpuinfo.max_freq)
2256 		return -ENODEV;
2257 
2258 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2259 		 policy->cpuinfo.max_freq, policy->max);
2260 
2261 	cpu = all_cpu_data[policy->cpu];
2262 	cpu->policy = policy->policy;
2263 
2264 	mutex_lock(&intel_pstate_limits_lock);
2265 
2266 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2267 
2268 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2269 		/*
2270 		 * NOHZ_FULL CPUs need this as the governor callback may not
2271 		 * be invoked on them.
2272 		 */
2273 		intel_pstate_clear_update_util_hook(policy->cpu);
2274 		intel_pstate_max_within_limits(cpu);
2275 	} else {
2276 		intel_pstate_set_update_util_hook(policy->cpu);
2277 	}
2278 
2279 	if (hwp_active) {
2280 		/*
2281 		 * When hwp_boost was active before and dynamically it
2282 		 * was turned off, in that case we need to clear the
2283 		 * update util hook.
2284 		 */
2285 		if (!hwp_boost)
2286 			intel_pstate_clear_update_util_hook(policy->cpu);
2287 		intel_pstate_hwp_set(policy->cpu);
2288 	}
2289 
2290 	mutex_unlock(&intel_pstate_limits_lock);
2291 
2292 	return 0;
2293 }
2294 
2295 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2296 					   struct cpufreq_policy_data *policy)
2297 {
2298 	if (!hwp_active &&
2299 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2300 	    policy->max < policy->cpuinfo.max_freq &&
2301 	    policy->max > cpu->pstate.max_freq) {
2302 		pr_debug("policy->max > max non turbo frequency\n");
2303 		policy->max = policy->cpuinfo.max_freq;
2304 	}
2305 }
2306 
2307 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2308 					   struct cpufreq_policy_data *policy)
2309 {
2310 	update_turbo_state();
2311 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2312 				     intel_pstate_get_max_freq(cpu));
2313 
2314 	intel_pstate_adjust_policy_max(cpu, policy);
2315 }
2316 
2317 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2318 {
2319 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2320 
2321 	return 0;
2322 }
2323 
2324 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2325 {
2326 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2327 
2328 	pr_debug("CPU %d going offline\n", cpu->cpu);
2329 
2330 	if (cpu->suspended)
2331 		return 0;
2332 
2333 	/*
2334 	 * If the CPU is an SMT thread and it goes offline with the performance
2335 	 * settings different from the minimum, it will prevent its sibling
2336 	 * from getting to lower performance levels, so force the minimum
2337 	 * performance on CPU offline to prevent that from happening.
2338 	 */
2339 	if (hwp_active)
2340 		intel_pstate_hwp_offline(cpu);
2341 	else
2342 		intel_pstate_set_min_pstate(cpu);
2343 
2344 	intel_pstate_exit_perf_limits(policy);
2345 
2346 	return 0;
2347 }
2348 
2349 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2350 {
2351 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2352 
2353 	pr_debug("CPU %d going online\n", cpu->cpu);
2354 
2355 	intel_pstate_init_acpi_perf_limits(policy);
2356 
2357 	if (hwp_active) {
2358 		/*
2359 		 * Re-enable HWP and clear the "suspended" flag to let "resume"
2360 		 * know that it need not do that.
2361 		 */
2362 		intel_pstate_hwp_reenable(cpu);
2363 		cpu->suspended = false;
2364 	}
2365 
2366 	return 0;
2367 }
2368 
2369 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2370 {
2371 	pr_debug("CPU %d stopping\n", policy->cpu);
2372 
2373 	intel_pstate_clear_update_util_hook(policy->cpu);
2374 }
2375 
2376 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2377 {
2378 	pr_debug("CPU %d exiting\n", policy->cpu);
2379 
2380 	policy->fast_switch_possible = false;
2381 
2382 	return 0;
2383 }
2384 
2385 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2386 {
2387 	struct cpudata *cpu;
2388 	int rc;
2389 
2390 	rc = intel_pstate_init_cpu(policy->cpu);
2391 	if (rc)
2392 		return rc;
2393 
2394 	cpu = all_cpu_data[policy->cpu];
2395 
2396 	cpu->max_perf_ratio = 0xFF;
2397 	cpu->min_perf_ratio = 0;
2398 
2399 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2400 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2401 
2402 	/* cpuinfo and default policy values */
2403 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2404 	update_turbo_state();
2405 	global.turbo_disabled_mf = global.turbo_disabled;
2406 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2407 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2408 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2409 
2410 	if (hwp_active) {
2411 		unsigned int max_freq;
2412 
2413 		max_freq = global.turbo_disabled ?
2414 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2415 		if (max_freq < policy->cpuinfo.max_freq)
2416 			policy->cpuinfo.max_freq = max_freq;
2417 	}
2418 
2419 	intel_pstate_init_acpi_perf_limits(policy);
2420 
2421 	policy->fast_switch_possible = true;
2422 
2423 	return 0;
2424 }
2425 
2426 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2427 {
2428 	int ret = __intel_pstate_cpu_init(policy);
2429 
2430 	if (ret)
2431 		return ret;
2432 
2433 	/*
2434 	 * Set the policy to powersave to provide a valid fallback value in case
2435 	 * the default cpufreq governor is neither powersave nor performance.
2436 	 */
2437 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2438 
2439 	if (hwp_active) {
2440 		struct cpudata *cpu = all_cpu_data[policy->cpu];
2441 
2442 		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2443 	}
2444 
2445 	return 0;
2446 }
2447 
2448 static struct cpufreq_driver intel_pstate = {
2449 	.flags		= CPUFREQ_CONST_LOOPS,
2450 	.verify		= intel_pstate_verify_policy,
2451 	.setpolicy	= intel_pstate_set_policy,
2452 	.suspend	= intel_pstate_suspend,
2453 	.resume		= intel_pstate_resume,
2454 	.init		= intel_pstate_cpu_init,
2455 	.exit		= intel_pstate_cpu_exit,
2456 	.stop_cpu	= intel_pstate_stop_cpu,
2457 	.offline	= intel_pstate_cpu_offline,
2458 	.online		= intel_pstate_cpu_online,
2459 	.update_limits	= intel_pstate_update_limits,
2460 	.name		= "intel_pstate",
2461 };
2462 
2463 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2464 {
2465 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2466 
2467 	intel_pstate_verify_cpu_policy(cpu, policy);
2468 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2469 
2470 	return 0;
2471 }
2472 
2473 /* Use of trace in passive mode:
2474  *
2475  * In passive mode the trace core_busy field (also known as the
2476  * performance field, and lablelled as such on the graphs; also known as
2477  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2478  * driver call was via the normal or fast switch path. Various graphs
2479  * output from the intel_pstate_tracer.py utility that include core_busy
2480  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2481  * so we use 10 to indicate the the normal path through the driver, and
2482  * 90 to indicate the fast switch path through the driver.
2483  * The scaled_busy field is not used, and is set to 0.
2484  */
2485 
2486 #define	INTEL_PSTATE_TRACE_TARGET 10
2487 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2488 
2489 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2490 {
2491 	struct sample *sample;
2492 
2493 	if (!trace_pstate_sample_enabled())
2494 		return;
2495 
2496 	if (!intel_pstate_sample(cpu, ktime_get()))
2497 		return;
2498 
2499 	sample = &cpu->sample;
2500 	trace_pstate_sample(trace_type,
2501 		0,
2502 		old_pstate,
2503 		cpu->pstate.current_pstate,
2504 		sample->mperf,
2505 		sample->aperf,
2506 		sample->tsc,
2507 		get_avg_frequency(cpu),
2508 		fp_toint(cpu->iowait_boost * 100));
2509 }
2510 
2511 static void intel_cpufreq_adjust_hwp(struct cpudata *cpu, u32 target_pstate,
2512 				     bool fast_switch)
2513 {
2514 	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2515 
2516 	value &= ~HWP_MIN_PERF(~0L);
2517 	value |= HWP_MIN_PERF(target_pstate);
2518 
2519 	/*
2520 	 * The entire MSR needs to be updated in order to update the HWP min
2521 	 * field in it, so opportunistically update the max too if needed.
2522 	 */
2523 	value &= ~HWP_MAX_PERF(~0L);
2524 	value |= HWP_MAX_PERF(cpu->max_perf_ratio);
2525 
2526 	if (value == prev)
2527 		return;
2528 
2529 	WRITE_ONCE(cpu->hwp_req_cached, value);
2530 	if (fast_switch)
2531 		wrmsrl(MSR_HWP_REQUEST, value);
2532 	else
2533 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2534 }
2535 
2536 static void intel_cpufreq_adjust_perf_ctl(struct cpudata *cpu,
2537 					  u32 target_pstate, bool fast_switch)
2538 {
2539 	if (fast_switch)
2540 		wrmsrl(MSR_IA32_PERF_CTL,
2541 		       pstate_funcs.get_val(cpu, target_pstate));
2542 	else
2543 		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2544 			      pstate_funcs.get_val(cpu, target_pstate));
2545 }
2546 
2547 static int intel_cpufreq_update_pstate(struct cpudata *cpu, int target_pstate,
2548 				       bool fast_switch)
2549 {
2550 	int old_pstate = cpu->pstate.current_pstate;
2551 
2552 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2553 	if (target_pstate != old_pstate) {
2554 		cpu->pstate.current_pstate = target_pstate;
2555 		if (hwp_active)
2556 			intel_cpufreq_adjust_hwp(cpu, target_pstate,
2557 						 fast_switch);
2558 		else
2559 			intel_cpufreq_adjust_perf_ctl(cpu, target_pstate,
2560 						      fast_switch);
2561 	}
2562 
2563 	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2564 			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
2565 
2566 	return target_pstate;
2567 }
2568 
2569 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2570 				unsigned int target_freq,
2571 				unsigned int relation)
2572 {
2573 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2574 	struct cpufreq_freqs freqs;
2575 	int target_pstate;
2576 
2577 	update_turbo_state();
2578 
2579 	freqs.old = policy->cur;
2580 	freqs.new = target_freq;
2581 
2582 	cpufreq_freq_transition_begin(policy, &freqs);
2583 
2584 	switch (relation) {
2585 	case CPUFREQ_RELATION_L:
2586 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2587 		break;
2588 	case CPUFREQ_RELATION_H:
2589 		target_pstate = freqs.new / cpu->pstate.scaling;
2590 		break;
2591 	default:
2592 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2593 		break;
2594 	}
2595 
2596 	target_pstate = intel_cpufreq_update_pstate(cpu, target_pstate, false);
2597 
2598 	freqs.new = target_pstate * cpu->pstate.scaling;
2599 
2600 	cpufreq_freq_transition_end(policy, &freqs, false);
2601 
2602 	return 0;
2603 }
2604 
2605 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2606 					      unsigned int target_freq)
2607 {
2608 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2609 	int target_pstate;
2610 
2611 	update_turbo_state();
2612 
2613 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2614 
2615 	target_pstate = intel_cpufreq_update_pstate(cpu, target_pstate, true);
2616 
2617 	return target_pstate * cpu->pstate.scaling;
2618 }
2619 
2620 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2621 {
2622 	int max_state, turbo_max, min_freq, max_freq, ret;
2623 	struct freq_qos_request *req;
2624 	struct cpudata *cpu;
2625 	struct device *dev;
2626 
2627 	dev = get_cpu_device(policy->cpu);
2628 	if (!dev)
2629 		return -ENODEV;
2630 
2631 	ret = __intel_pstate_cpu_init(policy);
2632 	if (ret)
2633 		return ret;
2634 
2635 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2636 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2637 	policy->cur = policy->cpuinfo.min_freq;
2638 
2639 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2640 	if (!req) {
2641 		ret = -ENOMEM;
2642 		goto pstate_exit;
2643 	}
2644 
2645 	cpu = all_cpu_data[policy->cpu];
2646 
2647 	if (hwp_active) {
2648 		u64 value;
2649 
2650 		intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2651 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2652 		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2653 		WRITE_ONCE(cpu->hwp_req_cached, value);
2654 		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2655 	} else {
2656 		turbo_max = cpu->pstate.turbo_pstate;
2657 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2658 	}
2659 
2660 	min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2661 	min_freq *= cpu->pstate.scaling;
2662 	max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2663 	max_freq *= cpu->pstate.scaling;
2664 
2665 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2666 				   min_freq);
2667 	if (ret < 0) {
2668 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2669 		goto free_req;
2670 	}
2671 
2672 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2673 				   max_freq);
2674 	if (ret < 0) {
2675 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2676 		goto remove_min_req;
2677 	}
2678 
2679 	policy->driver_data = req;
2680 
2681 	return 0;
2682 
2683 remove_min_req:
2684 	freq_qos_remove_request(req);
2685 free_req:
2686 	kfree(req);
2687 pstate_exit:
2688 	intel_pstate_exit_perf_limits(policy);
2689 
2690 	return ret;
2691 }
2692 
2693 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2694 {
2695 	struct freq_qos_request *req;
2696 
2697 	req = policy->driver_data;
2698 
2699 	freq_qos_remove_request(req + 1);
2700 	freq_qos_remove_request(req);
2701 	kfree(req);
2702 
2703 	return intel_pstate_cpu_exit(policy);
2704 }
2705 
2706 static struct cpufreq_driver intel_cpufreq = {
2707 	.flags		= CPUFREQ_CONST_LOOPS,
2708 	.verify		= intel_cpufreq_verify_policy,
2709 	.target		= intel_cpufreq_target,
2710 	.fast_switch	= intel_cpufreq_fast_switch,
2711 	.init		= intel_cpufreq_cpu_init,
2712 	.exit		= intel_cpufreq_cpu_exit,
2713 	.offline	= intel_pstate_cpu_offline,
2714 	.online		= intel_pstate_cpu_online,
2715 	.suspend	= intel_pstate_suspend,
2716 	.resume		= intel_pstate_resume,
2717 	.update_limits	= intel_pstate_update_limits,
2718 	.name		= "intel_cpufreq",
2719 };
2720 
2721 static struct cpufreq_driver *default_driver;
2722 
2723 static void intel_pstate_driver_cleanup(void)
2724 {
2725 	unsigned int cpu;
2726 
2727 	get_online_cpus();
2728 	for_each_online_cpu(cpu) {
2729 		if (all_cpu_data[cpu]) {
2730 			if (intel_pstate_driver == &intel_pstate)
2731 				intel_pstate_clear_update_util_hook(cpu);
2732 
2733 			kfree(all_cpu_data[cpu]);
2734 			all_cpu_data[cpu] = NULL;
2735 		}
2736 	}
2737 	put_online_cpus();
2738 
2739 	intel_pstate_driver = NULL;
2740 }
2741 
2742 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2743 {
2744 	int ret;
2745 
2746 	if (driver == &intel_pstate)
2747 		intel_pstate_sysfs_expose_hwp_dynamic_boost();
2748 
2749 	memset(&global, 0, sizeof(global));
2750 	global.max_perf_pct = 100;
2751 
2752 	intel_pstate_driver = driver;
2753 	ret = cpufreq_register_driver(intel_pstate_driver);
2754 	if (ret) {
2755 		intel_pstate_driver_cleanup();
2756 		return ret;
2757 	}
2758 
2759 	global.min_perf_pct = min_perf_pct_min();
2760 
2761 	return 0;
2762 }
2763 
2764 static ssize_t intel_pstate_show_status(char *buf)
2765 {
2766 	if (!intel_pstate_driver)
2767 		return sprintf(buf, "off\n");
2768 
2769 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2770 					"active" : "passive");
2771 }
2772 
2773 static int intel_pstate_update_status(const char *buf, size_t size)
2774 {
2775 	if (size == 3 && !strncmp(buf, "off", size)) {
2776 		if (!intel_pstate_driver)
2777 			return -EINVAL;
2778 
2779 		if (hwp_active)
2780 			return -EBUSY;
2781 
2782 		cpufreq_unregister_driver(intel_pstate_driver);
2783 		intel_pstate_driver_cleanup();
2784 	}
2785 
2786 	if (size == 6 && !strncmp(buf, "active", size)) {
2787 		if (intel_pstate_driver) {
2788 			if (intel_pstate_driver == &intel_pstate)
2789 				return 0;
2790 
2791 			cpufreq_unregister_driver(intel_pstate_driver);
2792 		}
2793 
2794 		return intel_pstate_register_driver(&intel_pstate);
2795 	}
2796 
2797 	if (size == 7 && !strncmp(buf, "passive", size)) {
2798 		if (intel_pstate_driver) {
2799 			if (intel_pstate_driver == &intel_cpufreq)
2800 				return 0;
2801 
2802 			cpufreq_unregister_driver(intel_pstate_driver);
2803 			intel_pstate_sysfs_hide_hwp_dynamic_boost();
2804 		}
2805 
2806 		return intel_pstate_register_driver(&intel_cpufreq);
2807 	}
2808 
2809 	return -EINVAL;
2810 }
2811 
2812 static int no_load __initdata;
2813 static int no_hwp __initdata;
2814 static int hwp_only __initdata;
2815 static unsigned int force_load __initdata;
2816 
2817 static int __init intel_pstate_msrs_not_valid(void)
2818 {
2819 	if (!pstate_funcs.get_max() ||
2820 	    !pstate_funcs.get_min() ||
2821 	    !pstate_funcs.get_turbo())
2822 		return -ENODEV;
2823 
2824 	return 0;
2825 }
2826 
2827 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2828 {
2829 	pstate_funcs.get_max   = funcs->get_max;
2830 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2831 	pstate_funcs.get_min   = funcs->get_min;
2832 	pstate_funcs.get_turbo = funcs->get_turbo;
2833 	pstate_funcs.get_scaling = funcs->get_scaling;
2834 	pstate_funcs.get_val   = funcs->get_val;
2835 	pstate_funcs.get_vid   = funcs->get_vid;
2836 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2837 }
2838 
2839 #ifdef CONFIG_ACPI
2840 
2841 static bool __init intel_pstate_no_acpi_pss(void)
2842 {
2843 	int i;
2844 
2845 	for_each_possible_cpu(i) {
2846 		acpi_status status;
2847 		union acpi_object *pss;
2848 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2849 		struct acpi_processor *pr = per_cpu(processors, i);
2850 
2851 		if (!pr)
2852 			continue;
2853 
2854 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2855 		if (ACPI_FAILURE(status))
2856 			continue;
2857 
2858 		pss = buffer.pointer;
2859 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2860 			kfree(pss);
2861 			return false;
2862 		}
2863 
2864 		kfree(pss);
2865 	}
2866 
2867 	pr_debug("ACPI _PSS not found\n");
2868 	return true;
2869 }
2870 
2871 static bool __init intel_pstate_no_acpi_pcch(void)
2872 {
2873 	acpi_status status;
2874 	acpi_handle handle;
2875 
2876 	status = acpi_get_handle(NULL, "\\_SB", &handle);
2877 	if (ACPI_FAILURE(status))
2878 		goto not_found;
2879 
2880 	if (acpi_has_method(handle, "PCCH"))
2881 		return false;
2882 
2883 not_found:
2884 	pr_debug("ACPI PCCH not found\n");
2885 	return true;
2886 }
2887 
2888 static bool __init intel_pstate_has_acpi_ppc(void)
2889 {
2890 	int i;
2891 
2892 	for_each_possible_cpu(i) {
2893 		struct acpi_processor *pr = per_cpu(processors, i);
2894 
2895 		if (!pr)
2896 			continue;
2897 		if (acpi_has_method(pr->handle, "_PPC"))
2898 			return true;
2899 	}
2900 	pr_debug("ACPI _PPC not found\n");
2901 	return false;
2902 }
2903 
2904 enum {
2905 	PSS,
2906 	PPC,
2907 };
2908 
2909 /* Hardware vendor-specific info that has its own power management modes */
2910 static struct acpi_platform_list plat_info[] __initdata = {
2911 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
2912 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2913 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2914 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2915 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2916 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2917 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2918 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2919 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2920 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2921 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2922 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2923 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2924 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2925 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2926 	{ } /* End */
2927 };
2928 
2929 #define BITMASK_OOB	(BIT(8) | BIT(18))
2930 
2931 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2932 {
2933 	const struct x86_cpu_id *id;
2934 	u64 misc_pwr;
2935 	int idx;
2936 
2937 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2938 	if (id) {
2939 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2940 		if (misc_pwr & BITMASK_OOB) {
2941 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
2942 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
2943 			return true;
2944 		}
2945 	}
2946 
2947 	idx = acpi_match_platform_list(plat_info);
2948 	if (idx < 0)
2949 		return false;
2950 
2951 	switch (plat_info[idx].data) {
2952 	case PSS:
2953 		if (!intel_pstate_no_acpi_pss())
2954 			return false;
2955 
2956 		return intel_pstate_no_acpi_pcch();
2957 	case PPC:
2958 		return intel_pstate_has_acpi_ppc() && !force_load;
2959 	}
2960 
2961 	return false;
2962 }
2963 
2964 static void intel_pstate_request_control_from_smm(void)
2965 {
2966 	/*
2967 	 * It may be unsafe to request P-states control from SMM if _PPC support
2968 	 * has not been enabled.
2969 	 */
2970 	if (acpi_ppc)
2971 		acpi_processor_pstate_control();
2972 }
2973 #else /* CONFIG_ACPI not enabled */
2974 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2975 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2976 static inline void intel_pstate_request_control_from_smm(void) {}
2977 #endif /* CONFIG_ACPI */
2978 
2979 #define INTEL_PSTATE_HWP_BROADWELL	0x01
2980 
2981 #define X86_MATCH_HWP(model, hwp_mode)					\
2982 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2983 					   X86_FEATURE_HWP, hwp_mode)
2984 
2985 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2986 	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
2987 	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
2988 	X86_MATCH_HWP(ANY,		0),
2989 	{}
2990 };
2991 
2992 static int __init intel_pstate_init(void)
2993 {
2994 	const struct x86_cpu_id *id;
2995 	int rc;
2996 
2997 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2998 		return -ENODEV;
2999 
3000 	if (no_load)
3001 		return -ENODEV;
3002 
3003 	id = x86_match_cpu(hwp_support_ids);
3004 	if (id) {
3005 		copy_cpu_funcs(&core_funcs);
3006 		/*
3007 		 * Avoid enabling HWP for processors without EPP support,
3008 		 * because that means incomplete HWP implementation which is a
3009 		 * corner case and supporting it is generally problematic.
3010 		 */
3011 		if (!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) {
3012 			hwp_active++;
3013 			hwp_mode_bdw = id->driver_data;
3014 			intel_pstate.attr = hwp_cpufreq_attrs;
3015 			intel_cpufreq.attr = hwp_cpufreq_attrs;
3016 			if (!default_driver)
3017 				default_driver = &intel_pstate;
3018 
3019 			goto hwp_cpu_matched;
3020 		}
3021 	} else {
3022 		id = x86_match_cpu(intel_pstate_cpu_ids);
3023 		if (!id) {
3024 			pr_info("CPU model not supported\n");
3025 			return -ENODEV;
3026 		}
3027 
3028 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3029 	}
3030 
3031 	if (intel_pstate_msrs_not_valid()) {
3032 		pr_info("Invalid MSRs\n");
3033 		return -ENODEV;
3034 	}
3035 	/* Without HWP start in the passive mode. */
3036 	if (!default_driver)
3037 		default_driver = &intel_cpufreq;
3038 
3039 hwp_cpu_matched:
3040 	/*
3041 	 * The Intel pstate driver will be ignored if the platform
3042 	 * firmware has its own power management modes.
3043 	 */
3044 	if (intel_pstate_platform_pwr_mgmt_exists()) {
3045 		pr_info("P-states controlled by the platform\n");
3046 		return -ENODEV;
3047 	}
3048 
3049 	if (!hwp_active && hwp_only)
3050 		return -ENOTSUPP;
3051 
3052 	pr_info("Intel P-state driver initializing\n");
3053 
3054 	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3055 	if (!all_cpu_data)
3056 		return -ENOMEM;
3057 
3058 	intel_pstate_request_control_from_smm();
3059 
3060 	intel_pstate_sysfs_expose_params();
3061 
3062 	mutex_lock(&intel_pstate_driver_lock);
3063 	rc = intel_pstate_register_driver(default_driver);
3064 	mutex_unlock(&intel_pstate_driver_lock);
3065 	if (rc)
3066 		return rc;
3067 
3068 	if (hwp_active) {
3069 		const struct x86_cpu_id *id;
3070 
3071 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3072 		if (id) {
3073 			set_power_ctl_ee_state(false);
3074 			pr_info("Disabling energy efficiency optimization\n");
3075 		}
3076 
3077 		pr_info("HWP enabled\n");
3078 	}
3079 
3080 	return 0;
3081 }
3082 device_initcall(intel_pstate_init);
3083 
3084 static int __init intel_pstate_setup(char *str)
3085 {
3086 	if (!str)
3087 		return -EINVAL;
3088 
3089 	if (!strcmp(str, "disable"))
3090 		no_load = 1;
3091 	else if (!strcmp(str, "active"))
3092 		default_driver = &intel_pstate;
3093 	else if (!strcmp(str, "passive"))
3094 		default_driver = &intel_cpufreq;
3095 
3096 	if (!strcmp(str, "no_hwp")) {
3097 		pr_info("HWP disabled\n");
3098 		no_hwp = 1;
3099 	}
3100 	if (!strcmp(str, "force"))
3101 		force_load = 1;
3102 	if (!strcmp(str, "hwp_only"))
3103 		hwp_only = 1;
3104 	if (!strcmp(str, "per_cpu_perf_limits"))
3105 		per_cpu_limits = true;
3106 
3107 #ifdef CONFIG_ACPI
3108 	if (!strcmp(str, "support_acpi_ppc"))
3109 		acpi_ppc = true;
3110 #endif
3111 
3112 	return 0;
3113 }
3114 early_param("intel_pstate", intel_pstate_setup);
3115 
3116 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3117 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3118 MODULE_LICENSE("GPL");
3119