1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pstate.c: Native P state management for Intel processors 4 * 5 * (C) Copyright 2012 Intel Corporation 6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/module.h> 14 #include <linux/ktime.h> 15 #include <linux/hrtimer.h> 16 #include <linux/tick.h> 17 #include <linux/slab.h> 18 #include <linux/sched/cpufreq.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/sysfs.h> 23 #include <linux/types.h> 24 #include <linux/fs.h> 25 #include <linux/acpi.h> 26 #include <linux/vmalloc.h> 27 #include <linux/pm_qos.h> 28 #include <trace/events/power.h> 29 30 #include <asm/cpu.h> 31 #include <asm/div64.h> 32 #include <asm/msr.h> 33 #include <asm/cpu_device_id.h> 34 #include <asm/cpufeature.h> 35 #include <asm/intel-family.h> 36 #include "../drivers/thermal/intel/thermal_interrupt.h" 37 38 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC) 39 40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 41 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000 42 #define INTEL_CPUFREQ_TRANSITION_DELAY 500 43 44 #ifdef CONFIG_ACPI 45 #include <acpi/processor.h> 46 #include <acpi/cppc_acpi.h> 47 #endif 48 49 #define FRAC_BITS 8 50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) 51 #define fp_toint(X) ((X) >> FRAC_BITS) 52 53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3)) 54 55 #define EXT_BITS 6 56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) 57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) 58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) 59 60 static inline int32_t mul_fp(int32_t x, int32_t y) 61 { 62 return ((int64_t)x * (int64_t)y) >> FRAC_BITS; 63 } 64 65 static inline int32_t div_fp(s64 x, s64 y) 66 { 67 return div64_s64((int64_t)x << FRAC_BITS, y); 68 } 69 70 static inline int ceiling_fp(int32_t x) 71 { 72 int mask, ret; 73 74 ret = fp_toint(x); 75 mask = (1 << FRAC_BITS) - 1; 76 if (x & mask) 77 ret += 1; 78 return ret; 79 } 80 81 static inline u64 mul_ext_fp(u64 x, u64 y) 82 { 83 return (x * y) >> EXT_FRAC_BITS; 84 } 85 86 static inline u64 div_ext_fp(u64 x, u64 y) 87 { 88 return div64_u64(x << EXT_FRAC_BITS, y); 89 } 90 91 /** 92 * struct sample - Store performance sample 93 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average 94 * performance during last sample period 95 * @busy_scaled: Scaled busy value which is used to calculate next 96 * P state. This can be different than core_avg_perf 97 * to account for cpu idle period 98 * @aperf: Difference of actual performance frequency clock count 99 * read from APERF MSR between last and current sample 100 * @mperf: Difference of maximum performance frequency clock count 101 * read from MPERF MSR between last and current sample 102 * @tsc: Difference of time stamp counter between last and 103 * current sample 104 * @time: Current time from scheduler 105 * 106 * This structure is used in the cpudata structure to store performance sample 107 * data for choosing next P State. 108 */ 109 struct sample { 110 int32_t core_avg_perf; 111 int32_t busy_scaled; 112 u64 aperf; 113 u64 mperf; 114 u64 tsc; 115 u64 time; 116 }; 117 118 /** 119 * struct pstate_data - Store P state data 120 * @current_pstate: Current requested P state 121 * @min_pstate: Min P state possible for this platform 122 * @max_pstate: Max P state possible for this platform 123 * @max_pstate_physical:This is physical Max P state for a processor 124 * This can be higher than the max_pstate which can 125 * be limited by platform thermal design power limits 126 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor 127 * @scaling: Scaling factor between performance and frequency 128 * @turbo_pstate: Max Turbo P state possible for this platform 129 * @min_freq: @min_pstate frequency in cpufreq units 130 * @max_freq: @max_pstate frequency in cpufreq units 131 * @turbo_freq: @turbo_pstate frequency in cpufreq units 132 * 133 * Stores the per cpu model P state limits and current P state. 134 */ 135 struct pstate_data { 136 int current_pstate; 137 int min_pstate; 138 int max_pstate; 139 int max_pstate_physical; 140 int perf_ctl_scaling; 141 int scaling; 142 int turbo_pstate; 143 unsigned int min_freq; 144 unsigned int max_freq; 145 unsigned int turbo_freq; 146 }; 147 148 /** 149 * struct vid_data - Stores voltage information data 150 * @min: VID data for this platform corresponding to 151 * the lowest P state 152 * @max: VID data corresponding to the highest P State. 153 * @turbo: VID data for turbo P state 154 * @ratio: Ratio of (vid max - vid min) / 155 * (max P state - Min P State) 156 * 157 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) 158 * This data is used in Atom platforms, where in addition to target P state, 159 * the voltage data needs to be specified to select next P State. 160 */ 161 struct vid_data { 162 int min; 163 int max; 164 int turbo; 165 int32_t ratio; 166 }; 167 168 /** 169 * struct global_params - Global parameters, mostly tunable via sysfs. 170 * @no_turbo: Whether or not to use turbo P-states. 171 * @turbo_disabled: Whether or not turbo P-states are available at all, 172 * based on the MSR_IA32_MISC_ENABLE value and whether or 173 * not the maximum reported turbo P-state is different from 174 * the maximum reported non-turbo one. 175 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq. 176 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo 177 * P-state capacity. 178 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo 179 * P-state capacity. 180 */ 181 struct global_params { 182 bool no_turbo; 183 bool turbo_disabled; 184 bool turbo_disabled_mf; 185 int max_perf_pct; 186 int min_perf_pct; 187 }; 188 189 /** 190 * struct cpudata - Per CPU instance data storage 191 * @cpu: CPU number for this instance data 192 * @policy: CPUFreq policy value 193 * @update_util: CPUFreq utility callback information 194 * @update_util_set: CPUFreq utility callback is set 195 * @iowait_boost: iowait-related boost fraction 196 * @last_update: Time of the last update. 197 * @pstate: Stores P state limits for this CPU 198 * @vid: Stores VID limits for this CPU 199 * @last_sample_time: Last Sample time 200 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference 201 * @prev_aperf: Last APERF value read from APERF MSR 202 * @prev_mperf: Last MPERF value read from MPERF MSR 203 * @prev_tsc: Last timestamp counter (TSC) value 204 * @prev_cummulative_iowait: IO Wait time difference from last and 205 * current sample 206 * @sample: Storage for storing last Sample data 207 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios 208 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios 209 * @acpi_perf_data: Stores ACPI perf information read from _PSS 210 * @valid_pss_table: Set to true for valid ACPI _PSS entries found 211 * @epp_powersave: Last saved HWP energy performance preference 212 * (EPP) or energy performance bias (EPB), 213 * when policy switched to performance 214 * @epp_policy: Last saved policy used to set EPP/EPB 215 * @epp_default: Power on default HWP energy performance 216 * preference/bias 217 * @epp_cached Cached HWP energy-performance preference value 218 * @hwp_req_cached: Cached value of the last HWP Request MSR 219 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR 220 * @last_io_update: Last time when IO wake flag was set 221 * @sched_flags: Store scheduler flags for possible cross CPU update 222 * @hwp_boost_min: Last HWP boosted min performance 223 * @suspended: Whether or not the driver has been suspended. 224 * @hwp_notify_work: workqueue for HWP notifications. 225 * 226 * This structure stores per CPU instance data for all CPUs. 227 */ 228 struct cpudata { 229 int cpu; 230 231 unsigned int policy; 232 struct update_util_data update_util; 233 bool update_util_set; 234 235 struct pstate_data pstate; 236 struct vid_data vid; 237 238 u64 last_update; 239 u64 last_sample_time; 240 u64 aperf_mperf_shift; 241 u64 prev_aperf; 242 u64 prev_mperf; 243 u64 prev_tsc; 244 u64 prev_cummulative_iowait; 245 struct sample sample; 246 int32_t min_perf_ratio; 247 int32_t max_perf_ratio; 248 #ifdef CONFIG_ACPI 249 struct acpi_processor_performance acpi_perf_data; 250 bool valid_pss_table; 251 #endif 252 unsigned int iowait_boost; 253 s16 epp_powersave; 254 s16 epp_policy; 255 s16 epp_default; 256 s16 epp_cached; 257 u64 hwp_req_cached; 258 u64 hwp_cap_cached; 259 u64 last_io_update; 260 unsigned int sched_flags; 261 u32 hwp_boost_min; 262 bool suspended; 263 struct delayed_work hwp_notify_work; 264 }; 265 266 static struct cpudata **all_cpu_data; 267 268 /** 269 * struct pstate_funcs - Per CPU model specific callbacks 270 * @get_max: Callback to get maximum non turbo effective P state 271 * @get_max_physical: Callback to get maximum non turbo physical P state 272 * @get_min: Callback to get minimum P state 273 * @get_turbo: Callback to get turbo P state 274 * @get_scaling: Callback to get frequency scaling factor 275 * @get_cpu_scaling: Get frequency scaling factor for a given cpu 276 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference 277 * @get_val: Callback to convert P state to actual MSR write value 278 * @get_vid: Callback to get VID data for Atom platforms 279 * 280 * Core and Atom CPU models have different way to get P State limits. This 281 * structure is used to store those callbacks. 282 */ 283 struct pstate_funcs { 284 int (*get_max)(int cpu); 285 int (*get_max_physical)(int cpu); 286 int (*get_min)(int cpu); 287 int (*get_turbo)(int cpu); 288 int (*get_scaling)(void); 289 int (*get_cpu_scaling)(int cpu); 290 int (*get_aperf_mperf_shift)(void); 291 u64 (*get_val)(struct cpudata*, int pstate); 292 void (*get_vid)(struct cpudata *); 293 }; 294 295 static struct pstate_funcs pstate_funcs __read_mostly; 296 297 static int hwp_active __read_mostly; 298 static int hwp_mode_bdw __read_mostly; 299 static bool per_cpu_limits __read_mostly; 300 static bool hwp_boost __read_mostly; 301 static bool hwp_forced __read_mostly; 302 303 static struct cpufreq_driver *intel_pstate_driver __read_mostly; 304 305 #define HYBRID_SCALING_FACTOR 78741 306 307 static inline int core_get_scaling(void) 308 { 309 return 100000; 310 } 311 312 #ifdef CONFIG_ACPI 313 static bool acpi_ppc; 314 #endif 315 316 static struct global_params global; 317 318 static DEFINE_MUTEX(intel_pstate_driver_lock); 319 static DEFINE_MUTEX(intel_pstate_limits_lock); 320 321 #ifdef CONFIG_ACPI 322 323 static bool intel_pstate_acpi_pm_profile_server(void) 324 { 325 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || 326 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) 327 return true; 328 329 return false; 330 } 331 332 static bool intel_pstate_get_ppc_enable_status(void) 333 { 334 if (intel_pstate_acpi_pm_profile_server()) 335 return true; 336 337 return acpi_ppc; 338 } 339 340 #ifdef CONFIG_ACPI_CPPC_LIB 341 342 /* The work item is needed to avoid CPU hotplug locking issues */ 343 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) 344 { 345 sched_set_itmt_support(); 346 } 347 348 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); 349 350 #define CPPC_MAX_PERF U8_MAX 351 352 static void intel_pstate_set_itmt_prio(int cpu) 353 { 354 struct cppc_perf_caps cppc_perf; 355 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; 356 int ret; 357 358 ret = cppc_get_perf_caps(cpu, &cppc_perf); 359 /* 360 * If CPPC is not available, fall back to MSR_HWP_CAPABILITIES bits [8:0]. 361 * 362 * Also, on some systems with overclocking enabled, CPPC.highest_perf is 363 * hardcoded to 0xff, so CPPC.highest_perf cannot be used to enable ITMT. 364 * Fall back to MSR_HWP_CAPABILITIES then too. 365 */ 366 if (ret || cppc_perf.highest_perf == CPPC_MAX_PERF) 367 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached)); 368 369 /* 370 * The priorities can be set regardless of whether or not 371 * sched_set_itmt_support(true) has been called and it is valid to 372 * update them at any time after it has been called. 373 */ 374 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); 375 376 if (max_highest_perf <= min_highest_perf) { 377 if (cppc_perf.highest_perf > max_highest_perf) 378 max_highest_perf = cppc_perf.highest_perf; 379 380 if (cppc_perf.highest_perf < min_highest_perf) 381 min_highest_perf = cppc_perf.highest_perf; 382 383 if (max_highest_perf > min_highest_perf) { 384 /* 385 * This code can be run during CPU online under the 386 * CPU hotplug locks, so sched_set_itmt_support() 387 * cannot be called from here. Queue up a work item 388 * to invoke it. 389 */ 390 schedule_work(&sched_itmt_work); 391 } 392 } 393 } 394 395 static int intel_pstate_get_cppc_guaranteed(int cpu) 396 { 397 struct cppc_perf_caps cppc_perf; 398 int ret; 399 400 ret = cppc_get_perf_caps(cpu, &cppc_perf); 401 if (ret) 402 return ret; 403 404 if (cppc_perf.guaranteed_perf) 405 return cppc_perf.guaranteed_perf; 406 407 return cppc_perf.nominal_perf; 408 } 409 410 static int intel_pstate_cppc_get_scaling(int cpu) 411 { 412 struct cppc_perf_caps cppc_perf; 413 int ret; 414 415 ret = cppc_get_perf_caps(cpu, &cppc_perf); 416 417 /* 418 * If the nominal frequency and the nominal performance are not 419 * zero and the ratio between them is not 100, return the hybrid 420 * scaling factor. 421 */ 422 if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq && 423 cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq) 424 return HYBRID_SCALING_FACTOR; 425 426 return core_get_scaling(); 427 } 428 429 #else /* CONFIG_ACPI_CPPC_LIB */ 430 static inline void intel_pstate_set_itmt_prio(int cpu) 431 { 432 } 433 #endif /* CONFIG_ACPI_CPPC_LIB */ 434 435 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 436 { 437 struct cpudata *cpu; 438 int ret; 439 int i; 440 441 if (hwp_active) { 442 intel_pstate_set_itmt_prio(policy->cpu); 443 return; 444 } 445 446 if (!intel_pstate_get_ppc_enable_status()) 447 return; 448 449 cpu = all_cpu_data[policy->cpu]; 450 451 ret = acpi_processor_register_performance(&cpu->acpi_perf_data, 452 policy->cpu); 453 if (ret) 454 return; 455 456 /* 457 * Check if the control value in _PSS is for PERF_CTL MSR, which should 458 * guarantee that the states returned by it map to the states in our 459 * list directly. 460 */ 461 if (cpu->acpi_perf_data.control_register.space_id != 462 ACPI_ADR_SPACE_FIXED_HARDWARE) 463 goto err; 464 465 /* 466 * If there is only one entry _PSS, simply ignore _PSS and continue as 467 * usual without taking _PSS into account 468 */ 469 if (cpu->acpi_perf_data.state_count < 2) 470 goto err; 471 472 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); 473 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { 474 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", 475 (i == cpu->acpi_perf_data.state ? '*' : ' '), i, 476 (u32) cpu->acpi_perf_data.states[i].core_frequency, 477 (u32) cpu->acpi_perf_data.states[i].power, 478 (u32) cpu->acpi_perf_data.states[i].control); 479 } 480 481 cpu->valid_pss_table = true; 482 pr_debug("_PPC limits will be enforced\n"); 483 484 return; 485 486 err: 487 cpu->valid_pss_table = false; 488 acpi_processor_unregister_performance(policy->cpu); 489 } 490 491 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 492 { 493 struct cpudata *cpu; 494 495 cpu = all_cpu_data[policy->cpu]; 496 if (!cpu->valid_pss_table) 497 return; 498 499 acpi_processor_unregister_performance(policy->cpu); 500 } 501 #else /* CONFIG_ACPI */ 502 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 503 { 504 } 505 506 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 507 { 508 } 509 510 static inline bool intel_pstate_acpi_pm_profile_server(void) 511 { 512 return false; 513 } 514 #endif /* CONFIG_ACPI */ 515 516 #ifndef CONFIG_ACPI_CPPC_LIB 517 static inline int intel_pstate_get_cppc_guaranteed(int cpu) 518 { 519 return -ENOTSUPP; 520 } 521 522 static int intel_pstate_cppc_get_scaling(int cpu) 523 { 524 return core_get_scaling(); 525 } 526 #endif /* CONFIG_ACPI_CPPC_LIB */ 527 528 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq, 529 unsigned int relation) 530 { 531 if (freq == cpu->pstate.turbo_freq) 532 return cpu->pstate.turbo_pstate; 533 534 if (freq == cpu->pstate.max_freq) 535 return cpu->pstate.max_pstate; 536 537 switch (relation) { 538 case CPUFREQ_RELATION_H: 539 return freq / cpu->pstate.scaling; 540 case CPUFREQ_RELATION_C: 541 return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling); 542 } 543 544 return DIV_ROUND_UP(freq, cpu->pstate.scaling); 545 } 546 547 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq) 548 { 549 return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L); 550 } 551 552 /** 553 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels. 554 * @cpu: Target CPU. 555 * 556 * On hybrid processors, HWP may expose more performance levels than there are 557 * P-states accessible through the PERF_CTL interface. If that happens, the 558 * scaling factor between HWP performance levels and CPU frequency will be less 559 * than the scaling factor between P-state values and CPU frequency. 560 * 561 * In that case, adjust the CPU parameters used in computations accordingly. 562 */ 563 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu) 564 { 565 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical; 566 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 567 int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu); 568 int scaling = cpu->pstate.scaling; 569 int freq; 570 571 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys); 572 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo); 573 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling); 574 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate); 575 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate); 576 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling); 577 578 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling, 579 perf_ctl_scaling); 580 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling, 581 perf_ctl_scaling); 582 583 freq = perf_ctl_max_phys * perf_ctl_scaling; 584 cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq); 585 586 freq = cpu->pstate.min_pstate * perf_ctl_scaling; 587 cpu->pstate.min_freq = freq; 588 /* 589 * Cast the min P-state value retrieved via pstate_funcs.get_min() to 590 * the effective range of HWP performance levels. 591 */ 592 cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq); 593 } 594 595 static inline void update_turbo_state(void) 596 { 597 u64 misc_en; 598 struct cpudata *cpu; 599 600 cpu = all_cpu_data[0]; 601 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); 602 global.turbo_disabled = 603 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || 604 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); 605 } 606 607 static int min_perf_pct_min(void) 608 { 609 struct cpudata *cpu = all_cpu_data[0]; 610 int turbo_pstate = cpu->pstate.turbo_pstate; 611 612 return turbo_pstate ? 613 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0; 614 } 615 616 static s16 intel_pstate_get_epb(struct cpudata *cpu_data) 617 { 618 u64 epb; 619 int ret; 620 621 if (!boot_cpu_has(X86_FEATURE_EPB)) 622 return -ENXIO; 623 624 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 625 if (ret) 626 return (s16)ret; 627 628 return (s16)(epb & 0x0f); 629 } 630 631 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) 632 { 633 s16 epp; 634 635 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 636 /* 637 * When hwp_req_data is 0, means that caller didn't read 638 * MSR_HWP_REQUEST, so need to read and get EPP. 639 */ 640 if (!hwp_req_data) { 641 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, 642 &hwp_req_data); 643 if (epp) 644 return epp; 645 } 646 epp = (hwp_req_data >> 24) & 0xff; 647 } else { 648 /* When there is no EPP present, HWP uses EPB settings */ 649 epp = intel_pstate_get_epb(cpu_data); 650 } 651 652 return epp; 653 } 654 655 static int intel_pstate_set_epb(int cpu, s16 pref) 656 { 657 u64 epb; 658 int ret; 659 660 if (!boot_cpu_has(X86_FEATURE_EPB)) 661 return -ENXIO; 662 663 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 664 if (ret) 665 return ret; 666 667 epb = (epb & ~0x0f) | pref; 668 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); 669 670 return 0; 671 } 672 673 /* 674 * EPP/EPB display strings corresponding to EPP index in the 675 * energy_perf_strings[] 676 * index String 677 *------------------------------------- 678 * 0 default 679 * 1 performance 680 * 2 balance_performance 681 * 3 balance_power 682 * 4 power 683 */ 684 685 enum energy_perf_value_index { 686 EPP_INDEX_DEFAULT = 0, 687 EPP_INDEX_PERFORMANCE, 688 EPP_INDEX_BALANCE_PERFORMANCE, 689 EPP_INDEX_BALANCE_POWERSAVE, 690 EPP_INDEX_POWERSAVE, 691 }; 692 693 static const char * const energy_perf_strings[] = { 694 [EPP_INDEX_DEFAULT] = "default", 695 [EPP_INDEX_PERFORMANCE] = "performance", 696 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance", 697 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power", 698 [EPP_INDEX_POWERSAVE] = "power", 699 NULL 700 }; 701 static unsigned int epp_values[] = { 702 [EPP_INDEX_DEFAULT] = 0, /* Unused index */ 703 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE, 704 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE, 705 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE, 706 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE, 707 }; 708 709 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp) 710 { 711 s16 epp; 712 int index = -EINVAL; 713 714 *raw_epp = 0; 715 epp = intel_pstate_get_epp(cpu_data, 0); 716 if (epp < 0) 717 return epp; 718 719 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 720 if (epp == epp_values[EPP_INDEX_PERFORMANCE]) 721 return EPP_INDEX_PERFORMANCE; 722 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE]) 723 return EPP_INDEX_BALANCE_PERFORMANCE; 724 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE]) 725 return EPP_INDEX_BALANCE_POWERSAVE; 726 if (epp == epp_values[EPP_INDEX_POWERSAVE]) 727 return EPP_INDEX_POWERSAVE; 728 *raw_epp = epp; 729 return 0; 730 } else if (boot_cpu_has(X86_FEATURE_EPB)) { 731 /* 732 * Range: 733 * 0x00-0x03 : Performance 734 * 0x04-0x07 : Balance performance 735 * 0x08-0x0B : Balance power 736 * 0x0C-0x0F : Power 737 * The EPB is a 4 bit value, but our ranges restrict the 738 * value which can be set. Here only using top two bits 739 * effectively. 740 */ 741 index = (epp >> 2) + 1; 742 } 743 744 return index; 745 } 746 747 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp) 748 { 749 int ret; 750 751 /* 752 * Use the cached HWP Request MSR value, because in the active mode the 753 * register itself may be updated by intel_pstate_hwp_boost_up() or 754 * intel_pstate_hwp_boost_down() at any time. 755 */ 756 u64 value = READ_ONCE(cpu->hwp_req_cached); 757 758 value &= ~GENMASK_ULL(31, 24); 759 value |= (u64)epp << 24; 760 /* 761 * The only other updater of hwp_req_cached in the active mode, 762 * intel_pstate_hwp_set(), is called under the same lock as this 763 * function, so it cannot run in parallel with the update below. 764 */ 765 WRITE_ONCE(cpu->hwp_req_cached, value); 766 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 767 if (!ret) 768 cpu->epp_cached = epp; 769 770 return ret; 771 } 772 773 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, 774 int pref_index, bool use_raw, 775 u32 raw_epp) 776 { 777 int epp = -EINVAL; 778 int ret; 779 780 if (!pref_index) 781 epp = cpu_data->epp_default; 782 783 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 784 if (use_raw) 785 epp = raw_epp; 786 else if (epp == -EINVAL) 787 epp = epp_values[pref_index]; 788 789 /* 790 * To avoid confusion, refuse to set EPP to any values different 791 * from 0 (performance) if the current policy is "performance", 792 * because those values would be overridden. 793 */ 794 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 795 return -EBUSY; 796 797 ret = intel_pstate_set_epp(cpu_data, epp); 798 } else { 799 if (epp == -EINVAL) 800 epp = (pref_index - 1) << 2; 801 ret = intel_pstate_set_epb(cpu_data->cpu, epp); 802 } 803 804 return ret; 805 } 806 807 static ssize_t show_energy_performance_available_preferences( 808 struct cpufreq_policy *policy, char *buf) 809 { 810 int i = 0; 811 int ret = 0; 812 813 while (energy_perf_strings[i] != NULL) 814 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); 815 816 ret += sprintf(&buf[ret], "\n"); 817 818 return ret; 819 } 820 821 cpufreq_freq_attr_ro(energy_performance_available_preferences); 822 823 static struct cpufreq_driver intel_pstate; 824 825 static ssize_t store_energy_performance_preference( 826 struct cpufreq_policy *policy, const char *buf, size_t count) 827 { 828 struct cpudata *cpu = all_cpu_data[policy->cpu]; 829 char str_preference[21]; 830 bool raw = false; 831 ssize_t ret; 832 u32 epp = 0; 833 834 ret = sscanf(buf, "%20s", str_preference); 835 if (ret != 1) 836 return -EINVAL; 837 838 ret = match_string(energy_perf_strings, -1, str_preference); 839 if (ret < 0) { 840 if (!boot_cpu_has(X86_FEATURE_HWP_EPP)) 841 return ret; 842 843 ret = kstrtouint(buf, 10, &epp); 844 if (ret) 845 return ret; 846 847 if (epp > 255) 848 return -EINVAL; 849 850 raw = true; 851 } 852 853 /* 854 * This function runs with the policy R/W semaphore held, which 855 * guarantees that the driver pointer will not change while it is 856 * running. 857 */ 858 if (!intel_pstate_driver) 859 return -EAGAIN; 860 861 mutex_lock(&intel_pstate_limits_lock); 862 863 if (intel_pstate_driver == &intel_pstate) { 864 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp); 865 } else { 866 /* 867 * In the passive mode the governor needs to be stopped on the 868 * target CPU before the EPP update and restarted after it, 869 * which is super-heavy-weight, so make sure it is worth doing 870 * upfront. 871 */ 872 if (!raw) 873 epp = ret ? epp_values[ret] : cpu->epp_default; 874 875 if (cpu->epp_cached != epp) { 876 int err; 877 878 cpufreq_stop_governor(policy); 879 ret = intel_pstate_set_epp(cpu, epp); 880 err = cpufreq_start_governor(policy); 881 if (!ret) 882 ret = err; 883 } else { 884 ret = 0; 885 } 886 } 887 888 mutex_unlock(&intel_pstate_limits_lock); 889 890 return ret ?: count; 891 } 892 893 static ssize_t show_energy_performance_preference( 894 struct cpufreq_policy *policy, char *buf) 895 { 896 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 897 int preference, raw_epp; 898 899 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp); 900 if (preference < 0) 901 return preference; 902 903 if (raw_epp) 904 return sprintf(buf, "%d\n", raw_epp); 905 else 906 return sprintf(buf, "%s\n", energy_perf_strings[preference]); 907 } 908 909 cpufreq_freq_attr_rw(energy_performance_preference); 910 911 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf) 912 { 913 struct cpudata *cpu = all_cpu_data[policy->cpu]; 914 int ratio, freq; 915 916 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu); 917 if (ratio <= 0) { 918 u64 cap; 919 920 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap); 921 ratio = HWP_GUARANTEED_PERF(cap); 922 } 923 924 freq = ratio * cpu->pstate.scaling; 925 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling) 926 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling); 927 928 return sprintf(buf, "%d\n", freq); 929 } 930 931 cpufreq_freq_attr_ro(base_frequency); 932 933 static struct freq_attr *hwp_cpufreq_attrs[] = { 934 &energy_performance_preference, 935 &energy_performance_available_preferences, 936 &base_frequency, 937 NULL, 938 }; 939 940 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu) 941 { 942 u64 cap; 943 944 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap); 945 WRITE_ONCE(cpu->hwp_cap_cached, cap); 946 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap); 947 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap); 948 } 949 950 static void intel_pstate_get_hwp_cap(struct cpudata *cpu) 951 { 952 int scaling = cpu->pstate.scaling; 953 954 __intel_pstate_get_hwp_cap(cpu); 955 956 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling; 957 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling; 958 if (scaling != cpu->pstate.perf_ctl_scaling) { 959 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 960 961 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq, 962 perf_ctl_scaling); 963 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq, 964 perf_ctl_scaling); 965 } 966 } 967 968 static void intel_pstate_hwp_set(unsigned int cpu) 969 { 970 struct cpudata *cpu_data = all_cpu_data[cpu]; 971 int max, min; 972 u64 value; 973 s16 epp; 974 975 max = cpu_data->max_perf_ratio; 976 min = cpu_data->min_perf_ratio; 977 978 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 979 min = max; 980 981 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); 982 983 value &= ~HWP_MIN_PERF(~0L); 984 value |= HWP_MIN_PERF(min); 985 986 value &= ~HWP_MAX_PERF(~0L); 987 value |= HWP_MAX_PERF(max); 988 989 if (cpu_data->epp_policy == cpu_data->policy) 990 goto skip_epp; 991 992 cpu_data->epp_policy = cpu_data->policy; 993 994 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { 995 epp = intel_pstate_get_epp(cpu_data, value); 996 cpu_data->epp_powersave = epp; 997 /* If EPP read was failed, then don't try to write */ 998 if (epp < 0) 999 goto skip_epp; 1000 1001 epp = 0; 1002 } else { 1003 /* skip setting EPP, when saved value is invalid */ 1004 if (cpu_data->epp_powersave < 0) 1005 goto skip_epp; 1006 1007 /* 1008 * No need to restore EPP when it is not zero. This 1009 * means: 1010 * - Policy is not changed 1011 * - user has manually changed 1012 * - Error reading EPB 1013 */ 1014 epp = intel_pstate_get_epp(cpu_data, value); 1015 if (epp) 1016 goto skip_epp; 1017 1018 epp = cpu_data->epp_powersave; 1019 } 1020 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 1021 value &= ~GENMASK_ULL(31, 24); 1022 value |= (u64)epp << 24; 1023 } else { 1024 intel_pstate_set_epb(cpu, epp); 1025 } 1026 skip_epp: 1027 WRITE_ONCE(cpu_data->hwp_req_cached, value); 1028 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); 1029 } 1030 1031 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata); 1032 1033 static void intel_pstate_hwp_offline(struct cpudata *cpu) 1034 { 1035 u64 value = READ_ONCE(cpu->hwp_req_cached); 1036 int min_perf; 1037 1038 intel_pstate_disable_hwp_interrupt(cpu); 1039 1040 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 1041 /* 1042 * In case the EPP has been set to "performance" by the 1043 * active mode "performance" scaling algorithm, replace that 1044 * temporary value with the cached EPP one. 1045 */ 1046 value &= ~GENMASK_ULL(31, 24); 1047 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached); 1048 /* 1049 * However, make sure that EPP will be set to "performance" when 1050 * the CPU is brought back online again and the "performance" 1051 * scaling algorithm is still in effect. 1052 */ 1053 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN; 1054 } 1055 1056 /* 1057 * Clear the desired perf field in the cached HWP request value to 1058 * prevent nonzero desired values from being leaked into the active 1059 * mode. 1060 */ 1061 value &= ~HWP_DESIRED_PERF(~0L); 1062 WRITE_ONCE(cpu->hwp_req_cached, value); 1063 1064 value &= ~GENMASK_ULL(31, 0); 1065 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached)); 1066 1067 /* Set hwp_max = hwp_min */ 1068 value |= HWP_MAX_PERF(min_perf); 1069 value |= HWP_MIN_PERF(min_perf); 1070 1071 /* Set EPP to min */ 1072 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) 1073 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE); 1074 1075 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 1076 } 1077 1078 #define POWER_CTL_EE_ENABLE 1 1079 #define POWER_CTL_EE_DISABLE 2 1080 1081 static int power_ctl_ee_state; 1082 1083 static void set_power_ctl_ee_state(bool input) 1084 { 1085 u64 power_ctl; 1086 1087 mutex_lock(&intel_pstate_driver_lock); 1088 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 1089 if (input) { 1090 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE); 1091 power_ctl_ee_state = POWER_CTL_EE_ENABLE; 1092 } else { 1093 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); 1094 power_ctl_ee_state = POWER_CTL_EE_DISABLE; 1095 } 1096 wrmsrl(MSR_IA32_POWER_CTL, power_ctl); 1097 mutex_unlock(&intel_pstate_driver_lock); 1098 } 1099 1100 static void intel_pstate_hwp_enable(struct cpudata *cpudata); 1101 1102 static void intel_pstate_hwp_reenable(struct cpudata *cpu) 1103 { 1104 intel_pstate_hwp_enable(cpu); 1105 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached)); 1106 } 1107 1108 static int intel_pstate_suspend(struct cpufreq_policy *policy) 1109 { 1110 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1111 1112 pr_debug("CPU %d suspending\n", cpu->cpu); 1113 1114 cpu->suspended = true; 1115 1116 /* disable HWP interrupt and cancel any pending work */ 1117 intel_pstate_disable_hwp_interrupt(cpu); 1118 1119 return 0; 1120 } 1121 1122 static int intel_pstate_resume(struct cpufreq_policy *policy) 1123 { 1124 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1125 1126 pr_debug("CPU %d resuming\n", cpu->cpu); 1127 1128 /* Only restore if the system default is changed */ 1129 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE) 1130 set_power_ctl_ee_state(true); 1131 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE) 1132 set_power_ctl_ee_state(false); 1133 1134 if (cpu->suspended && hwp_active) { 1135 mutex_lock(&intel_pstate_limits_lock); 1136 1137 /* Re-enable HWP, because "online" has not done that. */ 1138 intel_pstate_hwp_reenable(cpu); 1139 1140 mutex_unlock(&intel_pstate_limits_lock); 1141 } 1142 1143 cpu->suspended = false; 1144 1145 return 0; 1146 } 1147 1148 static void intel_pstate_update_policies(void) 1149 { 1150 int cpu; 1151 1152 for_each_possible_cpu(cpu) 1153 cpufreq_update_policy(cpu); 1154 } 1155 1156 static void __intel_pstate_update_max_freq(struct cpudata *cpudata, 1157 struct cpufreq_policy *policy) 1158 { 1159 policy->cpuinfo.max_freq = global.turbo_disabled_mf ? 1160 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq; 1161 refresh_frequency_limits(policy); 1162 } 1163 1164 static void intel_pstate_update_max_freq(unsigned int cpu) 1165 { 1166 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 1167 1168 if (!policy) 1169 return; 1170 1171 __intel_pstate_update_max_freq(all_cpu_data[cpu], policy); 1172 1173 cpufreq_cpu_release(policy); 1174 } 1175 1176 static void intel_pstate_update_limits(unsigned int cpu) 1177 { 1178 mutex_lock(&intel_pstate_driver_lock); 1179 1180 update_turbo_state(); 1181 /* 1182 * If turbo has been turned on or off globally, policy limits for 1183 * all CPUs need to be updated to reflect that. 1184 */ 1185 if (global.turbo_disabled_mf != global.turbo_disabled) { 1186 global.turbo_disabled_mf = global.turbo_disabled; 1187 arch_set_max_freq_ratio(global.turbo_disabled); 1188 for_each_possible_cpu(cpu) 1189 intel_pstate_update_max_freq(cpu); 1190 } else { 1191 cpufreq_update_policy(cpu); 1192 } 1193 1194 mutex_unlock(&intel_pstate_driver_lock); 1195 } 1196 1197 /************************** sysfs begin ************************/ 1198 #define show_one(file_name, object) \ 1199 static ssize_t show_##file_name \ 1200 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \ 1201 { \ 1202 return sprintf(buf, "%u\n", global.object); \ 1203 } 1204 1205 static ssize_t intel_pstate_show_status(char *buf); 1206 static int intel_pstate_update_status(const char *buf, size_t size); 1207 1208 static ssize_t show_status(struct kobject *kobj, 1209 struct kobj_attribute *attr, char *buf) 1210 { 1211 ssize_t ret; 1212 1213 mutex_lock(&intel_pstate_driver_lock); 1214 ret = intel_pstate_show_status(buf); 1215 mutex_unlock(&intel_pstate_driver_lock); 1216 1217 return ret; 1218 } 1219 1220 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b, 1221 const char *buf, size_t count) 1222 { 1223 char *p = memchr(buf, '\n', count); 1224 int ret; 1225 1226 mutex_lock(&intel_pstate_driver_lock); 1227 ret = intel_pstate_update_status(buf, p ? p - buf : count); 1228 mutex_unlock(&intel_pstate_driver_lock); 1229 1230 return ret < 0 ? ret : count; 1231 } 1232 1233 static ssize_t show_turbo_pct(struct kobject *kobj, 1234 struct kobj_attribute *attr, char *buf) 1235 { 1236 struct cpudata *cpu; 1237 int total, no_turbo, turbo_pct; 1238 uint32_t turbo_fp; 1239 1240 mutex_lock(&intel_pstate_driver_lock); 1241 1242 if (!intel_pstate_driver) { 1243 mutex_unlock(&intel_pstate_driver_lock); 1244 return -EAGAIN; 1245 } 1246 1247 cpu = all_cpu_data[0]; 1248 1249 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1250 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; 1251 turbo_fp = div_fp(no_turbo, total); 1252 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); 1253 1254 mutex_unlock(&intel_pstate_driver_lock); 1255 1256 return sprintf(buf, "%u\n", turbo_pct); 1257 } 1258 1259 static ssize_t show_num_pstates(struct kobject *kobj, 1260 struct kobj_attribute *attr, char *buf) 1261 { 1262 struct cpudata *cpu; 1263 int total; 1264 1265 mutex_lock(&intel_pstate_driver_lock); 1266 1267 if (!intel_pstate_driver) { 1268 mutex_unlock(&intel_pstate_driver_lock); 1269 return -EAGAIN; 1270 } 1271 1272 cpu = all_cpu_data[0]; 1273 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1274 1275 mutex_unlock(&intel_pstate_driver_lock); 1276 1277 return sprintf(buf, "%u\n", total); 1278 } 1279 1280 static ssize_t show_no_turbo(struct kobject *kobj, 1281 struct kobj_attribute *attr, char *buf) 1282 { 1283 ssize_t ret; 1284 1285 mutex_lock(&intel_pstate_driver_lock); 1286 1287 if (!intel_pstate_driver) { 1288 mutex_unlock(&intel_pstate_driver_lock); 1289 return -EAGAIN; 1290 } 1291 1292 update_turbo_state(); 1293 if (global.turbo_disabled) 1294 ret = sprintf(buf, "%u\n", global.turbo_disabled); 1295 else 1296 ret = sprintf(buf, "%u\n", global.no_turbo); 1297 1298 mutex_unlock(&intel_pstate_driver_lock); 1299 1300 return ret; 1301 } 1302 1303 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b, 1304 const char *buf, size_t count) 1305 { 1306 unsigned int input; 1307 int ret; 1308 1309 ret = sscanf(buf, "%u", &input); 1310 if (ret != 1) 1311 return -EINVAL; 1312 1313 mutex_lock(&intel_pstate_driver_lock); 1314 1315 if (!intel_pstate_driver) { 1316 mutex_unlock(&intel_pstate_driver_lock); 1317 return -EAGAIN; 1318 } 1319 1320 mutex_lock(&intel_pstate_limits_lock); 1321 1322 update_turbo_state(); 1323 if (global.turbo_disabled) { 1324 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n"); 1325 mutex_unlock(&intel_pstate_limits_lock); 1326 mutex_unlock(&intel_pstate_driver_lock); 1327 return -EPERM; 1328 } 1329 1330 global.no_turbo = clamp_t(int, input, 0, 1); 1331 1332 if (global.no_turbo) { 1333 struct cpudata *cpu = all_cpu_data[0]; 1334 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate; 1335 1336 /* Squash the global minimum into the permitted range. */ 1337 if (global.min_perf_pct > pct) 1338 global.min_perf_pct = pct; 1339 } 1340 1341 mutex_unlock(&intel_pstate_limits_lock); 1342 1343 intel_pstate_update_policies(); 1344 arch_set_max_freq_ratio(global.no_turbo); 1345 1346 mutex_unlock(&intel_pstate_driver_lock); 1347 1348 return count; 1349 } 1350 1351 static void update_qos_request(enum freq_qos_req_type type) 1352 { 1353 struct freq_qos_request *req; 1354 struct cpufreq_policy *policy; 1355 int i; 1356 1357 for_each_possible_cpu(i) { 1358 struct cpudata *cpu = all_cpu_data[i]; 1359 unsigned int freq, perf_pct; 1360 1361 policy = cpufreq_cpu_get(i); 1362 if (!policy) 1363 continue; 1364 1365 req = policy->driver_data; 1366 cpufreq_cpu_put(policy); 1367 1368 if (!req) 1369 continue; 1370 1371 if (hwp_active) 1372 intel_pstate_get_hwp_cap(cpu); 1373 1374 if (type == FREQ_QOS_MIN) { 1375 perf_pct = global.min_perf_pct; 1376 } else { 1377 req++; 1378 perf_pct = global.max_perf_pct; 1379 } 1380 1381 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100); 1382 1383 if (freq_qos_update_request(req, freq) < 0) 1384 pr_warn("Failed to update freq constraint: CPU%d\n", i); 1385 } 1386 } 1387 1388 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b, 1389 const char *buf, size_t count) 1390 { 1391 unsigned int input; 1392 int ret; 1393 1394 ret = sscanf(buf, "%u", &input); 1395 if (ret != 1) 1396 return -EINVAL; 1397 1398 mutex_lock(&intel_pstate_driver_lock); 1399 1400 if (!intel_pstate_driver) { 1401 mutex_unlock(&intel_pstate_driver_lock); 1402 return -EAGAIN; 1403 } 1404 1405 mutex_lock(&intel_pstate_limits_lock); 1406 1407 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100); 1408 1409 mutex_unlock(&intel_pstate_limits_lock); 1410 1411 if (intel_pstate_driver == &intel_pstate) 1412 intel_pstate_update_policies(); 1413 else 1414 update_qos_request(FREQ_QOS_MAX); 1415 1416 mutex_unlock(&intel_pstate_driver_lock); 1417 1418 return count; 1419 } 1420 1421 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b, 1422 const char *buf, size_t count) 1423 { 1424 unsigned int input; 1425 int ret; 1426 1427 ret = sscanf(buf, "%u", &input); 1428 if (ret != 1) 1429 return -EINVAL; 1430 1431 mutex_lock(&intel_pstate_driver_lock); 1432 1433 if (!intel_pstate_driver) { 1434 mutex_unlock(&intel_pstate_driver_lock); 1435 return -EAGAIN; 1436 } 1437 1438 mutex_lock(&intel_pstate_limits_lock); 1439 1440 global.min_perf_pct = clamp_t(int, input, 1441 min_perf_pct_min(), global.max_perf_pct); 1442 1443 mutex_unlock(&intel_pstate_limits_lock); 1444 1445 if (intel_pstate_driver == &intel_pstate) 1446 intel_pstate_update_policies(); 1447 else 1448 update_qos_request(FREQ_QOS_MIN); 1449 1450 mutex_unlock(&intel_pstate_driver_lock); 1451 1452 return count; 1453 } 1454 1455 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj, 1456 struct kobj_attribute *attr, char *buf) 1457 { 1458 return sprintf(buf, "%u\n", hwp_boost); 1459 } 1460 1461 static ssize_t store_hwp_dynamic_boost(struct kobject *a, 1462 struct kobj_attribute *b, 1463 const char *buf, size_t count) 1464 { 1465 unsigned int input; 1466 int ret; 1467 1468 ret = kstrtouint(buf, 10, &input); 1469 if (ret) 1470 return ret; 1471 1472 mutex_lock(&intel_pstate_driver_lock); 1473 hwp_boost = !!input; 1474 intel_pstate_update_policies(); 1475 mutex_unlock(&intel_pstate_driver_lock); 1476 1477 return count; 1478 } 1479 1480 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr, 1481 char *buf) 1482 { 1483 u64 power_ctl; 1484 int enable; 1485 1486 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 1487 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE)); 1488 return sprintf(buf, "%d\n", !enable); 1489 } 1490 1491 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b, 1492 const char *buf, size_t count) 1493 { 1494 bool input; 1495 int ret; 1496 1497 ret = kstrtobool(buf, &input); 1498 if (ret) 1499 return ret; 1500 1501 set_power_ctl_ee_state(input); 1502 1503 return count; 1504 } 1505 1506 show_one(max_perf_pct, max_perf_pct); 1507 show_one(min_perf_pct, min_perf_pct); 1508 1509 define_one_global_rw(status); 1510 define_one_global_rw(no_turbo); 1511 define_one_global_rw(max_perf_pct); 1512 define_one_global_rw(min_perf_pct); 1513 define_one_global_ro(turbo_pct); 1514 define_one_global_ro(num_pstates); 1515 define_one_global_rw(hwp_dynamic_boost); 1516 define_one_global_rw(energy_efficiency); 1517 1518 static struct attribute *intel_pstate_attributes[] = { 1519 &status.attr, 1520 &no_turbo.attr, 1521 NULL 1522 }; 1523 1524 static const struct attribute_group intel_pstate_attr_group = { 1525 .attrs = intel_pstate_attributes, 1526 }; 1527 1528 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[]; 1529 1530 static struct kobject *intel_pstate_kobject; 1531 1532 static void __init intel_pstate_sysfs_expose_params(void) 1533 { 1534 struct device *dev_root = bus_get_dev_root(&cpu_subsys); 1535 int rc; 1536 1537 if (dev_root) { 1538 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj); 1539 put_device(dev_root); 1540 } 1541 if (WARN_ON(!intel_pstate_kobject)) 1542 return; 1543 1544 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); 1545 if (WARN_ON(rc)) 1546 return; 1547 1548 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 1549 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr); 1550 WARN_ON(rc); 1551 1552 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr); 1553 WARN_ON(rc); 1554 } 1555 1556 /* 1557 * If per cpu limits are enforced there are no global limits, so 1558 * return without creating max/min_perf_pct attributes 1559 */ 1560 if (per_cpu_limits) 1561 return; 1562 1563 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); 1564 WARN_ON(rc); 1565 1566 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); 1567 WARN_ON(rc); 1568 1569 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) { 1570 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr); 1571 WARN_ON(rc); 1572 } 1573 } 1574 1575 static void __init intel_pstate_sysfs_remove(void) 1576 { 1577 if (!intel_pstate_kobject) 1578 return; 1579 1580 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group); 1581 1582 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 1583 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr); 1584 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr); 1585 } 1586 1587 if (!per_cpu_limits) { 1588 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr); 1589 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr); 1590 1591 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) 1592 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr); 1593 } 1594 1595 kobject_put(intel_pstate_kobject); 1596 } 1597 1598 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void) 1599 { 1600 int rc; 1601 1602 if (!hwp_active) 1603 return; 1604 1605 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1606 WARN_ON_ONCE(rc); 1607 } 1608 1609 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void) 1610 { 1611 if (!hwp_active) 1612 return; 1613 1614 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1615 } 1616 1617 /************************** sysfs end ************************/ 1618 1619 static void intel_pstate_notify_work(struct work_struct *work) 1620 { 1621 struct cpudata *cpudata = 1622 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work); 1623 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu); 1624 1625 if (policy) { 1626 intel_pstate_get_hwp_cap(cpudata); 1627 __intel_pstate_update_max_freq(cpudata, policy); 1628 1629 cpufreq_cpu_release(policy); 1630 } 1631 1632 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); 1633 } 1634 1635 static DEFINE_SPINLOCK(hwp_notify_lock); 1636 static cpumask_t hwp_intr_enable_mask; 1637 1638 void notify_hwp_interrupt(void) 1639 { 1640 unsigned int this_cpu = smp_processor_id(); 1641 struct cpudata *cpudata; 1642 unsigned long flags; 1643 u64 value; 1644 1645 if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1646 return; 1647 1648 rdmsrl_safe(MSR_HWP_STATUS, &value); 1649 if (!(value & 0x01)) 1650 return; 1651 1652 spin_lock_irqsave(&hwp_notify_lock, flags); 1653 1654 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask)) 1655 goto ack_intr; 1656 1657 /* 1658 * Currently we never free all_cpu_data. And we can't reach here 1659 * without this allocated. But for safety for future changes, added 1660 * check. 1661 */ 1662 if (unlikely(!READ_ONCE(all_cpu_data))) 1663 goto ack_intr; 1664 1665 /* 1666 * The free is done during cleanup, when cpufreq registry is failed. 1667 * We wouldn't be here if it fails on init or switch status. But for 1668 * future changes, added check. 1669 */ 1670 cpudata = READ_ONCE(all_cpu_data[this_cpu]); 1671 if (unlikely(!cpudata)) 1672 goto ack_intr; 1673 1674 schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10)); 1675 1676 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1677 1678 return; 1679 1680 ack_intr: 1681 wrmsrl_safe(MSR_HWP_STATUS, 0); 1682 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1683 } 1684 1685 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata) 1686 { 1687 unsigned long flags; 1688 1689 if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1690 return; 1691 1692 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ 1693 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1694 1695 spin_lock_irqsave(&hwp_notify_lock, flags); 1696 if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask)) 1697 cancel_delayed_work(&cpudata->hwp_notify_work); 1698 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1699 } 1700 1701 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata) 1702 { 1703 /* Enable HWP notification interrupt for guaranteed performance change */ 1704 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) { 1705 unsigned long flags; 1706 1707 spin_lock_irqsave(&hwp_notify_lock, flags); 1708 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work); 1709 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask); 1710 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1711 1712 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ 1713 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01); 1714 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); 1715 } 1716 } 1717 1718 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata) 1719 { 1720 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); 1721 1722 /* 1723 * If this CPU gen doesn't call for change in balance_perf 1724 * EPP return. 1725 */ 1726 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE) 1727 return; 1728 1729 /* 1730 * If the EPP is set by firmware, which means that firmware enabled HWP 1731 * - Is equal or less than 0x80 (default balance_perf EPP) 1732 * - But less performance oriented than performance EPP 1733 * then use this as new balance_perf EPP. 1734 */ 1735 if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE && 1736 cpudata->epp_default > HWP_EPP_PERFORMANCE) { 1737 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default; 1738 return; 1739 } 1740 1741 /* 1742 * Use hard coded value per gen to update the balance_perf 1743 * and default EPP. 1744 */ 1745 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE]; 1746 intel_pstate_set_epp(cpudata, cpudata->epp_default); 1747 } 1748 1749 static void intel_pstate_hwp_enable(struct cpudata *cpudata) 1750 { 1751 /* First disable HWP notification interrupt till we activate again */ 1752 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1753 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1754 1755 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); 1756 1757 intel_pstate_enable_hwp_interrupt(cpudata); 1758 1759 if (cpudata->epp_default >= 0) 1760 return; 1761 1762 intel_pstate_update_epp_defaults(cpudata); 1763 } 1764 1765 static int atom_get_min_pstate(int not_used) 1766 { 1767 u64 value; 1768 1769 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1770 return (value >> 8) & 0x7F; 1771 } 1772 1773 static int atom_get_max_pstate(int not_used) 1774 { 1775 u64 value; 1776 1777 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1778 return (value >> 16) & 0x7F; 1779 } 1780 1781 static int atom_get_turbo_pstate(int not_used) 1782 { 1783 u64 value; 1784 1785 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value); 1786 return value & 0x7F; 1787 } 1788 1789 static u64 atom_get_val(struct cpudata *cpudata, int pstate) 1790 { 1791 u64 val; 1792 int32_t vid_fp; 1793 u32 vid; 1794 1795 val = (u64)pstate << 8; 1796 if (global.no_turbo && !global.turbo_disabled) 1797 val |= (u64)1 << 32; 1798 1799 vid_fp = cpudata->vid.min + mul_fp( 1800 int_tofp(pstate - cpudata->pstate.min_pstate), 1801 cpudata->vid.ratio); 1802 1803 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); 1804 vid = ceiling_fp(vid_fp); 1805 1806 if (pstate > cpudata->pstate.max_pstate) 1807 vid = cpudata->vid.turbo; 1808 1809 return val | vid; 1810 } 1811 1812 static int silvermont_get_scaling(void) 1813 { 1814 u64 value; 1815 int i; 1816 /* Defined in Table 35-6 from SDM (Sept 2015) */ 1817 static int silvermont_freq_table[] = { 1818 83300, 100000, 133300, 116700, 80000}; 1819 1820 rdmsrl(MSR_FSB_FREQ, value); 1821 i = value & 0x7; 1822 WARN_ON(i > 4); 1823 1824 return silvermont_freq_table[i]; 1825 } 1826 1827 static int airmont_get_scaling(void) 1828 { 1829 u64 value; 1830 int i; 1831 /* Defined in Table 35-10 from SDM (Sept 2015) */ 1832 static int airmont_freq_table[] = { 1833 83300, 100000, 133300, 116700, 80000, 1834 93300, 90000, 88900, 87500}; 1835 1836 rdmsrl(MSR_FSB_FREQ, value); 1837 i = value & 0xF; 1838 WARN_ON(i > 8); 1839 1840 return airmont_freq_table[i]; 1841 } 1842 1843 static void atom_get_vid(struct cpudata *cpudata) 1844 { 1845 u64 value; 1846 1847 rdmsrl(MSR_ATOM_CORE_VIDS, value); 1848 cpudata->vid.min = int_tofp((value >> 8) & 0x7f); 1849 cpudata->vid.max = int_tofp((value >> 16) & 0x7f); 1850 cpudata->vid.ratio = div_fp( 1851 cpudata->vid.max - cpudata->vid.min, 1852 int_tofp(cpudata->pstate.max_pstate - 1853 cpudata->pstate.min_pstate)); 1854 1855 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value); 1856 cpudata->vid.turbo = value & 0x7f; 1857 } 1858 1859 static int core_get_min_pstate(int cpu) 1860 { 1861 u64 value; 1862 1863 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value); 1864 return (value >> 40) & 0xFF; 1865 } 1866 1867 static int core_get_max_pstate_physical(int cpu) 1868 { 1869 u64 value; 1870 1871 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value); 1872 return (value >> 8) & 0xFF; 1873 } 1874 1875 static int core_get_tdp_ratio(int cpu, u64 plat_info) 1876 { 1877 /* Check how many TDP levels present */ 1878 if (plat_info & 0x600000000) { 1879 u64 tdp_ctrl; 1880 u64 tdp_ratio; 1881 int tdp_msr; 1882 int err; 1883 1884 /* Get the TDP level (0, 1, 2) to get ratios */ 1885 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); 1886 if (err) 1887 return err; 1888 1889 /* TDP MSR are continuous starting at 0x648 */ 1890 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); 1891 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio); 1892 if (err) 1893 return err; 1894 1895 /* For level 1 and 2, bits[23:16] contain the ratio */ 1896 if (tdp_ctrl & 0x03) 1897 tdp_ratio >>= 16; 1898 1899 tdp_ratio &= 0xff; /* ratios are only 8 bits long */ 1900 pr_debug("tdp_ratio %x\n", (int)tdp_ratio); 1901 1902 return (int)tdp_ratio; 1903 } 1904 1905 return -ENXIO; 1906 } 1907 1908 static int core_get_max_pstate(int cpu) 1909 { 1910 u64 tar; 1911 u64 plat_info; 1912 int max_pstate; 1913 int tdp_ratio; 1914 int err; 1915 1916 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info); 1917 max_pstate = (plat_info >> 8) & 0xFF; 1918 1919 tdp_ratio = core_get_tdp_ratio(cpu, plat_info); 1920 if (tdp_ratio <= 0) 1921 return max_pstate; 1922 1923 if (hwp_active) { 1924 /* Turbo activation ratio is not used on HWP platforms */ 1925 return tdp_ratio; 1926 } 1927 1928 err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar); 1929 if (!err) { 1930 int tar_levels; 1931 1932 /* Do some sanity checking for safety */ 1933 tar_levels = tar & 0xff; 1934 if (tdp_ratio - 1 == tar_levels) { 1935 max_pstate = tar_levels; 1936 pr_debug("max_pstate=TAC %x\n", max_pstate); 1937 } 1938 } 1939 1940 return max_pstate; 1941 } 1942 1943 static int core_get_turbo_pstate(int cpu) 1944 { 1945 u64 value; 1946 int nont, ret; 1947 1948 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); 1949 nont = core_get_max_pstate(cpu); 1950 ret = (value) & 255; 1951 if (ret <= nont) 1952 ret = nont; 1953 return ret; 1954 } 1955 1956 static u64 core_get_val(struct cpudata *cpudata, int pstate) 1957 { 1958 u64 val; 1959 1960 val = (u64)pstate << 8; 1961 if (global.no_turbo && !global.turbo_disabled) 1962 val |= (u64)1 << 32; 1963 1964 return val; 1965 } 1966 1967 static int knl_get_aperf_mperf_shift(void) 1968 { 1969 return 10; 1970 } 1971 1972 static int knl_get_turbo_pstate(int cpu) 1973 { 1974 u64 value; 1975 int nont, ret; 1976 1977 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); 1978 nont = core_get_max_pstate(cpu); 1979 ret = (((value) >> 8) & 0xFF); 1980 if (ret <= nont) 1981 ret = nont; 1982 return ret; 1983 } 1984 1985 static void hybrid_get_type(void *data) 1986 { 1987 u8 *cpu_type = data; 1988 1989 *cpu_type = get_this_hybrid_cpu_type(); 1990 } 1991 1992 static int hwp_get_cpu_scaling(int cpu) 1993 { 1994 u8 cpu_type = 0; 1995 1996 smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1); 1997 /* P-cores have a smaller perf level-to-freqency scaling factor. */ 1998 if (cpu_type == 0x40) 1999 return HYBRID_SCALING_FACTOR; 2000 2001 /* Use default core scaling for E-cores */ 2002 if (cpu_type == 0x20) 2003 return core_get_scaling(); 2004 2005 /* 2006 * If reached here, this system is either non-hybrid (like Tiger 2007 * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with 2008 * no E cores (in which case CPUID for hybrid support is 0). 2009 * 2010 * The CPPC nominal_frequency field is 0 for non-hybrid systems, 2011 * so the default core scaling will be used for them. 2012 */ 2013 return intel_pstate_cppc_get_scaling(cpu); 2014 } 2015 2016 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) 2017 { 2018 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); 2019 cpu->pstate.current_pstate = pstate; 2020 /* 2021 * Generally, there is no guarantee that this code will always run on 2022 * the CPU being updated, so force the register update to run on the 2023 * right CPU. 2024 */ 2025 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 2026 pstate_funcs.get_val(cpu, pstate)); 2027 } 2028 2029 static void intel_pstate_set_min_pstate(struct cpudata *cpu) 2030 { 2031 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); 2032 } 2033 2034 static void intel_pstate_max_within_limits(struct cpudata *cpu) 2035 { 2036 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio); 2037 2038 update_turbo_state(); 2039 intel_pstate_set_pstate(cpu, pstate); 2040 } 2041 2042 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) 2043 { 2044 int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu); 2045 int perf_ctl_scaling = pstate_funcs.get_scaling(); 2046 2047 cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu); 2048 cpu->pstate.max_pstate_physical = perf_ctl_max_phys; 2049 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling; 2050 2051 if (hwp_active && !hwp_mode_bdw) { 2052 __intel_pstate_get_hwp_cap(cpu); 2053 2054 if (pstate_funcs.get_cpu_scaling) { 2055 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu); 2056 if (cpu->pstate.scaling != perf_ctl_scaling) 2057 intel_pstate_hybrid_hwp_adjust(cpu); 2058 } else { 2059 cpu->pstate.scaling = perf_ctl_scaling; 2060 } 2061 } else { 2062 cpu->pstate.scaling = perf_ctl_scaling; 2063 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu); 2064 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu); 2065 } 2066 2067 if (cpu->pstate.scaling == perf_ctl_scaling) { 2068 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling; 2069 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling; 2070 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling; 2071 } 2072 2073 if (pstate_funcs.get_aperf_mperf_shift) 2074 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift(); 2075 2076 if (pstate_funcs.get_vid) 2077 pstate_funcs.get_vid(cpu); 2078 2079 intel_pstate_set_min_pstate(cpu); 2080 } 2081 2082 /* 2083 * Long hold time will keep high perf limits for long time, 2084 * which negatively impacts perf/watt for some workloads, 2085 * like specpower. 3ms is based on experiements on some 2086 * workoads. 2087 */ 2088 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC; 2089 2090 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu) 2091 { 2092 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached); 2093 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 2094 u32 max_limit = (hwp_req & 0xff00) >> 8; 2095 u32 min_limit = (hwp_req & 0xff); 2096 u32 boost_level1; 2097 2098 /* 2099 * Cases to consider (User changes via sysfs or boot time): 2100 * If, P0 (Turbo max) = P1 (Guaranteed max) = min: 2101 * No boost, return. 2102 * If, P0 (Turbo max) > P1 (Guaranteed max) = min: 2103 * Should result in one level boost only for P0. 2104 * If, P0 (Turbo max) = P1 (Guaranteed max) > min: 2105 * Should result in two level boost: 2106 * (min + p1)/2 and P1. 2107 * If, P0 (Turbo max) > P1 (Guaranteed max) > min: 2108 * Should result in three level boost: 2109 * (min + p1)/2, P1 and P0. 2110 */ 2111 2112 /* If max and min are equal or already at max, nothing to boost */ 2113 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit) 2114 return; 2115 2116 if (!cpu->hwp_boost_min) 2117 cpu->hwp_boost_min = min_limit; 2118 2119 /* level at half way mark between min and guranteed */ 2120 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1; 2121 2122 if (cpu->hwp_boost_min < boost_level1) 2123 cpu->hwp_boost_min = boost_level1; 2124 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap)) 2125 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap); 2126 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) && 2127 max_limit != HWP_GUARANTEED_PERF(hwp_cap)) 2128 cpu->hwp_boost_min = max_limit; 2129 else 2130 return; 2131 2132 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min; 2133 wrmsrl(MSR_HWP_REQUEST, hwp_req); 2134 cpu->last_update = cpu->sample.time; 2135 } 2136 2137 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu) 2138 { 2139 if (cpu->hwp_boost_min) { 2140 bool expired; 2141 2142 /* Check if we are idle for hold time to boost down */ 2143 expired = time_after64(cpu->sample.time, cpu->last_update + 2144 hwp_boost_hold_time_ns); 2145 if (expired) { 2146 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached); 2147 cpu->hwp_boost_min = 0; 2148 } 2149 } 2150 cpu->last_update = cpu->sample.time; 2151 } 2152 2153 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu, 2154 u64 time) 2155 { 2156 cpu->sample.time = time; 2157 2158 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) { 2159 bool do_io = false; 2160 2161 cpu->sched_flags = 0; 2162 /* 2163 * Set iowait_boost flag and update time. Since IO WAIT flag 2164 * is set all the time, we can't just conclude that there is 2165 * some IO bound activity is scheduled on this CPU with just 2166 * one occurrence. If we receive at least two in two 2167 * consecutive ticks, then we treat as boost candidate. 2168 */ 2169 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC)) 2170 do_io = true; 2171 2172 cpu->last_io_update = time; 2173 2174 if (do_io) 2175 intel_pstate_hwp_boost_up(cpu); 2176 2177 } else { 2178 intel_pstate_hwp_boost_down(cpu); 2179 } 2180 } 2181 2182 static inline void intel_pstate_update_util_hwp(struct update_util_data *data, 2183 u64 time, unsigned int flags) 2184 { 2185 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 2186 2187 cpu->sched_flags |= flags; 2188 2189 if (smp_processor_id() == cpu->cpu) 2190 intel_pstate_update_util_hwp_local(cpu, time); 2191 } 2192 2193 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) 2194 { 2195 struct sample *sample = &cpu->sample; 2196 2197 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); 2198 } 2199 2200 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) 2201 { 2202 u64 aperf, mperf; 2203 unsigned long flags; 2204 u64 tsc; 2205 2206 local_irq_save(flags); 2207 rdmsrl(MSR_IA32_APERF, aperf); 2208 rdmsrl(MSR_IA32_MPERF, mperf); 2209 tsc = rdtsc(); 2210 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { 2211 local_irq_restore(flags); 2212 return false; 2213 } 2214 local_irq_restore(flags); 2215 2216 cpu->last_sample_time = cpu->sample.time; 2217 cpu->sample.time = time; 2218 cpu->sample.aperf = aperf; 2219 cpu->sample.mperf = mperf; 2220 cpu->sample.tsc = tsc; 2221 cpu->sample.aperf -= cpu->prev_aperf; 2222 cpu->sample.mperf -= cpu->prev_mperf; 2223 cpu->sample.tsc -= cpu->prev_tsc; 2224 2225 cpu->prev_aperf = aperf; 2226 cpu->prev_mperf = mperf; 2227 cpu->prev_tsc = tsc; 2228 /* 2229 * First time this function is invoked in a given cycle, all of the 2230 * previous sample data fields are equal to zero or stale and they must 2231 * be populated with meaningful numbers for things to work, so assume 2232 * that sample.time will always be reset before setting the utilization 2233 * update hook and make the caller skip the sample then. 2234 */ 2235 if (cpu->last_sample_time) { 2236 intel_pstate_calc_avg_perf(cpu); 2237 return true; 2238 } 2239 return false; 2240 } 2241 2242 static inline int32_t get_avg_frequency(struct cpudata *cpu) 2243 { 2244 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz); 2245 } 2246 2247 static inline int32_t get_avg_pstate(struct cpudata *cpu) 2248 { 2249 return mul_ext_fp(cpu->pstate.max_pstate_physical, 2250 cpu->sample.core_avg_perf); 2251 } 2252 2253 static inline int32_t get_target_pstate(struct cpudata *cpu) 2254 { 2255 struct sample *sample = &cpu->sample; 2256 int32_t busy_frac; 2257 int target, avg_pstate; 2258 2259 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift, 2260 sample->tsc); 2261 2262 if (busy_frac < cpu->iowait_boost) 2263 busy_frac = cpu->iowait_boost; 2264 2265 sample->busy_scaled = busy_frac * 100; 2266 2267 target = global.no_turbo || global.turbo_disabled ? 2268 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 2269 target += target >> 2; 2270 target = mul_fp(target, busy_frac); 2271 if (target < cpu->pstate.min_pstate) 2272 target = cpu->pstate.min_pstate; 2273 2274 /* 2275 * If the average P-state during the previous cycle was higher than the 2276 * current target, add 50% of the difference to the target to reduce 2277 * possible performance oscillations and offset possible performance 2278 * loss related to moving the workload from one CPU to another within 2279 * a package/module. 2280 */ 2281 avg_pstate = get_avg_pstate(cpu); 2282 if (avg_pstate > target) 2283 target += (avg_pstate - target) >> 1; 2284 2285 return target; 2286 } 2287 2288 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) 2289 { 2290 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio); 2291 int max_pstate = max(min_pstate, cpu->max_perf_ratio); 2292 2293 return clamp_t(int, pstate, min_pstate, max_pstate); 2294 } 2295 2296 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) 2297 { 2298 if (pstate == cpu->pstate.current_pstate) 2299 return; 2300 2301 cpu->pstate.current_pstate = pstate; 2302 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); 2303 } 2304 2305 static void intel_pstate_adjust_pstate(struct cpudata *cpu) 2306 { 2307 int from = cpu->pstate.current_pstate; 2308 struct sample *sample; 2309 int target_pstate; 2310 2311 update_turbo_state(); 2312 2313 target_pstate = get_target_pstate(cpu); 2314 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2315 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu); 2316 intel_pstate_update_pstate(cpu, target_pstate); 2317 2318 sample = &cpu->sample; 2319 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), 2320 fp_toint(sample->busy_scaled), 2321 from, 2322 cpu->pstate.current_pstate, 2323 sample->mperf, 2324 sample->aperf, 2325 sample->tsc, 2326 get_avg_frequency(cpu), 2327 fp_toint(cpu->iowait_boost * 100)); 2328 } 2329 2330 static void intel_pstate_update_util(struct update_util_data *data, u64 time, 2331 unsigned int flags) 2332 { 2333 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 2334 u64 delta_ns; 2335 2336 /* Don't allow remote callbacks */ 2337 if (smp_processor_id() != cpu->cpu) 2338 return; 2339 2340 delta_ns = time - cpu->last_update; 2341 if (flags & SCHED_CPUFREQ_IOWAIT) { 2342 /* Start over if the CPU may have been idle. */ 2343 if (delta_ns > TICK_NSEC) { 2344 cpu->iowait_boost = ONE_EIGHTH_FP; 2345 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) { 2346 cpu->iowait_boost <<= 1; 2347 if (cpu->iowait_boost > int_tofp(1)) 2348 cpu->iowait_boost = int_tofp(1); 2349 } else { 2350 cpu->iowait_boost = ONE_EIGHTH_FP; 2351 } 2352 } else if (cpu->iowait_boost) { 2353 /* Clear iowait_boost if the CPU may have been idle. */ 2354 if (delta_ns > TICK_NSEC) 2355 cpu->iowait_boost = 0; 2356 else 2357 cpu->iowait_boost >>= 1; 2358 } 2359 cpu->last_update = time; 2360 delta_ns = time - cpu->sample.time; 2361 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL) 2362 return; 2363 2364 if (intel_pstate_sample(cpu, time)) 2365 intel_pstate_adjust_pstate(cpu); 2366 } 2367 2368 static struct pstate_funcs core_funcs = { 2369 .get_max = core_get_max_pstate, 2370 .get_max_physical = core_get_max_pstate_physical, 2371 .get_min = core_get_min_pstate, 2372 .get_turbo = core_get_turbo_pstate, 2373 .get_scaling = core_get_scaling, 2374 .get_val = core_get_val, 2375 }; 2376 2377 static const struct pstate_funcs silvermont_funcs = { 2378 .get_max = atom_get_max_pstate, 2379 .get_max_physical = atom_get_max_pstate, 2380 .get_min = atom_get_min_pstate, 2381 .get_turbo = atom_get_turbo_pstate, 2382 .get_val = atom_get_val, 2383 .get_scaling = silvermont_get_scaling, 2384 .get_vid = atom_get_vid, 2385 }; 2386 2387 static const struct pstate_funcs airmont_funcs = { 2388 .get_max = atom_get_max_pstate, 2389 .get_max_physical = atom_get_max_pstate, 2390 .get_min = atom_get_min_pstate, 2391 .get_turbo = atom_get_turbo_pstate, 2392 .get_val = atom_get_val, 2393 .get_scaling = airmont_get_scaling, 2394 .get_vid = atom_get_vid, 2395 }; 2396 2397 static const struct pstate_funcs knl_funcs = { 2398 .get_max = core_get_max_pstate, 2399 .get_max_physical = core_get_max_pstate_physical, 2400 .get_min = core_get_min_pstate, 2401 .get_turbo = knl_get_turbo_pstate, 2402 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift, 2403 .get_scaling = core_get_scaling, 2404 .get_val = core_get_val, 2405 }; 2406 2407 #define X86_MATCH(model, policy) \ 2408 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 2409 X86_FEATURE_APERFMPERF, &policy) 2410 2411 static const struct x86_cpu_id intel_pstate_cpu_ids[] = { 2412 X86_MATCH(SANDYBRIDGE, core_funcs), 2413 X86_MATCH(SANDYBRIDGE_X, core_funcs), 2414 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs), 2415 X86_MATCH(IVYBRIDGE, core_funcs), 2416 X86_MATCH(HASWELL, core_funcs), 2417 X86_MATCH(BROADWELL, core_funcs), 2418 X86_MATCH(IVYBRIDGE_X, core_funcs), 2419 X86_MATCH(HASWELL_X, core_funcs), 2420 X86_MATCH(HASWELL_L, core_funcs), 2421 X86_MATCH(HASWELL_G, core_funcs), 2422 X86_MATCH(BROADWELL_G, core_funcs), 2423 X86_MATCH(ATOM_AIRMONT, airmont_funcs), 2424 X86_MATCH(SKYLAKE_L, core_funcs), 2425 X86_MATCH(BROADWELL_X, core_funcs), 2426 X86_MATCH(SKYLAKE, core_funcs), 2427 X86_MATCH(BROADWELL_D, core_funcs), 2428 X86_MATCH(XEON_PHI_KNL, knl_funcs), 2429 X86_MATCH(XEON_PHI_KNM, knl_funcs), 2430 X86_MATCH(ATOM_GOLDMONT, core_funcs), 2431 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs), 2432 X86_MATCH(SKYLAKE_X, core_funcs), 2433 X86_MATCH(COMETLAKE, core_funcs), 2434 X86_MATCH(ICELAKE_X, core_funcs), 2435 X86_MATCH(TIGERLAKE, core_funcs), 2436 X86_MATCH(SAPPHIRERAPIDS_X, core_funcs), 2437 {} 2438 }; 2439 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); 2440 2441 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { 2442 X86_MATCH(BROADWELL_D, core_funcs), 2443 X86_MATCH(BROADWELL_X, core_funcs), 2444 X86_MATCH(SKYLAKE_X, core_funcs), 2445 X86_MATCH(ICELAKE_X, core_funcs), 2446 X86_MATCH(SAPPHIRERAPIDS_X, core_funcs), 2447 {} 2448 }; 2449 2450 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { 2451 X86_MATCH(KABYLAKE, core_funcs), 2452 {} 2453 }; 2454 2455 static int intel_pstate_init_cpu(unsigned int cpunum) 2456 { 2457 struct cpudata *cpu; 2458 2459 cpu = all_cpu_data[cpunum]; 2460 2461 if (!cpu) { 2462 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); 2463 if (!cpu) 2464 return -ENOMEM; 2465 2466 WRITE_ONCE(all_cpu_data[cpunum], cpu); 2467 2468 cpu->cpu = cpunum; 2469 2470 cpu->epp_default = -EINVAL; 2471 2472 if (hwp_active) { 2473 intel_pstate_hwp_enable(cpu); 2474 2475 if (intel_pstate_acpi_pm_profile_server()) 2476 hwp_boost = true; 2477 } 2478 } else if (hwp_active) { 2479 /* 2480 * Re-enable HWP in case this happens after a resume from ACPI 2481 * S3 if the CPU was offline during the whole system/resume 2482 * cycle. 2483 */ 2484 intel_pstate_hwp_reenable(cpu); 2485 } 2486 2487 cpu->epp_powersave = -EINVAL; 2488 cpu->epp_policy = 0; 2489 2490 intel_pstate_get_cpu_pstates(cpu); 2491 2492 pr_debug("controlling: cpu %d\n", cpunum); 2493 2494 return 0; 2495 } 2496 2497 static void intel_pstate_set_update_util_hook(unsigned int cpu_num) 2498 { 2499 struct cpudata *cpu = all_cpu_data[cpu_num]; 2500 2501 if (hwp_active && !hwp_boost) 2502 return; 2503 2504 if (cpu->update_util_set) 2505 return; 2506 2507 /* Prevent intel_pstate_update_util() from using stale data. */ 2508 cpu->sample.time = 0; 2509 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, 2510 (hwp_active ? 2511 intel_pstate_update_util_hwp : 2512 intel_pstate_update_util)); 2513 cpu->update_util_set = true; 2514 } 2515 2516 static void intel_pstate_clear_update_util_hook(unsigned int cpu) 2517 { 2518 struct cpudata *cpu_data = all_cpu_data[cpu]; 2519 2520 if (!cpu_data->update_util_set) 2521 return; 2522 2523 cpufreq_remove_update_util_hook(cpu); 2524 cpu_data->update_util_set = false; 2525 synchronize_rcu(); 2526 } 2527 2528 static int intel_pstate_get_max_freq(struct cpudata *cpu) 2529 { 2530 return global.turbo_disabled || global.no_turbo ? 2531 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2532 } 2533 2534 static void intel_pstate_update_perf_limits(struct cpudata *cpu, 2535 unsigned int policy_min, 2536 unsigned int policy_max) 2537 { 2538 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 2539 int32_t max_policy_perf, min_policy_perf; 2540 2541 max_policy_perf = policy_max / perf_ctl_scaling; 2542 if (policy_max == policy_min) { 2543 min_policy_perf = max_policy_perf; 2544 } else { 2545 min_policy_perf = policy_min / perf_ctl_scaling; 2546 min_policy_perf = clamp_t(int32_t, min_policy_perf, 2547 0, max_policy_perf); 2548 } 2549 2550 /* 2551 * HWP needs some special consideration, because HWP_REQUEST uses 2552 * abstract values to represent performance rather than pure ratios. 2553 */ 2554 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) { 2555 int freq; 2556 2557 freq = max_policy_perf * perf_ctl_scaling; 2558 max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq); 2559 freq = min_policy_perf * perf_ctl_scaling; 2560 min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq); 2561 } 2562 2563 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n", 2564 cpu->cpu, min_policy_perf, max_policy_perf); 2565 2566 /* Normalize user input to [min_perf, max_perf] */ 2567 if (per_cpu_limits) { 2568 cpu->min_perf_ratio = min_policy_perf; 2569 cpu->max_perf_ratio = max_policy_perf; 2570 } else { 2571 int turbo_max = cpu->pstate.turbo_pstate; 2572 int32_t global_min, global_max; 2573 2574 /* Global limits are in percent of the maximum turbo P-state. */ 2575 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); 2576 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); 2577 global_min = clamp_t(int32_t, global_min, 0, global_max); 2578 2579 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu, 2580 global_min, global_max); 2581 2582 cpu->min_perf_ratio = max(min_policy_perf, global_min); 2583 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf); 2584 cpu->max_perf_ratio = min(max_policy_perf, global_max); 2585 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio); 2586 2587 /* Make sure min_perf <= max_perf */ 2588 cpu->min_perf_ratio = min(cpu->min_perf_ratio, 2589 cpu->max_perf_ratio); 2590 2591 } 2592 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu, 2593 cpu->max_perf_ratio, 2594 cpu->min_perf_ratio); 2595 } 2596 2597 static int intel_pstate_set_policy(struct cpufreq_policy *policy) 2598 { 2599 struct cpudata *cpu; 2600 2601 if (!policy->cpuinfo.max_freq) 2602 return -ENODEV; 2603 2604 pr_debug("set_policy cpuinfo.max %u policy->max %u\n", 2605 policy->cpuinfo.max_freq, policy->max); 2606 2607 cpu = all_cpu_data[policy->cpu]; 2608 cpu->policy = policy->policy; 2609 2610 mutex_lock(&intel_pstate_limits_lock); 2611 2612 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2613 2614 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { 2615 /* 2616 * NOHZ_FULL CPUs need this as the governor callback may not 2617 * be invoked on them. 2618 */ 2619 intel_pstate_clear_update_util_hook(policy->cpu); 2620 intel_pstate_max_within_limits(cpu); 2621 } else { 2622 intel_pstate_set_update_util_hook(policy->cpu); 2623 } 2624 2625 if (hwp_active) { 2626 /* 2627 * When hwp_boost was active before and dynamically it 2628 * was turned off, in that case we need to clear the 2629 * update util hook. 2630 */ 2631 if (!hwp_boost) 2632 intel_pstate_clear_update_util_hook(policy->cpu); 2633 intel_pstate_hwp_set(policy->cpu); 2634 } 2635 /* 2636 * policy->cur is never updated with the intel_pstate driver, but it 2637 * is used as a stale frequency value. So, keep it within limits. 2638 */ 2639 policy->cur = policy->min; 2640 2641 mutex_unlock(&intel_pstate_limits_lock); 2642 2643 return 0; 2644 } 2645 2646 static void intel_pstate_adjust_policy_max(struct cpudata *cpu, 2647 struct cpufreq_policy_data *policy) 2648 { 2649 if (!hwp_active && 2650 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && 2651 policy->max < policy->cpuinfo.max_freq && 2652 policy->max > cpu->pstate.max_freq) { 2653 pr_debug("policy->max > max non turbo frequency\n"); 2654 policy->max = policy->cpuinfo.max_freq; 2655 } 2656 } 2657 2658 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu, 2659 struct cpufreq_policy_data *policy) 2660 { 2661 int max_freq; 2662 2663 update_turbo_state(); 2664 if (hwp_active) { 2665 intel_pstate_get_hwp_cap(cpu); 2666 max_freq = global.no_turbo || global.turbo_disabled ? 2667 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2668 } else { 2669 max_freq = intel_pstate_get_max_freq(cpu); 2670 } 2671 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq); 2672 2673 intel_pstate_adjust_policy_max(cpu, policy); 2674 } 2675 2676 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy) 2677 { 2678 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy); 2679 2680 return 0; 2681 } 2682 2683 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy) 2684 { 2685 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2686 2687 pr_debug("CPU %d going offline\n", cpu->cpu); 2688 2689 if (cpu->suspended) 2690 return 0; 2691 2692 /* 2693 * If the CPU is an SMT thread and it goes offline with the performance 2694 * settings different from the minimum, it will prevent its sibling 2695 * from getting to lower performance levels, so force the minimum 2696 * performance on CPU offline to prevent that from happening. 2697 */ 2698 if (hwp_active) 2699 intel_pstate_hwp_offline(cpu); 2700 else 2701 intel_pstate_set_min_pstate(cpu); 2702 2703 intel_pstate_exit_perf_limits(policy); 2704 2705 return 0; 2706 } 2707 2708 static int intel_pstate_cpu_online(struct cpufreq_policy *policy) 2709 { 2710 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2711 2712 pr_debug("CPU %d going online\n", cpu->cpu); 2713 2714 intel_pstate_init_acpi_perf_limits(policy); 2715 2716 if (hwp_active) { 2717 /* 2718 * Re-enable HWP and clear the "suspended" flag to let "resume" 2719 * know that it need not do that. 2720 */ 2721 intel_pstate_hwp_reenable(cpu); 2722 cpu->suspended = false; 2723 } 2724 2725 return 0; 2726 } 2727 2728 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy) 2729 { 2730 intel_pstate_clear_update_util_hook(policy->cpu); 2731 2732 return intel_cpufreq_cpu_offline(policy); 2733 } 2734 2735 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy) 2736 { 2737 pr_debug("CPU %d exiting\n", policy->cpu); 2738 2739 policy->fast_switch_possible = false; 2740 2741 return 0; 2742 } 2743 2744 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) 2745 { 2746 struct cpudata *cpu; 2747 int rc; 2748 2749 rc = intel_pstate_init_cpu(policy->cpu); 2750 if (rc) 2751 return rc; 2752 2753 cpu = all_cpu_data[policy->cpu]; 2754 2755 cpu->max_perf_ratio = 0xFF; 2756 cpu->min_perf_ratio = 0; 2757 2758 /* cpuinfo and default policy values */ 2759 policy->cpuinfo.min_freq = cpu->pstate.min_freq; 2760 update_turbo_state(); 2761 global.turbo_disabled_mf = global.turbo_disabled; 2762 policy->cpuinfo.max_freq = global.turbo_disabled ? 2763 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2764 2765 policy->min = policy->cpuinfo.min_freq; 2766 policy->max = policy->cpuinfo.max_freq; 2767 2768 intel_pstate_init_acpi_perf_limits(policy); 2769 2770 policy->fast_switch_possible = true; 2771 2772 return 0; 2773 } 2774 2775 static int intel_pstate_cpu_init(struct cpufreq_policy *policy) 2776 { 2777 int ret = __intel_pstate_cpu_init(policy); 2778 2779 if (ret) 2780 return ret; 2781 2782 /* 2783 * Set the policy to powersave to provide a valid fallback value in case 2784 * the default cpufreq governor is neither powersave nor performance. 2785 */ 2786 policy->policy = CPUFREQ_POLICY_POWERSAVE; 2787 2788 if (hwp_active) { 2789 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2790 2791 cpu->epp_cached = intel_pstate_get_epp(cpu, 0); 2792 } 2793 2794 return 0; 2795 } 2796 2797 static struct cpufreq_driver intel_pstate = { 2798 .flags = CPUFREQ_CONST_LOOPS, 2799 .verify = intel_pstate_verify_policy, 2800 .setpolicy = intel_pstate_set_policy, 2801 .suspend = intel_pstate_suspend, 2802 .resume = intel_pstate_resume, 2803 .init = intel_pstate_cpu_init, 2804 .exit = intel_pstate_cpu_exit, 2805 .offline = intel_pstate_cpu_offline, 2806 .online = intel_pstate_cpu_online, 2807 .update_limits = intel_pstate_update_limits, 2808 .name = "intel_pstate", 2809 }; 2810 2811 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy) 2812 { 2813 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2814 2815 intel_pstate_verify_cpu_policy(cpu, policy); 2816 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2817 2818 return 0; 2819 } 2820 2821 /* Use of trace in passive mode: 2822 * 2823 * In passive mode the trace core_busy field (also known as the 2824 * performance field, and lablelled as such on the graphs; also known as 2825 * core_avg_perf) is not needed and so is re-assigned to indicate if the 2826 * driver call was via the normal or fast switch path. Various graphs 2827 * output from the intel_pstate_tracer.py utility that include core_busy 2828 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%, 2829 * so we use 10 to indicate the normal path through the driver, and 2830 * 90 to indicate the fast switch path through the driver. 2831 * The scaled_busy field is not used, and is set to 0. 2832 */ 2833 2834 #define INTEL_PSTATE_TRACE_TARGET 10 2835 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90 2836 2837 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate) 2838 { 2839 struct sample *sample; 2840 2841 if (!trace_pstate_sample_enabled()) 2842 return; 2843 2844 if (!intel_pstate_sample(cpu, ktime_get())) 2845 return; 2846 2847 sample = &cpu->sample; 2848 trace_pstate_sample(trace_type, 2849 0, 2850 old_pstate, 2851 cpu->pstate.current_pstate, 2852 sample->mperf, 2853 sample->aperf, 2854 sample->tsc, 2855 get_avg_frequency(cpu), 2856 fp_toint(cpu->iowait_boost * 100)); 2857 } 2858 2859 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max, 2860 u32 desired, bool fast_switch) 2861 { 2862 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev; 2863 2864 value &= ~HWP_MIN_PERF(~0L); 2865 value |= HWP_MIN_PERF(min); 2866 2867 value &= ~HWP_MAX_PERF(~0L); 2868 value |= HWP_MAX_PERF(max); 2869 2870 value &= ~HWP_DESIRED_PERF(~0L); 2871 value |= HWP_DESIRED_PERF(desired); 2872 2873 if (value == prev) 2874 return; 2875 2876 WRITE_ONCE(cpu->hwp_req_cached, value); 2877 if (fast_switch) 2878 wrmsrl(MSR_HWP_REQUEST, value); 2879 else 2880 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 2881 } 2882 2883 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu, 2884 u32 target_pstate, bool fast_switch) 2885 { 2886 if (fast_switch) 2887 wrmsrl(MSR_IA32_PERF_CTL, 2888 pstate_funcs.get_val(cpu, target_pstate)); 2889 else 2890 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 2891 pstate_funcs.get_val(cpu, target_pstate)); 2892 } 2893 2894 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy, 2895 int target_pstate, bool fast_switch) 2896 { 2897 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2898 int old_pstate = cpu->pstate.current_pstate; 2899 2900 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2901 if (hwp_active) { 2902 int max_pstate = policy->strict_target ? 2903 target_pstate : cpu->max_perf_ratio; 2904 2905 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0, 2906 fast_switch); 2907 } else if (target_pstate != old_pstate) { 2908 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch); 2909 } 2910 2911 cpu->pstate.current_pstate = target_pstate; 2912 2913 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH : 2914 INTEL_PSTATE_TRACE_TARGET, old_pstate); 2915 2916 return target_pstate; 2917 } 2918 2919 static int intel_cpufreq_target(struct cpufreq_policy *policy, 2920 unsigned int target_freq, 2921 unsigned int relation) 2922 { 2923 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2924 struct cpufreq_freqs freqs; 2925 int target_pstate; 2926 2927 update_turbo_state(); 2928 2929 freqs.old = policy->cur; 2930 freqs.new = target_freq; 2931 2932 cpufreq_freq_transition_begin(policy, &freqs); 2933 2934 target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation); 2935 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false); 2936 2937 freqs.new = target_pstate * cpu->pstate.scaling; 2938 2939 cpufreq_freq_transition_end(policy, &freqs, false); 2940 2941 return 0; 2942 } 2943 2944 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, 2945 unsigned int target_freq) 2946 { 2947 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2948 int target_pstate; 2949 2950 update_turbo_state(); 2951 2952 target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq); 2953 2954 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true); 2955 2956 return target_pstate * cpu->pstate.scaling; 2957 } 2958 2959 static void intel_cpufreq_adjust_perf(unsigned int cpunum, 2960 unsigned long min_perf, 2961 unsigned long target_perf, 2962 unsigned long capacity) 2963 { 2964 struct cpudata *cpu = all_cpu_data[cpunum]; 2965 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 2966 int old_pstate = cpu->pstate.current_pstate; 2967 int cap_pstate, min_pstate, max_pstate, target_pstate; 2968 2969 update_turbo_state(); 2970 cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) : 2971 HWP_HIGHEST_PERF(hwp_cap); 2972 2973 /* Optimization: Avoid unnecessary divisions. */ 2974 2975 target_pstate = cap_pstate; 2976 if (target_perf < capacity) 2977 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity); 2978 2979 min_pstate = cap_pstate; 2980 if (min_perf < capacity) 2981 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity); 2982 2983 if (min_pstate < cpu->pstate.min_pstate) 2984 min_pstate = cpu->pstate.min_pstate; 2985 2986 if (min_pstate < cpu->min_perf_ratio) 2987 min_pstate = cpu->min_perf_ratio; 2988 2989 if (min_pstate > cpu->max_perf_ratio) 2990 min_pstate = cpu->max_perf_ratio; 2991 2992 max_pstate = min(cap_pstate, cpu->max_perf_ratio); 2993 if (max_pstate < min_pstate) 2994 max_pstate = min_pstate; 2995 2996 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate); 2997 2998 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true); 2999 3000 cpu->pstate.current_pstate = target_pstate; 3001 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate); 3002 } 3003 3004 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) 3005 { 3006 struct freq_qos_request *req; 3007 struct cpudata *cpu; 3008 struct device *dev; 3009 int ret, freq; 3010 3011 dev = get_cpu_device(policy->cpu); 3012 if (!dev) 3013 return -ENODEV; 3014 3015 ret = __intel_pstate_cpu_init(policy); 3016 if (ret) 3017 return ret; 3018 3019 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; 3020 /* This reflects the intel_pstate_get_cpu_pstates() setting. */ 3021 policy->cur = policy->cpuinfo.min_freq; 3022 3023 req = kcalloc(2, sizeof(*req), GFP_KERNEL); 3024 if (!req) { 3025 ret = -ENOMEM; 3026 goto pstate_exit; 3027 } 3028 3029 cpu = all_cpu_data[policy->cpu]; 3030 3031 if (hwp_active) { 3032 u64 value; 3033 3034 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP; 3035 3036 intel_pstate_get_hwp_cap(cpu); 3037 3038 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value); 3039 WRITE_ONCE(cpu->hwp_req_cached, value); 3040 3041 cpu->epp_cached = intel_pstate_get_epp(cpu, value); 3042 } else { 3043 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY; 3044 } 3045 3046 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100); 3047 3048 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN, 3049 freq); 3050 if (ret < 0) { 3051 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret); 3052 goto free_req; 3053 } 3054 3055 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100); 3056 3057 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX, 3058 freq); 3059 if (ret < 0) { 3060 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret); 3061 goto remove_min_req; 3062 } 3063 3064 policy->driver_data = req; 3065 3066 return 0; 3067 3068 remove_min_req: 3069 freq_qos_remove_request(req); 3070 free_req: 3071 kfree(req); 3072 pstate_exit: 3073 intel_pstate_exit_perf_limits(policy); 3074 3075 return ret; 3076 } 3077 3078 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy) 3079 { 3080 struct freq_qos_request *req; 3081 3082 req = policy->driver_data; 3083 3084 freq_qos_remove_request(req + 1); 3085 freq_qos_remove_request(req); 3086 kfree(req); 3087 3088 return intel_pstate_cpu_exit(policy); 3089 } 3090 3091 static int intel_cpufreq_suspend(struct cpufreq_policy *policy) 3092 { 3093 intel_pstate_suspend(policy); 3094 3095 if (hwp_active) { 3096 struct cpudata *cpu = all_cpu_data[policy->cpu]; 3097 u64 value = READ_ONCE(cpu->hwp_req_cached); 3098 3099 /* 3100 * Clear the desired perf field in MSR_HWP_REQUEST in case 3101 * intel_cpufreq_adjust_perf() is in use and the last value 3102 * written by it may not be suitable. 3103 */ 3104 value &= ~HWP_DESIRED_PERF(~0L); 3105 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 3106 WRITE_ONCE(cpu->hwp_req_cached, value); 3107 } 3108 3109 return 0; 3110 } 3111 3112 static struct cpufreq_driver intel_cpufreq = { 3113 .flags = CPUFREQ_CONST_LOOPS, 3114 .verify = intel_cpufreq_verify_policy, 3115 .target = intel_cpufreq_target, 3116 .fast_switch = intel_cpufreq_fast_switch, 3117 .init = intel_cpufreq_cpu_init, 3118 .exit = intel_cpufreq_cpu_exit, 3119 .offline = intel_cpufreq_cpu_offline, 3120 .online = intel_pstate_cpu_online, 3121 .suspend = intel_cpufreq_suspend, 3122 .resume = intel_pstate_resume, 3123 .update_limits = intel_pstate_update_limits, 3124 .name = "intel_cpufreq", 3125 }; 3126 3127 static struct cpufreq_driver *default_driver; 3128 3129 static void intel_pstate_driver_cleanup(void) 3130 { 3131 unsigned int cpu; 3132 3133 cpus_read_lock(); 3134 for_each_online_cpu(cpu) { 3135 if (all_cpu_data[cpu]) { 3136 if (intel_pstate_driver == &intel_pstate) 3137 intel_pstate_clear_update_util_hook(cpu); 3138 3139 spin_lock(&hwp_notify_lock); 3140 kfree(all_cpu_data[cpu]); 3141 WRITE_ONCE(all_cpu_data[cpu], NULL); 3142 spin_unlock(&hwp_notify_lock); 3143 } 3144 } 3145 cpus_read_unlock(); 3146 3147 intel_pstate_driver = NULL; 3148 } 3149 3150 static int intel_pstate_register_driver(struct cpufreq_driver *driver) 3151 { 3152 int ret; 3153 3154 if (driver == &intel_pstate) 3155 intel_pstate_sysfs_expose_hwp_dynamic_boost(); 3156 3157 memset(&global, 0, sizeof(global)); 3158 global.max_perf_pct = 100; 3159 3160 intel_pstate_driver = driver; 3161 ret = cpufreq_register_driver(intel_pstate_driver); 3162 if (ret) { 3163 intel_pstate_driver_cleanup(); 3164 return ret; 3165 } 3166 3167 global.min_perf_pct = min_perf_pct_min(); 3168 3169 return 0; 3170 } 3171 3172 static ssize_t intel_pstate_show_status(char *buf) 3173 { 3174 if (!intel_pstate_driver) 3175 return sprintf(buf, "off\n"); 3176 3177 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? 3178 "active" : "passive"); 3179 } 3180 3181 static int intel_pstate_update_status(const char *buf, size_t size) 3182 { 3183 if (size == 3 && !strncmp(buf, "off", size)) { 3184 if (!intel_pstate_driver) 3185 return -EINVAL; 3186 3187 if (hwp_active) 3188 return -EBUSY; 3189 3190 cpufreq_unregister_driver(intel_pstate_driver); 3191 intel_pstate_driver_cleanup(); 3192 return 0; 3193 } 3194 3195 if (size == 6 && !strncmp(buf, "active", size)) { 3196 if (intel_pstate_driver) { 3197 if (intel_pstate_driver == &intel_pstate) 3198 return 0; 3199 3200 cpufreq_unregister_driver(intel_pstate_driver); 3201 } 3202 3203 return intel_pstate_register_driver(&intel_pstate); 3204 } 3205 3206 if (size == 7 && !strncmp(buf, "passive", size)) { 3207 if (intel_pstate_driver) { 3208 if (intel_pstate_driver == &intel_cpufreq) 3209 return 0; 3210 3211 cpufreq_unregister_driver(intel_pstate_driver); 3212 intel_pstate_sysfs_hide_hwp_dynamic_boost(); 3213 } 3214 3215 return intel_pstate_register_driver(&intel_cpufreq); 3216 } 3217 3218 return -EINVAL; 3219 } 3220 3221 static int no_load __initdata; 3222 static int no_hwp __initdata; 3223 static int hwp_only __initdata; 3224 static unsigned int force_load __initdata; 3225 3226 static int __init intel_pstate_msrs_not_valid(void) 3227 { 3228 if (!pstate_funcs.get_max(0) || 3229 !pstate_funcs.get_min(0) || 3230 !pstate_funcs.get_turbo(0)) 3231 return -ENODEV; 3232 3233 return 0; 3234 } 3235 3236 static void __init copy_cpu_funcs(struct pstate_funcs *funcs) 3237 { 3238 pstate_funcs.get_max = funcs->get_max; 3239 pstate_funcs.get_max_physical = funcs->get_max_physical; 3240 pstate_funcs.get_min = funcs->get_min; 3241 pstate_funcs.get_turbo = funcs->get_turbo; 3242 pstate_funcs.get_scaling = funcs->get_scaling; 3243 pstate_funcs.get_val = funcs->get_val; 3244 pstate_funcs.get_vid = funcs->get_vid; 3245 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift; 3246 } 3247 3248 #ifdef CONFIG_ACPI 3249 3250 static bool __init intel_pstate_no_acpi_pss(void) 3251 { 3252 int i; 3253 3254 for_each_possible_cpu(i) { 3255 acpi_status status; 3256 union acpi_object *pss; 3257 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 3258 struct acpi_processor *pr = per_cpu(processors, i); 3259 3260 if (!pr) 3261 continue; 3262 3263 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 3264 if (ACPI_FAILURE(status)) 3265 continue; 3266 3267 pss = buffer.pointer; 3268 if (pss && pss->type == ACPI_TYPE_PACKAGE) { 3269 kfree(pss); 3270 return false; 3271 } 3272 3273 kfree(pss); 3274 } 3275 3276 pr_debug("ACPI _PSS not found\n"); 3277 return true; 3278 } 3279 3280 static bool __init intel_pstate_no_acpi_pcch(void) 3281 { 3282 acpi_status status; 3283 acpi_handle handle; 3284 3285 status = acpi_get_handle(NULL, "\\_SB", &handle); 3286 if (ACPI_FAILURE(status)) 3287 goto not_found; 3288 3289 if (acpi_has_method(handle, "PCCH")) 3290 return false; 3291 3292 not_found: 3293 pr_debug("ACPI PCCH not found\n"); 3294 return true; 3295 } 3296 3297 static bool __init intel_pstate_has_acpi_ppc(void) 3298 { 3299 int i; 3300 3301 for_each_possible_cpu(i) { 3302 struct acpi_processor *pr = per_cpu(processors, i); 3303 3304 if (!pr) 3305 continue; 3306 if (acpi_has_method(pr->handle, "_PPC")) 3307 return true; 3308 } 3309 pr_debug("ACPI _PPC not found\n"); 3310 return false; 3311 } 3312 3313 enum { 3314 PSS, 3315 PPC, 3316 }; 3317 3318 /* Hardware vendor-specific info that has its own power management modes */ 3319 static struct acpi_platform_list plat_info[] __initdata = { 3320 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS}, 3321 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3322 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3323 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3324 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3325 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3326 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3327 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3328 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3329 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3330 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3331 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3332 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3333 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3334 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3335 { } /* End */ 3336 }; 3337 3338 #define BITMASK_OOB (BIT(8) | BIT(18)) 3339 3340 static bool __init intel_pstate_platform_pwr_mgmt_exists(void) 3341 { 3342 const struct x86_cpu_id *id; 3343 u64 misc_pwr; 3344 int idx; 3345 3346 id = x86_match_cpu(intel_pstate_cpu_oob_ids); 3347 if (id) { 3348 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); 3349 if (misc_pwr & BITMASK_OOB) { 3350 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n"); 3351 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n"); 3352 return true; 3353 } 3354 } 3355 3356 idx = acpi_match_platform_list(plat_info); 3357 if (idx < 0) 3358 return false; 3359 3360 switch (plat_info[idx].data) { 3361 case PSS: 3362 if (!intel_pstate_no_acpi_pss()) 3363 return false; 3364 3365 return intel_pstate_no_acpi_pcch(); 3366 case PPC: 3367 return intel_pstate_has_acpi_ppc() && !force_load; 3368 } 3369 3370 return false; 3371 } 3372 3373 static void intel_pstate_request_control_from_smm(void) 3374 { 3375 /* 3376 * It may be unsafe to request P-states control from SMM if _PPC support 3377 * has not been enabled. 3378 */ 3379 if (acpi_ppc) 3380 acpi_processor_pstate_control(); 3381 } 3382 #else /* CONFIG_ACPI not enabled */ 3383 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } 3384 static inline bool intel_pstate_has_acpi_ppc(void) { return false; } 3385 static inline void intel_pstate_request_control_from_smm(void) {} 3386 #endif /* CONFIG_ACPI */ 3387 3388 #define INTEL_PSTATE_HWP_BROADWELL 0x01 3389 3390 #define X86_MATCH_HWP(model, hwp_mode) \ 3391 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 3392 X86_FEATURE_HWP, hwp_mode) 3393 3394 static const struct x86_cpu_id hwp_support_ids[] __initconst = { 3395 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL), 3396 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL), 3397 X86_MATCH_HWP(ANY, 0), 3398 {} 3399 }; 3400 3401 static bool intel_pstate_hwp_is_enabled(void) 3402 { 3403 u64 value; 3404 3405 rdmsrl(MSR_PM_ENABLE, value); 3406 return !!(value & 0x1); 3407 } 3408 3409 static const struct x86_cpu_id intel_epp_balance_perf[] = { 3410 /* 3411 * Set EPP value as 102, this is the max suggested EPP 3412 * which can result in one core turbo frequency for 3413 * AlderLake Mobile CPUs. 3414 */ 3415 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102), 3416 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 32), 3417 {} 3418 }; 3419 3420 static int __init intel_pstate_init(void) 3421 { 3422 static struct cpudata **_all_cpu_data; 3423 const struct x86_cpu_id *id; 3424 int rc; 3425 3426 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 3427 return -ENODEV; 3428 3429 id = x86_match_cpu(hwp_support_ids); 3430 if (id) { 3431 hwp_forced = intel_pstate_hwp_is_enabled(); 3432 3433 if (hwp_forced) 3434 pr_info("HWP enabled by BIOS\n"); 3435 else if (no_load) 3436 return -ENODEV; 3437 3438 copy_cpu_funcs(&core_funcs); 3439 /* 3440 * Avoid enabling HWP for processors without EPP support, 3441 * because that means incomplete HWP implementation which is a 3442 * corner case and supporting it is generally problematic. 3443 * 3444 * If HWP is enabled already, though, there is no choice but to 3445 * deal with it. 3446 */ 3447 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) { 3448 WRITE_ONCE(hwp_active, 1); 3449 hwp_mode_bdw = id->driver_data; 3450 intel_pstate.attr = hwp_cpufreq_attrs; 3451 intel_cpufreq.attr = hwp_cpufreq_attrs; 3452 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS; 3453 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf; 3454 if (!default_driver) 3455 default_driver = &intel_pstate; 3456 3457 pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling; 3458 3459 goto hwp_cpu_matched; 3460 } 3461 pr_info("HWP not enabled\n"); 3462 } else { 3463 if (no_load) 3464 return -ENODEV; 3465 3466 id = x86_match_cpu(intel_pstate_cpu_ids); 3467 if (!id) { 3468 pr_info("CPU model not supported\n"); 3469 return -ENODEV; 3470 } 3471 3472 copy_cpu_funcs((struct pstate_funcs *)id->driver_data); 3473 } 3474 3475 if (intel_pstate_msrs_not_valid()) { 3476 pr_info("Invalid MSRs\n"); 3477 return -ENODEV; 3478 } 3479 /* Without HWP start in the passive mode. */ 3480 if (!default_driver) 3481 default_driver = &intel_cpufreq; 3482 3483 hwp_cpu_matched: 3484 /* 3485 * The Intel pstate driver will be ignored if the platform 3486 * firmware has its own power management modes. 3487 */ 3488 if (intel_pstate_platform_pwr_mgmt_exists()) { 3489 pr_info("P-states controlled by the platform\n"); 3490 return -ENODEV; 3491 } 3492 3493 if (!hwp_active && hwp_only) 3494 return -ENOTSUPP; 3495 3496 pr_info("Intel P-state driver initializing\n"); 3497 3498 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus())); 3499 if (!_all_cpu_data) 3500 return -ENOMEM; 3501 3502 WRITE_ONCE(all_cpu_data, _all_cpu_data); 3503 3504 intel_pstate_request_control_from_smm(); 3505 3506 intel_pstate_sysfs_expose_params(); 3507 3508 if (hwp_active) { 3509 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf); 3510 3511 if (id) 3512 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data; 3513 } 3514 3515 mutex_lock(&intel_pstate_driver_lock); 3516 rc = intel_pstate_register_driver(default_driver); 3517 mutex_unlock(&intel_pstate_driver_lock); 3518 if (rc) { 3519 intel_pstate_sysfs_remove(); 3520 return rc; 3521 } 3522 3523 if (hwp_active) { 3524 const struct x86_cpu_id *id; 3525 3526 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); 3527 if (id) { 3528 set_power_ctl_ee_state(false); 3529 pr_info("Disabling energy efficiency optimization\n"); 3530 } 3531 3532 pr_info("HWP enabled\n"); 3533 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 3534 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n"); 3535 } 3536 3537 return 0; 3538 } 3539 device_initcall(intel_pstate_init); 3540 3541 static int __init intel_pstate_setup(char *str) 3542 { 3543 if (!str) 3544 return -EINVAL; 3545 3546 if (!strcmp(str, "disable")) 3547 no_load = 1; 3548 else if (!strcmp(str, "active")) 3549 default_driver = &intel_pstate; 3550 else if (!strcmp(str, "passive")) 3551 default_driver = &intel_cpufreq; 3552 3553 if (!strcmp(str, "no_hwp")) 3554 no_hwp = 1; 3555 3556 if (!strcmp(str, "force")) 3557 force_load = 1; 3558 if (!strcmp(str, "hwp_only")) 3559 hwp_only = 1; 3560 if (!strcmp(str, "per_cpu_perf_limits")) 3561 per_cpu_limits = true; 3562 3563 #ifdef CONFIG_ACPI 3564 if (!strcmp(str, "support_acpi_ppc")) 3565 acpi_ppc = true; 3566 #endif 3567 3568 return 0; 3569 } 3570 early_param("intel_pstate", intel_pstate_setup); 3571 3572 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); 3573 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); 3574