1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30 
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 
35 #define BYT_RATIOS		0x66a
36 #define BYT_VIDS		0x66b
37 #define BYT_TURBO_RATIOS	0x66c
38 #define BYT_TURBO_VIDS		0x66d
39 
40 #define FRAC_BITS 8
41 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
42 #define fp_toint(X) ((X) >> FRAC_BITS)
43 
44 
45 static inline int32_t mul_fp(int32_t x, int32_t y)
46 {
47 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
48 }
49 
50 static inline int32_t div_fp(int32_t x, int32_t y)
51 {
52 	return div_s64((int64_t)x << FRAC_BITS, y);
53 }
54 
55 static inline int ceiling_fp(int32_t x)
56 {
57 	int mask, ret;
58 
59 	ret = fp_toint(x);
60 	mask = (1 << FRAC_BITS) - 1;
61 	if (x & mask)
62 		ret += 1;
63 	return ret;
64 }
65 
66 struct sample {
67 	int32_t core_pct_busy;
68 	u64 aperf;
69 	u64 mperf;
70 	int freq;
71 	ktime_t time;
72 };
73 
74 struct pstate_data {
75 	int	current_pstate;
76 	int	min_pstate;
77 	int	max_pstate;
78 	int	scaling;
79 	int	turbo_pstate;
80 };
81 
82 struct vid_data {
83 	int min;
84 	int max;
85 	int turbo;
86 	int32_t ratio;
87 };
88 
89 struct _pid {
90 	int setpoint;
91 	int32_t integral;
92 	int32_t p_gain;
93 	int32_t i_gain;
94 	int32_t d_gain;
95 	int deadband;
96 	int32_t last_err;
97 };
98 
99 struct cpudata {
100 	int cpu;
101 
102 	struct timer_list timer;
103 
104 	struct pstate_data pstate;
105 	struct vid_data vid;
106 	struct _pid pid;
107 
108 	ktime_t last_sample_time;
109 	u64	prev_aperf;
110 	u64	prev_mperf;
111 	struct sample sample;
112 };
113 
114 static struct cpudata **all_cpu_data;
115 struct pstate_adjust_policy {
116 	int sample_rate_ms;
117 	int deadband;
118 	int setpoint;
119 	int p_gain_pct;
120 	int d_gain_pct;
121 	int i_gain_pct;
122 };
123 
124 struct pstate_funcs {
125 	int (*get_max)(void);
126 	int (*get_min)(void);
127 	int (*get_turbo)(void);
128 	int (*get_scaling)(void);
129 	void (*set)(struct cpudata*, int pstate);
130 	void (*get_vid)(struct cpudata *);
131 };
132 
133 struct cpu_defaults {
134 	struct pstate_adjust_policy pid_policy;
135 	struct pstate_funcs funcs;
136 };
137 
138 static struct pstate_adjust_policy pid_params;
139 static struct pstate_funcs pstate_funcs;
140 
141 struct perf_limits {
142 	int no_turbo;
143 	int turbo_disabled;
144 	int max_perf_pct;
145 	int min_perf_pct;
146 	int32_t max_perf;
147 	int32_t min_perf;
148 	int max_policy_pct;
149 	int max_sysfs_pct;
150 };
151 
152 static struct perf_limits limits = {
153 	.no_turbo = 0,
154 	.turbo_disabled = 0,
155 	.max_perf_pct = 100,
156 	.max_perf = int_tofp(1),
157 	.min_perf_pct = 0,
158 	.min_perf = 0,
159 	.max_policy_pct = 100,
160 	.max_sysfs_pct = 100,
161 };
162 
163 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
164 			     int deadband, int integral) {
165 	pid->setpoint = setpoint;
166 	pid->deadband  = deadband;
167 	pid->integral  = int_tofp(integral);
168 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
169 }
170 
171 static inline void pid_p_gain_set(struct _pid *pid, int percent)
172 {
173 	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
174 }
175 
176 static inline void pid_i_gain_set(struct _pid *pid, int percent)
177 {
178 	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
179 }
180 
181 static inline void pid_d_gain_set(struct _pid *pid, int percent)
182 {
183 	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
184 }
185 
186 static signed int pid_calc(struct _pid *pid, int32_t busy)
187 {
188 	signed int result;
189 	int32_t pterm, dterm, fp_error;
190 	int32_t integral_limit;
191 
192 	fp_error = int_tofp(pid->setpoint) - busy;
193 
194 	if (abs(fp_error) <= int_tofp(pid->deadband))
195 		return 0;
196 
197 	pterm = mul_fp(pid->p_gain, fp_error);
198 
199 	pid->integral += fp_error;
200 
201 	/* limit the integral term */
202 	integral_limit = int_tofp(30);
203 	if (pid->integral > integral_limit)
204 		pid->integral = integral_limit;
205 	if (pid->integral < -integral_limit)
206 		pid->integral = -integral_limit;
207 
208 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
209 	pid->last_err = fp_error;
210 
211 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
212 	result = result + (1 << (FRAC_BITS-1));
213 	return (signed int)fp_toint(result);
214 }
215 
216 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
217 {
218 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
219 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
220 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
221 
222 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
223 }
224 
225 static inline void intel_pstate_reset_all_pid(void)
226 {
227 	unsigned int cpu;
228 
229 	for_each_online_cpu(cpu) {
230 		if (all_cpu_data[cpu])
231 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
232 	}
233 }
234 
235 static inline void update_turbo_state(void)
236 {
237 	u64 misc_en;
238 	struct cpudata *cpu;
239 
240 	cpu = all_cpu_data[0];
241 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
242 	limits.turbo_disabled =
243 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
244 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
245 }
246 
247 /************************** debugfs begin ************************/
248 static int pid_param_set(void *data, u64 val)
249 {
250 	*(u32 *)data = val;
251 	intel_pstate_reset_all_pid();
252 	return 0;
253 }
254 
255 static int pid_param_get(void *data, u64 *val)
256 {
257 	*val = *(u32 *)data;
258 	return 0;
259 }
260 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
261 
262 struct pid_param {
263 	char *name;
264 	void *value;
265 };
266 
267 static struct pid_param pid_files[] = {
268 	{"sample_rate_ms", &pid_params.sample_rate_ms},
269 	{"d_gain_pct", &pid_params.d_gain_pct},
270 	{"i_gain_pct", &pid_params.i_gain_pct},
271 	{"deadband", &pid_params.deadband},
272 	{"setpoint", &pid_params.setpoint},
273 	{"p_gain_pct", &pid_params.p_gain_pct},
274 	{NULL, NULL}
275 };
276 
277 static void __init intel_pstate_debug_expose_params(void)
278 {
279 	struct dentry *debugfs_parent;
280 	int i = 0;
281 
282 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
283 	if (IS_ERR_OR_NULL(debugfs_parent))
284 		return;
285 	while (pid_files[i].name) {
286 		debugfs_create_file(pid_files[i].name, 0660,
287 				    debugfs_parent, pid_files[i].value,
288 				    &fops_pid_param);
289 		i++;
290 	}
291 }
292 
293 /************************** debugfs end ************************/
294 
295 /************************** sysfs begin ************************/
296 #define show_one(file_name, object)					\
297 	static ssize_t show_##file_name					\
298 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
299 	{								\
300 		return sprintf(buf, "%u\n", limits.object);		\
301 	}
302 
303 static ssize_t show_no_turbo(struct kobject *kobj,
304 			     struct attribute *attr, char *buf)
305 {
306 	ssize_t ret;
307 
308 	update_turbo_state();
309 	if (limits.turbo_disabled)
310 		ret = sprintf(buf, "%u\n", limits.turbo_disabled);
311 	else
312 		ret = sprintf(buf, "%u\n", limits.no_turbo);
313 
314 	return ret;
315 }
316 
317 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
318 			      const char *buf, size_t count)
319 {
320 	unsigned int input;
321 	int ret;
322 
323 	ret = sscanf(buf, "%u", &input);
324 	if (ret != 1)
325 		return -EINVAL;
326 
327 	update_turbo_state();
328 	if (limits.turbo_disabled) {
329 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
330 		return -EPERM;
331 	}
332 	limits.no_turbo = clamp_t(int, input, 0, 1);
333 
334 	return count;
335 }
336 
337 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
338 				  const char *buf, size_t count)
339 {
340 	unsigned int input;
341 	int ret;
342 
343 	ret = sscanf(buf, "%u", &input);
344 	if (ret != 1)
345 		return -EINVAL;
346 
347 	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
348 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
349 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
350 
351 	return count;
352 }
353 
354 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
355 				  const char *buf, size_t count)
356 {
357 	unsigned int input;
358 	int ret;
359 
360 	ret = sscanf(buf, "%u", &input);
361 	if (ret != 1)
362 		return -EINVAL;
363 	limits.min_perf_pct = clamp_t(int, input, 0 , 100);
364 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
365 
366 	return count;
367 }
368 
369 show_one(max_perf_pct, max_perf_pct);
370 show_one(min_perf_pct, min_perf_pct);
371 
372 define_one_global_rw(no_turbo);
373 define_one_global_rw(max_perf_pct);
374 define_one_global_rw(min_perf_pct);
375 
376 static struct attribute *intel_pstate_attributes[] = {
377 	&no_turbo.attr,
378 	&max_perf_pct.attr,
379 	&min_perf_pct.attr,
380 	NULL
381 };
382 
383 static struct attribute_group intel_pstate_attr_group = {
384 	.attrs = intel_pstate_attributes,
385 };
386 
387 static void __init intel_pstate_sysfs_expose_params(void)
388 {
389 	struct kobject *intel_pstate_kobject;
390 	int rc;
391 
392 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
393 						&cpu_subsys.dev_root->kobj);
394 	BUG_ON(!intel_pstate_kobject);
395 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
396 	BUG_ON(rc);
397 }
398 
399 /************************** sysfs end ************************/
400 static int byt_get_min_pstate(void)
401 {
402 	u64 value;
403 
404 	rdmsrl(BYT_RATIOS, value);
405 	return (value >> 8) & 0x7F;
406 }
407 
408 static int byt_get_max_pstate(void)
409 {
410 	u64 value;
411 
412 	rdmsrl(BYT_RATIOS, value);
413 	return (value >> 16) & 0x7F;
414 }
415 
416 static int byt_get_turbo_pstate(void)
417 {
418 	u64 value;
419 
420 	rdmsrl(BYT_TURBO_RATIOS, value);
421 	return value & 0x7F;
422 }
423 
424 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
425 {
426 	u64 val;
427 	int32_t vid_fp;
428 	u32 vid;
429 
430 	val = pstate << 8;
431 	if (limits.no_turbo && !limits.turbo_disabled)
432 		val |= (u64)1 << 32;
433 
434 	vid_fp = cpudata->vid.min + mul_fp(
435 		int_tofp(pstate - cpudata->pstate.min_pstate),
436 		cpudata->vid.ratio);
437 
438 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
439 	vid = ceiling_fp(vid_fp);
440 
441 	if (pstate > cpudata->pstate.max_pstate)
442 		vid = cpudata->vid.turbo;
443 
444 	val |= vid;
445 
446 	wrmsrl(MSR_IA32_PERF_CTL, val);
447 }
448 
449 #define BYT_BCLK_FREQS 5
450 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
451 
452 static int byt_get_scaling(void)
453 {
454 	u64 value;
455 	int i;
456 
457 	rdmsrl(MSR_FSB_FREQ, value);
458 	i = value & 0x3;
459 
460 	BUG_ON(i > BYT_BCLK_FREQS);
461 
462 	return byt_freq_table[i] * 100;
463 }
464 
465 static void byt_get_vid(struct cpudata *cpudata)
466 {
467 	u64 value;
468 
469 	rdmsrl(BYT_VIDS, value);
470 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
471 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
472 	cpudata->vid.ratio = div_fp(
473 		cpudata->vid.max - cpudata->vid.min,
474 		int_tofp(cpudata->pstate.max_pstate -
475 			cpudata->pstate.min_pstate));
476 
477 	rdmsrl(BYT_TURBO_VIDS, value);
478 	cpudata->vid.turbo = value & 0x7f;
479 }
480 
481 static int core_get_min_pstate(void)
482 {
483 	u64 value;
484 
485 	rdmsrl(MSR_PLATFORM_INFO, value);
486 	return (value >> 40) & 0xFF;
487 }
488 
489 static int core_get_max_pstate(void)
490 {
491 	u64 value;
492 
493 	rdmsrl(MSR_PLATFORM_INFO, value);
494 	return (value >> 8) & 0xFF;
495 }
496 
497 static int core_get_turbo_pstate(void)
498 {
499 	u64 value;
500 	int nont, ret;
501 
502 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
503 	nont = core_get_max_pstate();
504 	ret = (value) & 255;
505 	if (ret <= nont)
506 		ret = nont;
507 	return ret;
508 }
509 
510 static inline int core_get_scaling(void)
511 {
512 	return 100000;
513 }
514 
515 static void core_set_pstate(struct cpudata *cpudata, int pstate)
516 {
517 	u64 val;
518 
519 	val = pstate << 8;
520 	if (limits.no_turbo && !limits.turbo_disabled)
521 		val |= (u64)1 << 32;
522 
523 	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
524 }
525 
526 static struct cpu_defaults core_params = {
527 	.pid_policy = {
528 		.sample_rate_ms = 10,
529 		.deadband = 0,
530 		.setpoint = 97,
531 		.p_gain_pct = 20,
532 		.d_gain_pct = 0,
533 		.i_gain_pct = 0,
534 	},
535 	.funcs = {
536 		.get_max = core_get_max_pstate,
537 		.get_min = core_get_min_pstate,
538 		.get_turbo = core_get_turbo_pstate,
539 		.get_scaling = core_get_scaling,
540 		.set = core_set_pstate,
541 	},
542 };
543 
544 static struct cpu_defaults byt_params = {
545 	.pid_policy = {
546 		.sample_rate_ms = 10,
547 		.deadband = 0,
548 		.setpoint = 97,
549 		.p_gain_pct = 14,
550 		.d_gain_pct = 0,
551 		.i_gain_pct = 4,
552 	},
553 	.funcs = {
554 		.get_max = byt_get_max_pstate,
555 		.get_min = byt_get_min_pstate,
556 		.get_turbo = byt_get_turbo_pstate,
557 		.set = byt_set_pstate,
558 		.get_scaling = byt_get_scaling,
559 		.get_vid = byt_get_vid,
560 	},
561 };
562 
563 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
564 {
565 	int max_perf = cpu->pstate.turbo_pstate;
566 	int max_perf_adj;
567 	int min_perf;
568 
569 	if (limits.no_turbo || limits.turbo_disabled)
570 		max_perf = cpu->pstate.max_pstate;
571 
572 	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
573 	*max = clamp_t(int, max_perf_adj,
574 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
575 
576 	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
577 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
578 }
579 
580 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
581 {
582 	int max_perf, min_perf;
583 
584 	update_turbo_state();
585 
586 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
587 
588 	pstate = clamp_t(int, pstate, min_perf, max_perf);
589 
590 	if (pstate == cpu->pstate.current_pstate)
591 		return;
592 
593 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
594 
595 	cpu->pstate.current_pstate = pstate;
596 
597 	pstate_funcs.set(cpu, pstate);
598 }
599 
600 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
601 {
602 	cpu->pstate.min_pstate = pstate_funcs.get_min();
603 	cpu->pstate.max_pstate = pstate_funcs.get_max();
604 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
605 	cpu->pstate.scaling = pstate_funcs.get_scaling();
606 
607 	if (pstate_funcs.get_vid)
608 		pstate_funcs.get_vid(cpu);
609 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
610 }
611 
612 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
613 {
614 	struct sample *sample = &cpu->sample;
615 	int64_t core_pct;
616 
617 	core_pct = int_tofp(sample->aperf) * int_tofp(100);
618 	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
619 
620 	sample->freq = fp_toint(
621 		mul_fp(int_tofp(
622 			cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
623 			core_pct));
624 
625 	sample->core_pct_busy = (int32_t)core_pct;
626 }
627 
628 static inline void intel_pstate_sample(struct cpudata *cpu)
629 {
630 	u64 aperf, mperf;
631 	unsigned long flags;
632 
633 	local_irq_save(flags);
634 	rdmsrl(MSR_IA32_APERF, aperf);
635 	rdmsrl(MSR_IA32_MPERF, mperf);
636 	local_irq_restore(flags);
637 
638 	cpu->last_sample_time = cpu->sample.time;
639 	cpu->sample.time = ktime_get();
640 	cpu->sample.aperf = aperf;
641 	cpu->sample.mperf = mperf;
642 	cpu->sample.aperf -= cpu->prev_aperf;
643 	cpu->sample.mperf -= cpu->prev_mperf;
644 
645 	intel_pstate_calc_busy(cpu);
646 
647 	cpu->prev_aperf = aperf;
648 	cpu->prev_mperf = mperf;
649 }
650 
651 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
652 {
653 	int delay;
654 
655 	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
656 	mod_timer_pinned(&cpu->timer, jiffies + delay);
657 }
658 
659 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
660 {
661 	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
662 	u32 duration_us;
663 	u32 sample_time;
664 
665 	core_busy = cpu->sample.core_pct_busy;
666 	max_pstate = int_tofp(cpu->pstate.max_pstate);
667 	current_pstate = int_tofp(cpu->pstate.current_pstate);
668 	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
669 
670 	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
671 	duration_us = (u32) ktime_us_delta(cpu->sample.time,
672 					   cpu->last_sample_time);
673 	if (duration_us > sample_time * 3) {
674 		sample_ratio = div_fp(int_tofp(sample_time),
675 				      int_tofp(duration_us));
676 		core_busy = mul_fp(core_busy, sample_ratio);
677 	}
678 
679 	return core_busy;
680 }
681 
682 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
683 {
684 	int32_t busy_scaled;
685 	struct _pid *pid;
686 	signed int ctl;
687 
688 	pid = &cpu->pid;
689 	busy_scaled = intel_pstate_get_scaled_busy(cpu);
690 
691 	ctl = pid_calc(pid, busy_scaled);
692 
693 	/* Negative values of ctl increase the pstate and vice versa */
694 	intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl);
695 }
696 
697 static void intel_pstate_timer_func(unsigned long __data)
698 {
699 	struct cpudata *cpu = (struct cpudata *) __data;
700 	struct sample *sample;
701 
702 	intel_pstate_sample(cpu);
703 
704 	sample = &cpu->sample;
705 
706 	intel_pstate_adjust_busy_pstate(cpu);
707 
708 	trace_pstate_sample(fp_toint(sample->core_pct_busy),
709 			fp_toint(intel_pstate_get_scaled_busy(cpu)),
710 			cpu->pstate.current_pstate,
711 			sample->mperf,
712 			sample->aperf,
713 			sample->freq);
714 
715 	intel_pstate_set_sample_time(cpu);
716 }
717 
718 #define ICPU(model, policy) \
719 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
720 			(unsigned long)&policy }
721 
722 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
723 	ICPU(0x2a, core_params),
724 	ICPU(0x2d, core_params),
725 	ICPU(0x37, byt_params),
726 	ICPU(0x3a, core_params),
727 	ICPU(0x3c, core_params),
728 	ICPU(0x3d, core_params),
729 	ICPU(0x3e, core_params),
730 	ICPU(0x3f, core_params),
731 	ICPU(0x45, core_params),
732 	ICPU(0x46, core_params),
733 	ICPU(0x4c, byt_params),
734 	ICPU(0x4f, core_params),
735 	ICPU(0x56, core_params),
736 	{}
737 };
738 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
739 
740 static int intel_pstate_init_cpu(unsigned int cpunum)
741 {
742 	struct cpudata *cpu;
743 
744 	if (!all_cpu_data[cpunum])
745 		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
746 					       GFP_KERNEL);
747 	if (!all_cpu_data[cpunum])
748 		return -ENOMEM;
749 
750 	cpu = all_cpu_data[cpunum];
751 
752 	cpu->cpu = cpunum;
753 	intel_pstate_get_cpu_pstates(cpu);
754 
755 	init_timer_deferrable(&cpu->timer);
756 	cpu->timer.function = intel_pstate_timer_func;
757 	cpu->timer.data = (unsigned long)cpu;
758 	cpu->timer.expires = jiffies + HZ/100;
759 	intel_pstate_busy_pid_reset(cpu);
760 	intel_pstate_sample(cpu);
761 
762 	add_timer_on(&cpu->timer, cpunum);
763 
764 	pr_debug("Intel pstate controlling: cpu %d\n", cpunum);
765 
766 	return 0;
767 }
768 
769 static unsigned int intel_pstate_get(unsigned int cpu_num)
770 {
771 	struct sample *sample;
772 	struct cpudata *cpu;
773 
774 	cpu = all_cpu_data[cpu_num];
775 	if (!cpu)
776 		return 0;
777 	sample = &cpu->sample;
778 	return sample->freq;
779 }
780 
781 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
782 {
783 	if (!policy->cpuinfo.max_freq)
784 		return -ENODEV;
785 
786 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
787 		limits.min_perf_pct = 100;
788 		limits.min_perf = int_tofp(1);
789 		limits.max_policy_pct = 100;
790 		limits.max_perf_pct = 100;
791 		limits.max_perf = int_tofp(1);
792 		limits.no_turbo = 0;
793 		return 0;
794 	}
795 	limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
796 	limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
797 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
798 
799 	limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
800 	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
801 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
802 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
803 
804 	return 0;
805 }
806 
807 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
808 {
809 	cpufreq_verify_within_cpu_limits(policy);
810 
811 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
812 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
813 		return -EINVAL;
814 
815 	return 0;
816 }
817 
818 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
819 {
820 	int cpu_num = policy->cpu;
821 	struct cpudata *cpu = all_cpu_data[cpu_num];
822 
823 	pr_info("intel_pstate CPU %d exiting\n", cpu_num);
824 
825 	del_timer_sync(&all_cpu_data[cpu_num]->timer);
826 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
827 }
828 
829 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
830 {
831 	struct cpudata *cpu;
832 	int rc;
833 
834 	rc = intel_pstate_init_cpu(policy->cpu);
835 	if (rc)
836 		return rc;
837 
838 	cpu = all_cpu_data[policy->cpu];
839 
840 	if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
841 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
842 	else
843 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
844 
845 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
846 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
847 
848 	/* cpuinfo and default policy values */
849 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
850 	policy->cpuinfo.max_freq =
851 		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
852 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
853 	cpumask_set_cpu(policy->cpu, policy->cpus);
854 
855 	return 0;
856 }
857 
858 static struct cpufreq_driver intel_pstate_driver = {
859 	.flags		= CPUFREQ_CONST_LOOPS,
860 	.verify		= intel_pstate_verify_policy,
861 	.setpolicy	= intel_pstate_set_policy,
862 	.get		= intel_pstate_get,
863 	.init		= intel_pstate_cpu_init,
864 	.stop_cpu	= intel_pstate_stop_cpu,
865 	.name		= "intel_pstate",
866 };
867 
868 static int __initdata no_load;
869 
870 static int intel_pstate_msrs_not_valid(void)
871 {
872 	/* Check that all the msr's we are using are valid. */
873 	u64 aperf, mperf, tmp;
874 
875 	rdmsrl(MSR_IA32_APERF, aperf);
876 	rdmsrl(MSR_IA32_MPERF, mperf);
877 
878 	if (!pstate_funcs.get_max() ||
879 	    !pstate_funcs.get_min() ||
880 	    !pstate_funcs.get_turbo())
881 		return -ENODEV;
882 
883 	rdmsrl(MSR_IA32_APERF, tmp);
884 	if (!(tmp - aperf))
885 		return -ENODEV;
886 
887 	rdmsrl(MSR_IA32_MPERF, tmp);
888 	if (!(tmp - mperf))
889 		return -ENODEV;
890 
891 	return 0;
892 }
893 
894 static void copy_pid_params(struct pstate_adjust_policy *policy)
895 {
896 	pid_params.sample_rate_ms = policy->sample_rate_ms;
897 	pid_params.p_gain_pct = policy->p_gain_pct;
898 	pid_params.i_gain_pct = policy->i_gain_pct;
899 	pid_params.d_gain_pct = policy->d_gain_pct;
900 	pid_params.deadband = policy->deadband;
901 	pid_params.setpoint = policy->setpoint;
902 }
903 
904 static void copy_cpu_funcs(struct pstate_funcs *funcs)
905 {
906 	pstate_funcs.get_max   = funcs->get_max;
907 	pstate_funcs.get_min   = funcs->get_min;
908 	pstate_funcs.get_turbo = funcs->get_turbo;
909 	pstate_funcs.get_scaling = funcs->get_scaling;
910 	pstate_funcs.set       = funcs->set;
911 	pstate_funcs.get_vid   = funcs->get_vid;
912 }
913 
914 #if IS_ENABLED(CONFIG_ACPI)
915 #include <acpi/processor.h>
916 
917 static bool intel_pstate_no_acpi_pss(void)
918 {
919 	int i;
920 
921 	for_each_possible_cpu(i) {
922 		acpi_status status;
923 		union acpi_object *pss;
924 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
925 		struct acpi_processor *pr = per_cpu(processors, i);
926 
927 		if (!pr)
928 			continue;
929 
930 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
931 		if (ACPI_FAILURE(status))
932 			continue;
933 
934 		pss = buffer.pointer;
935 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
936 			kfree(pss);
937 			return false;
938 		}
939 
940 		kfree(pss);
941 	}
942 
943 	return true;
944 }
945 
946 struct hw_vendor_info {
947 	u16  valid;
948 	char oem_id[ACPI_OEM_ID_SIZE];
949 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
950 };
951 
952 /* Hardware vendor-specific info that has its own power management modes */
953 static struct hw_vendor_info vendor_info[] = {
954 	{1, "HP    ", "ProLiant"},
955 	{0, "", ""},
956 };
957 
958 static bool intel_pstate_platform_pwr_mgmt_exists(void)
959 {
960 	struct acpi_table_header hdr;
961 	struct hw_vendor_info *v_info;
962 
963 	if (acpi_disabled ||
964 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
965 		return false;
966 
967 	for (v_info = vendor_info; v_info->valid; v_info++) {
968 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
969 		    !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
970 		    intel_pstate_no_acpi_pss())
971 			return true;
972 	}
973 
974 	return false;
975 }
976 #else /* CONFIG_ACPI not enabled */
977 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
978 #endif /* CONFIG_ACPI */
979 
980 static int __init intel_pstate_init(void)
981 {
982 	int cpu, rc = 0;
983 	const struct x86_cpu_id *id;
984 	struct cpu_defaults *cpu_info;
985 
986 	if (no_load)
987 		return -ENODEV;
988 
989 	id = x86_match_cpu(intel_pstate_cpu_ids);
990 	if (!id)
991 		return -ENODEV;
992 
993 	/*
994 	 * The Intel pstate driver will be ignored if the platform
995 	 * firmware has its own power management modes.
996 	 */
997 	if (intel_pstate_platform_pwr_mgmt_exists())
998 		return -ENODEV;
999 
1000 	cpu_info = (struct cpu_defaults *)id->driver_data;
1001 
1002 	copy_pid_params(&cpu_info->pid_policy);
1003 	copy_cpu_funcs(&cpu_info->funcs);
1004 
1005 	if (intel_pstate_msrs_not_valid())
1006 		return -ENODEV;
1007 
1008 	pr_info("Intel P-state driver initializing.\n");
1009 
1010 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1011 	if (!all_cpu_data)
1012 		return -ENOMEM;
1013 
1014 	rc = cpufreq_register_driver(&intel_pstate_driver);
1015 	if (rc)
1016 		goto out;
1017 
1018 	intel_pstate_debug_expose_params();
1019 	intel_pstate_sysfs_expose_params();
1020 
1021 	return rc;
1022 out:
1023 	get_online_cpus();
1024 	for_each_online_cpu(cpu) {
1025 		if (all_cpu_data[cpu]) {
1026 			del_timer_sync(&all_cpu_data[cpu]->timer);
1027 			kfree(all_cpu_data[cpu]);
1028 		}
1029 	}
1030 
1031 	put_online_cpus();
1032 	vfree(all_cpu_data);
1033 	return -ENODEV;
1034 }
1035 device_initcall(intel_pstate_init);
1036 
1037 static int __init intel_pstate_setup(char *str)
1038 {
1039 	if (!str)
1040 		return -EINVAL;
1041 
1042 	if (!strcmp(str, "disable"))
1043 		no_load = 1;
1044 	return 0;
1045 }
1046 early_param("intel_pstate", intel_pstate_setup);
1047 
1048 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1049 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1050 MODULE_LICENSE("GPL");
1051