1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * intel_pstate.c: Native P state management for Intel processors 4 * 5 * (C) Copyright 2012 Intel Corporation 6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/module.h> 14 #include <linux/ktime.h> 15 #include <linux/hrtimer.h> 16 #include <linux/tick.h> 17 #include <linux/slab.h> 18 #include <linux/sched/cpufreq.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/sysfs.h> 23 #include <linux/types.h> 24 #include <linux/fs.h> 25 #include <linux/acpi.h> 26 #include <linux/vmalloc.h> 27 #include <linux/pm_qos.h> 28 #include <trace/events/power.h> 29 30 #include <asm/cpu.h> 31 #include <asm/div64.h> 32 #include <asm/msr.h> 33 #include <asm/cpu_device_id.h> 34 #include <asm/cpufeature.h> 35 #include <asm/intel-family.h> 36 #include "../drivers/thermal/intel/thermal_interrupt.h" 37 38 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC) 39 40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000 41 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000 42 #define INTEL_CPUFREQ_TRANSITION_DELAY 500 43 44 #ifdef CONFIG_ACPI 45 #include <acpi/processor.h> 46 #include <acpi/cppc_acpi.h> 47 #endif 48 49 #define FRAC_BITS 8 50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) 51 #define fp_toint(X) ((X) >> FRAC_BITS) 52 53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3)) 54 55 #define EXT_BITS 6 56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) 57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) 58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) 59 60 static inline int32_t mul_fp(int32_t x, int32_t y) 61 { 62 return ((int64_t)x * (int64_t)y) >> FRAC_BITS; 63 } 64 65 static inline int32_t div_fp(s64 x, s64 y) 66 { 67 return div64_s64((int64_t)x << FRAC_BITS, y); 68 } 69 70 static inline int ceiling_fp(int32_t x) 71 { 72 int mask, ret; 73 74 ret = fp_toint(x); 75 mask = (1 << FRAC_BITS) - 1; 76 if (x & mask) 77 ret += 1; 78 return ret; 79 } 80 81 static inline u64 mul_ext_fp(u64 x, u64 y) 82 { 83 return (x * y) >> EXT_FRAC_BITS; 84 } 85 86 static inline u64 div_ext_fp(u64 x, u64 y) 87 { 88 return div64_u64(x << EXT_FRAC_BITS, y); 89 } 90 91 /** 92 * struct sample - Store performance sample 93 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average 94 * performance during last sample period 95 * @busy_scaled: Scaled busy value which is used to calculate next 96 * P state. This can be different than core_avg_perf 97 * to account for cpu idle period 98 * @aperf: Difference of actual performance frequency clock count 99 * read from APERF MSR between last and current sample 100 * @mperf: Difference of maximum performance frequency clock count 101 * read from MPERF MSR between last and current sample 102 * @tsc: Difference of time stamp counter between last and 103 * current sample 104 * @time: Current time from scheduler 105 * 106 * This structure is used in the cpudata structure to store performance sample 107 * data for choosing next P State. 108 */ 109 struct sample { 110 int32_t core_avg_perf; 111 int32_t busy_scaled; 112 u64 aperf; 113 u64 mperf; 114 u64 tsc; 115 u64 time; 116 }; 117 118 /** 119 * struct pstate_data - Store P state data 120 * @current_pstate: Current requested P state 121 * @min_pstate: Min P state possible for this platform 122 * @max_pstate: Max P state possible for this platform 123 * @max_pstate_physical:This is physical Max P state for a processor 124 * This can be higher than the max_pstate which can 125 * be limited by platform thermal design power limits 126 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor 127 * @scaling: Scaling factor between performance and frequency 128 * @turbo_pstate: Max Turbo P state possible for this platform 129 * @min_freq: @min_pstate frequency in cpufreq units 130 * @max_freq: @max_pstate frequency in cpufreq units 131 * @turbo_freq: @turbo_pstate frequency in cpufreq units 132 * 133 * Stores the per cpu model P state limits and current P state. 134 */ 135 struct pstate_data { 136 int current_pstate; 137 int min_pstate; 138 int max_pstate; 139 int max_pstate_physical; 140 int perf_ctl_scaling; 141 int scaling; 142 int turbo_pstate; 143 unsigned int min_freq; 144 unsigned int max_freq; 145 unsigned int turbo_freq; 146 }; 147 148 /** 149 * struct vid_data - Stores voltage information data 150 * @min: VID data for this platform corresponding to 151 * the lowest P state 152 * @max: VID data corresponding to the highest P State. 153 * @turbo: VID data for turbo P state 154 * @ratio: Ratio of (vid max - vid min) / 155 * (max P state - Min P State) 156 * 157 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) 158 * This data is used in Atom platforms, where in addition to target P state, 159 * the voltage data needs to be specified to select next P State. 160 */ 161 struct vid_data { 162 int min; 163 int max; 164 int turbo; 165 int32_t ratio; 166 }; 167 168 /** 169 * struct global_params - Global parameters, mostly tunable via sysfs. 170 * @no_turbo: Whether or not to use turbo P-states. 171 * @turbo_disabled: Whether or not turbo P-states are available at all, 172 * based on the MSR_IA32_MISC_ENABLE value and whether or 173 * not the maximum reported turbo P-state is different from 174 * the maximum reported non-turbo one. 175 * @turbo_disabled_mf: The @turbo_disabled value reflected by cpuinfo.max_freq. 176 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo 177 * P-state capacity. 178 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo 179 * P-state capacity. 180 */ 181 struct global_params { 182 bool no_turbo; 183 bool turbo_disabled; 184 bool turbo_disabled_mf; 185 int max_perf_pct; 186 int min_perf_pct; 187 }; 188 189 /** 190 * struct cpudata - Per CPU instance data storage 191 * @cpu: CPU number for this instance data 192 * @policy: CPUFreq policy value 193 * @update_util: CPUFreq utility callback information 194 * @update_util_set: CPUFreq utility callback is set 195 * @iowait_boost: iowait-related boost fraction 196 * @last_update: Time of the last update. 197 * @pstate: Stores P state limits for this CPU 198 * @vid: Stores VID limits for this CPU 199 * @last_sample_time: Last Sample time 200 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference 201 * @prev_aperf: Last APERF value read from APERF MSR 202 * @prev_mperf: Last MPERF value read from MPERF MSR 203 * @prev_tsc: Last timestamp counter (TSC) value 204 * @prev_cummulative_iowait: IO Wait time difference from last and 205 * current sample 206 * @sample: Storage for storing last Sample data 207 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios 208 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios 209 * @acpi_perf_data: Stores ACPI perf information read from _PSS 210 * @valid_pss_table: Set to true for valid ACPI _PSS entries found 211 * @epp_powersave: Last saved HWP energy performance preference 212 * (EPP) or energy performance bias (EPB), 213 * when policy switched to performance 214 * @epp_policy: Last saved policy used to set EPP/EPB 215 * @epp_default: Power on default HWP energy performance 216 * preference/bias 217 * @epp_cached Cached HWP energy-performance preference value 218 * @hwp_req_cached: Cached value of the last HWP Request MSR 219 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR 220 * @last_io_update: Last time when IO wake flag was set 221 * @sched_flags: Store scheduler flags for possible cross CPU update 222 * @hwp_boost_min: Last HWP boosted min performance 223 * @suspended: Whether or not the driver has been suspended. 224 * @hwp_notify_work: workqueue for HWP notifications. 225 * 226 * This structure stores per CPU instance data for all CPUs. 227 */ 228 struct cpudata { 229 int cpu; 230 231 unsigned int policy; 232 struct update_util_data update_util; 233 bool update_util_set; 234 235 struct pstate_data pstate; 236 struct vid_data vid; 237 238 u64 last_update; 239 u64 last_sample_time; 240 u64 aperf_mperf_shift; 241 u64 prev_aperf; 242 u64 prev_mperf; 243 u64 prev_tsc; 244 u64 prev_cummulative_iowait; 245 struct sample sample; 246 int32_t min_perf_ratio; 247 int32_t max_perf_ratio; 248 #ifdef CONFIG_ACPI 249 struct acpi_processor_performance acpi_perf_data; 250 bool valid_pss_table; 251 #endif 252 unsigned int iowait_boost; 253 s16 epp_powersave; 254 s16 epp_policy; 255 s16 epp_default; 256 s16 epp_cached; 257 u64 hwp_req_cached; 258 u64 hwp_cap_cached; 259 u64 last_io_update; 260 unsigned int sched_flags; 261 u32 hwp_boost_min; 262 bool suspended; 263 struct delayed_work hwp_notify_work; 264 }; 265 266 static struct cpudata **all_cpu_data; 267 268 /** 269 * struct pstate_funcs - Per CPU model specific callbacks 270 * @get_max: Callback to get maximum non turbo effective P state 271 * @get_max_physical: Callback to get maximum non turbo physical P state 272 * @get_min: Callback to get minimum P state 273 * @get_turbo: Callback to get turbo P state 274 * @get_scaling: Callback to get frequency scaling factor 275 * @get_cpu_scaling: Get frequency scaling factor for a given cpu 276 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference 277 * @get_val: Callback to convert P state to actual MSR write value 278 * @get_vid: Callback to get VID data for Atom platforms 279 * 280 * Core and Atom CPU models have different way to get P State limits. This 281 * structure is used to store those callbacks. 282 */ 283 struct pstate_funcs { 284 int (*get_max)(int cpu); 285 int (*get_max_physical)(int cpu); 286 int (*get_min)(int cpu); 287 int (*get_turbo)(int cpu); 288 int (*get_scaling)(void); 289 int (*get_cpu_scaling)(int cpu); 290 int (*get_aperf_mperf_shift)(void); 291 u64 (*get_val)(struct cpudata*, int pstate); 292 void (*get_vid)(struct cpudata *); 293 }; 294 295 static struct pstate_funcs pstate_funcs __read_mostly; 296 297 static int hwp_active __read_mostly; 298 static int hwp_mode_bdw __read_mostly; 299 static bool per_cpu_limits __read_mostly; 300 static bool hwp_boost __read_mostly; 301 static bool hwp_forced __read_mostly; 302 303 static struct cpufreq_driver *intel_pstate_driver __read_mostly; 304 305 #ifdef CONFIG_ACPI 306 static bool acpi_ppc; 307 #endif 308 309 static struct global_params global; 310 311 static DEFINE_MUTEX(intel_pstate_driver_lock); 312 static DEFINE_MUTEX(intel_pstate_limits_lock); 313 314 #ifdef CONFIG_ACPI 315 316 static bool intel_pstate_acpi_pm_profile_server(void) 317 { 318 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || 319 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) 320 return true; 321 322 return false; 323 } 324 325 static bool intel_pstate_get_ppc_enable_status(void) 326 { 327 if (intel_pstate_acpi_pm_profile_server()) 328 return true; 329 330 return acpi_ppc; 331 } 332 333 #ifdef CONFIG_ACPI_CPPC_LIB 334 335 /* The work item is needed to avoid CPU hotplug locking issues */ 336 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) 337 { 338 sched_set_itmt_support(); 339 } 340 341 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); 342 343 #define CPPC_MAX_PERF U8_MAX 344 345 static void intel_pstate_set_itmt_prio(int cpu) 346 { 347 struct cppc_perf_caps cppc_perf; 348 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; 349 int ret; 350 351 ret = cppc_get_perf_caps(cpu, &cppc_perf); 352 if (ret) 353 return; 354 355 /* 356 * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff. 357 * In this case we can't use CPPC.highest_perf to enable ITMT. 358 * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide. 359 */ 360 if (cppc_perf.highest_perf == CPPC_MAX_PERF) 361 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached)); 362 363 /* 364 * The priorities can be set regardless of whether or not 365 * sched_set_itmt_support(true) has been called and it is valid to 366 * update them at any time after it has been called. 367 */ 368 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); 369 370 if (max_highest_perf <= min_highest_perf) { 371 if (cppc_perf.highest_perf > max_highest_perf) 372 max_highest_perf = cppc_perf.highest_perf; 373 374 if (cppc_perf.highest_perf < min_highest_perf) 375 min_highest_perf = cppc_perf.highest_perf; 376 377 if (max_highest_perf > min_highest_perf) { 378 /* 379 * This code can be run during CPU online under the 380 * CPU hotplug locks, so sched_set_itmt_support() 381 * cannot be called from here. Queue up a work item 382 * to invoke it. 383 */ 384 schedule_work(&sched_itmt_work); 385 } 386 } 387 } 388 389 static int intel_pstate_get_cppc_guaranteed(int cpu) 390 { 391 struct cppc_perf_caps cppc_perf; 392 int ret; 393 394 ret = cppc_get_perf_caps(cpu, &cppc_perf); 395 if (ret) 396 return ret; 397 398 if (cppc_perf.guaranteed_perf) 399 return cppc_perf.guaranteed_perf; 400 401 return cppc_perf.nominal_perf; 402 } 403 #else /* CONFIG_ACPI_CPPC_LIB */ 404 static inline void intel_pstate_set_itmt_prio(int cpu) 405 { 406 } 407 #endif /* CONFIG_ACPI_CPPC_LIB */ 408 409 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 410 { 411 struct cpudata *cpu; 412 int ret; 413 int i; 414 415 if (hwp_active) { 416 intel_pstate_set_itmt_prio(policy->cpu); 417 return; 418 } 419 420 if (!intel_pstate_get_ppc_enable_status()) 421 return; 422 423 cpu = all_cpu_data[policy->cpu]; 424 425 ret = acpi_processor_register_performance(&cpu->acpi_perf_data, 426 policy->cpu); 427 if (ret) 428 return; 429 430 /* 431 * Check if the control value in _PSS is for PERF_CTL MSR, which should 432 * guarantee that the states returned by it map to the states in our 433 * list directly. 434 */ 435 if (cpu->acpi_perf_data.control_register.space_id != 436 ACPI_ADR_SPACE_FIXED_HARDWARE) 437 goto err; 438 439 /* 440 * If there is only one entry _PSS, simply ignore _PSS and continue as 441 * usual without taking _PSS into account 442 */ 443 if (cpu->acpi_perf_data.state_count < 2) 444 goto err; 445 446 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); 447 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { 448 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n", 449 (i == cpu->acpi_perf_data.state ? '*' : ' '), i, 450 (u32) cpu->acpi_perf_data.states[i].core_frequency, 451 (u32) cpu->acpi_perf_data.states[i].power, 452 (u32) cpu->acpi_perf_data.states[i].control); 453 } 454 455 cpu->valid_pss_table = true; 456 pr_debug("_PPC limits will be enforced\n"); 457 458 return; 459 460 err: 461 cpu->valid_pss_table = false; 462 acpi_processor_unregister_performance(policy->cpu); 463 } 464 465 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 466 { 467 struct cpudata *cpu; 468 469 cpu = all_cpu_data[policy->cpu]; 470 if (!cpu->valid_pss_table) 471 return; 472 473 acpi_processor_unregister_performance(policy->cpu); 474 } 475 #else /* CONFIG_ACPI */ 476 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) 477 { 478 } 479 480 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) 481 { 482 } 483 484 static inline bool intel_pstate_acpi_pm_profile_server(void) 485 { 486 return false; 487 } 488 #endif /* CONFIG_ACPI */ 489 490 #ifndef CONFIG_ACPI_CPPC_LIB 491 static inline int intel_pstate_get_cppc_guaranteed(int cpu) 492 { 493 return -ENOTSUPP; 494 } 495 #endif /* CONFIG_ACPI_CPPC_LIB */ 496 497 /** 498 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels. 499 * @cpu: Target CPU. 500 * 501 * On hybrid processors, HWP may expose more performance levels than there are 502 * P-states accessible through the PERF_CTL interface. If that happens, the 503 * scaling factor between HWP performance levels and CPU frequency will be less 504 * than the scaling factor between P-state values and CPU frequency. 505 * 506 * In that case, adjust the CPU parameters used in computations accordingly. 507 */ 508 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu) 509 { 510 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical; 511 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 512 int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu); 513 int scaling = cpu->pstate.scaling; 514 515 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys); 516 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo); 517 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling); 518 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate); 519 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate); 520 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling); 521 522 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling, 523 perf_ctl_scaling); 524 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling, 525 perf_ctl_scaling); 526 527 cpu->pstate.max_pstate_physical = 528 DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling, 529 scaling); 530 531 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling; 532 /* 533 * Cast the min P-state value retrieved via pstate_funcs.get_min() to 534 * the effective range of HWP performance levels. 535 */ 536 cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling); 537 } 538 539 static inline void update_turbo_state(void) 540 { 541 u64 misc_en; 542 struct cpudata *cpu; 543 544 cpu = all_cpu_data[0]; 545 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); 546 global.turbo_disabled = 547 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || 548 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); 549 } 550 551 static int min_perf_pct_min(void) 552 { 553 struct cpudata *cpu = all_cpu_data[0]; 554 int turbo_pstate = cpu->pstate.turbo_pstate; 555 556 return turbo_pstate ? 557 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0; 558 } 559 560 static s16 intel_pstate_get_epb(struct cpudata *cpu_data) 561 { 562 u64 epb; 563 int ret; 564 565 if (!boot_cpu_has(X86_FEATURE_EPB)) 566 return -ENXIO; 567 568 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 569 if (ret) 570 return (s16)ret; 571 572 return (s16)(epb & 0x0f); 573 } 574 575 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) 576 { 577 s16 epp; 578 579 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 580 /* 581 * When hwp_req_data is 0, means that caller didn't read 582 * MSR_HWP_REQUEST, so need to read and get EPP. 583 */ 584 if (!hwp_req_data) { 585 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, 586 &hwp_req_data); 587 if (epp) 588 return epp; 589 } 590 epp = (hwp_req_data >> 24) & 0xff; 591 } else { 592 /* When there is no EPP present, HWP uses EPB settings */ 593 epp = intel_pstate_get_epb(cpu_data); 594 } 595 596 return epp; 597 } 598 599 static int intel_pstate_set_epb(int cpu, s16 pref) 600 { 601 u64 epb; 602 int ret; 603 604 if (!boot_cpu_has(X86_FEATURE_EPB)) 605 return -ENXIO; 606 607 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); 608 if (ret) 609 return ret; 610 611 epb = (epb & ~0x0f) | pref; 612 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); 613 614 return 0; 615 } 616 617 /* 618 * EPP/EPB display strings corresponding to EPP index in the 619 * energy_perf_strings[] 620 * index String 621 *------------------------------------- 622 * 0 default 623 * 1 performance 624 * 2 balance_performance 625 * 3 balance_power 626 * 4 power 627 */ 628 629 enum energy_perf_value_index { 630 EPP_INDEX_DEFAULT = 0, 631 EPP_INDEX_PERFORMANCE, 632 EPP_INDEX_BALANCE_PERFORMANCE, 633 EPP_INDEX_BALANCE_POWERSAVE, 634 EPP_INDEX_POWERSAVE, 635 }; 636 637 static const char * const energy_perf_strings[] = { 638 [EPP_INDEX_DEFAULT] = "default", 639 [EPP_INDEX_PERFORMANCE] = "performance", 640 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance", 641 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power", 642 [EPP_INDEX_POWERSAVE] = "power", 643 NULL 644 }; 645 static unsigned int epp_values[] = { 646 [EPP_INDEX_DEFAULT] = 0, /* Unused index */ 647 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE, 648 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE, 649 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE, 650 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE, 651 }; 652 653 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp) 654 { 655 s16 epp; 656 int index = -EINVAL; 657 658 *raw_epp = 0; 659 epp = intel_pstate_get_epp(cpu_data, 0); 660 if (epp < 0) 661 return epp; 662 663 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 664 if (epp == epp_values[EPP_INDEX_PERFORMANCE]) 665 return EPP_INDEX_PERFORMANCE; 666 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE]) 667 return EPP_INDEX_BALANCE_PERFORMANCE; 668 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE]) 669 return EPP_INDEX_BALANCE_POWERSAVE; 670 if (epp == epp_values[EPP_INDEX_POWERSAVE]) 671 return EPP_INDEX_POWERSAVE; 672 *raw_epp = epp; 673 return 0; 674 } else if (boot_cpu_has(X86_FEATURE_EPB)) { 675 /* 676 * Range: 677 * 0x00-0x03 : Performance 678 * 0x04-0x07 : Balance performance 679 * 0x08-0x0B : Balance power 680 * 0x0C-0x0F : Power 681 * The EPB is a 4 bit value, but our ranges restrict the 682 * value which can be set. Here only using top two bits 683 * effectively. 684 */ 685 index = (epp >> 2) + 1; 686 } 687 688 return index; 689 } 690 691 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp) 692 { 693 int ret; 694 695 /* 696 * Use the cached HWP Request MSR value, because in the active mode the 697 * register itself may be updated by intel_pstate_hwp_boost_up() or 698 * intel_pstate_hwp_boost_down() at any time. 699 */ 700 u64 value = READ_ONCE(cpu->hwp_req_cached); 701 702 value &= ~GENMASK_ULL(31, 24); 703 value |= (u64)epp << 24; 704 /* 705 * The only other updater of hwp_req_cached in the active mode, 706 * intel_pstate_hwp_set(), is called under the same lock as this 707 * function, so it cannot run in parallel with the update below. 708 */ 709 WRITE_ONCE(cpu->hwp_req_cached, value); 710 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 711 if (!ret) 712 cpu->epp_cached = epp; 713 714 return ret; 715 } 716 717 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, 718 int pref_index, bool use_raw, 719 u32 raw_epp) 720 { 721 int epp = -EINVAL; 722 int ret; 723 724 if (!pref_index) 725 epp = cpu_data->epp_default; 726 727 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 728 if (use_raw) 729 epp = raw_epp; 730 else if (epp == -EINVAL) 731 epp = epp_values[pref_index]; 732 733 /* 734 * To avoid confusion, refuse to set EPP to any values different 735 * from 0 (performance) if the current policy is "performance", 736 * because those values would be overridden. 737 */ 738 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 739 return -EBUSY; 740 741 ret = intel_pstate_set_epp(cpu_data, epp); 742 } else { 743 if (epp == -EINVAL) 744 epp = (pref_index - 1) << 2; 745 ret = intel_pstate_set_epb(cpu_data->cpu, epp); 746 } 747 748 return ret; 749 } 750 751 static ssize_t show_energy_performance_available_preferences( 752 struct cpufreq_policy *policy, char *buf) 753 { 754 int i = 0; 755 int ret = 0; 756 757 while (energy_perf_strings[i] != NULL) 758 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); 759 760 ret += sprintf(&buf[ret], "\n"); 761 762 return ret; 763 } 764 765 cpufreq_freq_attr_ro(energy_performance_available_preferences); 766 767 static struct cpufreq_driver intel_pstate; 768 769 static ssize_t store_energy_performance_preference( 770 struct cpufreq_policy *policy, const char *buf, size_t count) 771 { 772 struct cpudata *cpu = all_cpu_data[policy->cpu]; 773 char str_preference[21]; 774 bool raw = false; 775 ssize_t ret; 776 u32 epp = 0; 777 778 ret = sscanf(buf, "%20s", str_preference); 779 if (ret != 1) 780 return -EINVAL; 781 782 ret = match_string(energy_perf_strings, -1, str_preference); 783 if (ret < 0) { 784 if (!boot_cpu_has(X86_FEATURE_HWP_EPP)) 785 return ret; 786 787 ret = kstrtouint(buf, 10, &epp); 788 if (ret) 789 return ret; 790 791 if (epp > 255) 792 return -EINVAL; 793 794 raw = true; 795 } 796 797 /* 798 * This function runs with the policy R/W semaphore held, which 799 * guarantees that the driver pointer will not change while it is 800 * running. 801 */ 802 if (!intel_pstate_driver) 803 return -EAGAIN; 804 805 mutex_lock(&intel_pstate_limits_lock); 806 807 if (intel_pstate_driver == &intel_pstate) { 808 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp); 809 } else { 810 /* 811 * In the passive mode the governor needs to be stopped on the 812 * target CPU before the EPP update and restarted after it, 813 * which is super-heavy-weight, so make sure it is worth doing 814 * upfront. 815 */ 816 if (!raw) 817 epp = ret ? epp_values[ret] : cpu->epp_default; 818 819 if (cpu->epp_cached != epp) { 820 int err; 821 822 cpufreq_stop_governor(policy); 823 ret = intel_pstate_set_epp(cpu, epp); 824 err = cpufreq_start_governor(policy); 825 if (!ret) 826 ret = err; 827 } 828 } 829 830 mutex_unlock(&intel_pstate_limits_lock); 831 832 return ret ?: count; 833 } 834 835 static ssize_t show_energy_performance_preference( 836 struct cpufreq_policy *policy, char *buf) 837 { 838 struct cpudata *cpu_data = all_cpu_data[policy->cpu]; 839 int preference, raw_epp; 840 841 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp); 842 if (preference < 0) 843 return preference; 844 845 if (raw_epp) 846 return sprintf(buf, "%d\n", raw_epp); 847 else 848 return sprintf(buf, "%s\n", energy_perf_strings[preference]); 849 } 850 851 cpufreq_freq_attr_rw(energy_performance_preference); 852 853 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf) 854 { 855 struct cpudata *cpu = all_cpu_data[policy->cpu]; 856 int ratio, freq; 857 858 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu); 859 if (ratio <= 0) { 860 u64 cap; 861 862 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap); 863 ratio = HWP_GUARANTEED_PERF(cap); 864 } 865 866 freq = ratio * cpu->pstate.scaling; 867 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling) 868 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling); 869 870 return sprintf(buf, "%d\n", freq); 871 } 872 873 cpufreq_freq_attr_ro(base_frequency); 874 875 static struct freq_attr *hwp_cpufreq_attrs[] = { 876 &energy_performance_preference, 877 &energy_performance_available_preferences, 878 &base_frequency, 879 NULL, 880 }; 881 882 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu) 883 { 884 u64 cap; 885 886 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap); 887 WRITE_ONCE(cpu->hwp_cap_cached, cap); 888 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap); 889 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap); 890 } 891 892 static void intel_pstate_get_hwp_cap(struct cpudata *cpu) 893 { 894 int scaling = cpu->pstate.scaling; 895 896 __intel_pstate_get_hwp_cap(cpu); 897 898 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling; 899 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling; 900 if (scaling != cpu->pstate.perf_ctl_scaling) { 901 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 902 903 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq, 904 perf_ctl_scaling); 905 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq, 906 perf_ctl_scaling); 907 } 908 } 909 910 static void intel_pstate_hwp_set(unsigned int cpu) 911 { 912 struct cpudata *cpu_data = all_cpu_data[cpu]; 913 int max, min; 914 u64 value; 915 s16 epp; 916 917 max = cpu_data->max_perf_ratio; 918 min = cpu_data->min_perf_ratio; 919 920 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) 921 min = max; 922 923 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); 924 925 value &= ~HWP_MIN_PERF(~0L); 926 value |= HWP_MIN_PERF(min); 927 928 value &= ~HWP_MAX_PERF(~0L); 929 value |= HWP_MAX_PERF(max); 930 931 if (cpu_data->epp_policy == cpu_data->policy) 932 goto skip_epp; 933 934 cpu_data->epp_policy = cpu_data->policy; 935 936 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { 937 epp = intel_pstate_get_epp(cpu_data, value); 938 cpu_data->epp_powersave = epp; 939 /* If EPP read was failed, then don't try to write */ 940 if (epp < 0) 941 goto skip_epp; 942 943 epp = 0; 944 } else { 945 /* skip setting EPP, when saved value is invalid */ 946 if (cpu_data->epp_powersave < 0) 947 goto skip_epp; 948 949 /* 950 * No need to restore EPP when it is not zero. This 951 * means: 952 * - Policy is not changed 953 * - user has manually changed 954 * - Error reading EPB 955 */ 956 epp = intel_pstate_get_epp(cpu_data, value); 957 if (epp) 958 goto skip_epp; 959 960 epp = cpu_data->epp_powersave; 961 } 962 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 963 value &= ~GENMASK_ULL(31, 24); 964 value |= (u64)epp << 24; 965 } else { 966 intel_pstate_set_epb(cpu, epp); 967 } 968 skip_epp: 969 WRITE_ONCE(cpu_data->hwp_req_cached, value); 970 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); 971 } 972 973 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata); 974 975 static void intel_pstate_hwp_offline(struct cpudata *cpu) 976 { 977 u64 value = READ_ONCE(cpu->hwp_req_cached); 978 int min_perf; 979 980 intel_pstate_disable_hwp_interrupt(cpu); 981 982 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) { 983 /* 984 * In case the EPP has been set to "performance" by the 985 * active mode "performance" scaling algorithm, replace that 986 * temporary value with the cached EPP one. 987 */ 988 value &= ~GENMASK_ULL(31, 24); 989 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached); 990 /* 991 * However, make sure that EPP will be set to "performance" when 992 * the CPU is brought back online again and the "performance" 993 * scaling algorithm is still in effect. 994 */ 995 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN; 996 } 997 998 /* 999 * Clear the desired perf field in the cached HWP request value to 1000 * prevent nonzero desired values from being leaked into the active 1001 * mode. 1002 */ 1003 value &= ~HWP_DESIRED_PERF(~0L); 1004 WRITE_ONCE(cpu->hwp_req_cached, value); 1005 1006 value &= ~GENMASK_ULL(31, 0); 1007 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached)); 1008 1009 /* Set hwp_max = hwp_min */ 1010 value |= HWP_MAX_PERF(min_perf); 1011 value |= HWP_MIN_PERF(min_perf); 1012 1013 /* Set EPP to min */ 1014 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) 1015 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE); 1016 1017 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 1018 } 1019 1020 #define POWER_CTL_EE_ENABLE 1 1021 #define POWER_CTL_EE_DISABLE 2 1022 1023 static int power_ctl_ee_state; 1024 1025 static void set_power_ctl_ee_state(bool input) 1026 { 1027 u64 power_ctl; 1028 1029 mutex_lock(&intel_pstate_driver_lock); 1030 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 1031 if (input) { 1032 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE); 1033 power_ctl_ee_state = POWER_CTL_EE_ENABLE; 1034 } else { 1035 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); 1036 power_ctl_ee_state = POWER_CTL_EE_DISABLE; 1037 } 1038 wrmsrl(MSR_IA32_POWER_CTL, power_ctl); 1039 mutex_unlock(&intel_pstate_driver_lock); 1040 } 1041 1042 static void intel_pstate_hwp_enable(struct cpudata *cpudata); 1043 1044 static void intel_pstate_hwp_reenable(struct cpudata *cpu) 1045 { 1046 intel_pstate_hwp_enable(cpu); 1047 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached)); 1048 } 1049 1050 static int intel_pstate_suspend(struct cpufreq_policy *policy) 1051 { 1052 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1053 1054 pr_debug("CPU %d suspending\n", cpu->cpu); 1055 1056 cpu->suspended = true; 1057 1058 /* disable HWP interrupt and cancel any pending work */ 1059 intel_pstate_disable_hwp_interrupt(cpu); 1060 1061 return 0; 1062 } 1063 1064 static int intel_pstate_resume(struct cpufreq_policy *policy) 1065 { 1066 struct cpudata *cpu = all_cpu_data[policy->cpu]; 1067 1068 pr_debug("CPU %d resuming\n", cpu->cpu); 1069 1070 /* Only restore if the system default is changed */ 1071 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE) 1072 set_power_ctl_ee_state(true); 1073 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE) 1074 set_power_ctl_ee_state(false); 1075 1076 if (cpu->suspended && hwp_active) { 1077 mutex_lock(&intel_pstate_limits_lock); 1078 1079 /* Re-enable HWP, because "online" has not done that. */ 1080 intel_pstate_hwp_reenable(cpu); 1081 1082 mutex_unlock(&intel_pstate_limits_lock); 1083 } 1084 1085 cpu->suspended = false; 1086 1087 return 0; 1088 } 1089 1090 static void intel_pstate_update_policies(void) 1091 { 1092 int cpu; 1093 1094 for_each_possible_cpu(cpu) 1095 cpufreq_update_policy(cpu); 1096 } 1097 1098 static void __intel_pstate_update_max_freq(struct cpudata *cpudata, 1099 struct cpufreq_policy *policy) 1100 { 1101 policy->cpuinfo.max_freq = global.turbo_disabled_mf ? 1102 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq; 1103 refresh_frequency_limits(policy); 1104 } 1105 1106 static void intel_pstate_update_max_freq(unsigned int cpu) 1107 { 1108 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 1109 1110 if (!policy) 1111 return; 1112 1113 __intel_pstate_update_max_freq(all_cpu_data[cpu], policy); 1114 1115 cpufreq_cpu_release(policy); 1116 } 1117 1118 static void intel_pstate_update_limits(unsigned int cpu) 1119 { 1120 mutex_lock(&intel_pstate_driver_lock); 1121 1122 update_turbo_state(); 1123 /* 1124 * If turbo has been turned on or off globally, policy limits for 1125 * all CPUs need to be updated to reflect that. 1126 */ 1127 if (global.turbo_disabled_mf != global.turbo_disabled) { 1128 global.turbo_disabled_mf = global.turbo_disabled; 1129 arch_set_max_freq_ratio(global.turbo_disabled); 1130 for_each_possible_cpu(cpu) 1131 intel_pstate_update_max_freq(cpu); 1132 } else { 1133 cpufreq_update_policy(cpu); 1134 } 1135 1136 mutex_unlock(&intel_pstate_driver_lock); 1137 } 1138 1139 /************************** sysfs begin ************************/ 1140 #define show_one(file_name, object) \ 1141 static ssize_t show_##file_name \ 1142 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \ 1143 { \ 1144 return sprintf(buf, "%u\n", global.object); \ 1145 } 1146 1147 static ssize_t intel_pstate_show_status(char *buf); 1148 static int intel_pstate_update_status(const char *buf, size_t size); 1149 1150 static ssize_t show_status(struct kobject *kobj, 1151 struct kobj_attribute *attr, char *buf) 1152 { 1153 ssize_t ret; 1154 1155 mutex_lock(&intel_pstate_driver_lock); 1156 ret = intel_pstate_show_status(buf); 1157 mutex_unlock(&intel_pstate_driver_lock); 1158 1159 return ret; 1160 } 1161 1162 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b, 1163 const char *buf, size_t count) 1164 { 1165 char *p = memchr(buf, '\n', count); 1166 int ret; 1167 1168 mutex_lock(&intel_pstate_driver_lock); 1169 ret = intel_pstate_update_status(buf, p ? p - buf : count); 1170 mutex_unlock(&intel_pstate_driver_lock); 1171 1172 return ret < 0 ? ret : count; 1173 } 1174 1175 static ssize_t show_turbo_pct(struct kobject *kobj, 1176 struct kobj_attribute *attr, char *buf) 1177 { 1178 struct cpudata *cpu; 1179 int total, no_turbo, turbo_pct; 1180 uint32_t turbo_fp; 1181 1182 mutex_lock(&intel_pstate_driver_lock); 1183 1184 if (!intel_pstate_driver) { 1185 mutex_unlock(&intel_pstate_driver_lock); 1186 return -EAGAIN; 1187 } 1188 1189 cpu = all_cpu_data[0]; 1190 1191 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1192 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; 1193 turbo_fp = div_fp(no_turbo, total); 1194 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); 1195 1196 mutex_unlock(&intel_pstate_driver_lock); 1197 1198 return sprintf(buf, "%u\n", turbo_pct); 1199 } 1200 1201 static ssize_t show_num_pstates(struct kobject *kobj, 1202 struct kobj_attribute *attr, char *buf) 1203 { 1204 struct cpudata *cpu; 1205 int total; 1206 1207 mutex_lock(&intel_pstate_driver_lock); 1208 1209 if (!intel_pstate_driver) { 1210 mutex_unlock(&intel_pstate_driver_lock); 1211 return -EAGAIN; 1212 } 1213 1214 cpu = all_cpu_data[0]; 1215 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; 1216 1217 mutex_unlock(&intel_pstate_driver_lock); 1218 1219 return sprintf(buf, "%u\n", total); 1220 } 1221 1222 static ssize_t show_no_turbo(struct kobject *kobj, 1223 struct kobj_attribute *attr, char *buf) 1224 { 1225 ssize_t ret; 1226 1227 mutex_lock(&intel_pstate_driver_lock); 1228 1229 if (!intel_pstate_driver) { 1230 mutex_unlock(&intel_pstate_driver_lock); 1231 return -EAGAIN; 1232 } 1233 1234 update_turbo_state(); 1235 if (global.turbo_disabled) 1236 ret = sprintf(buf, "%u\n", global.turbo_disabled); 1237 else 1238 ret = sprintf(buf, "%u\n", global.no_turbo); 1239 1240 mutex_unlock(&intel_pstate_driver_lock); 1241 1242 return ret; 1243 } 1244 1245 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b, 1246 const char *buf, size_t count) 1247 { 1248 unsigned int input; 1249 int ret; 1250 1251 ret = sscanf(buf, "%u", &input); 1252 if (ret != 1) 1253 return -EINVAL; 1254 1255 mutex_lock(&intel_pstate_driver_lock); 1256 1257 if (!intel_pstate_driver) { 1258 mutex_unlock(&intel_pstate_driver_lock); 1259 return -EAGAIN; 1260 } 1261 1262 mutex_lock(&intel_pstate_limits_lock); 1263 1264 update_turbo_state(); 1265 if (global.turbo_disabled) { 1266 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n"); 1267 mutex_unlock(&intel_pstate_limits_lock); 1268 mutex_unlock(&intel_pstate_driver_lock); 1269 return -EPERM; 1270 } 1271 1272 global.no_turbo = clamp_t(int, input, 0, 1); 1273 1274 if (global.no_turbo) { 1275 struct cpudata *cpu = all_cpu_data[0]; 1276 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate; 1277 1278 /* Squash the global minimum into the permitted range. */ 1279 if (global.min_perf_pct > pct) 1280 global.min_perf_pct = pct; 1281 } 1282 1283 mutex_unlock(&intel_pstate_limits_lock); 1284 1285 intel_pstate_update_policies(); 1286 arch_set_max_freq_ratio(global.no_turbo); 1287 1288 mutex_unlock(&intel_pstate_driver_lock); 1289 1290 return count; 1291 } 1292 1293 static void update_qos_request(enum freq_qos_req_type type) 1294 { 1295 struct freq_qos_request *req; 1296 struct cpufreq_policy *policy; 1297 int i; 1298 1299 for_each_possible_cpu(i) { 1300 struct cpudata *cpu = all_cpu_data[i]; 1301 unsigned int freq, perf_pct; 1302 1303 policy = cpufreq_cpu_get(i); 1304 if (!policy) 1305 continue; 1306 1307 req = policy->driver_data; 1308 cpufreq_cpu_put(policy); 1309 1310 if (!req) 1311 continue; 1312 1313 if (hwp_active) 1314 intel_pstate_get_hwp_cap(cpu); 1315 1316 if (type == FREQ_QOS_MIN) { 1317 perf_pct = global.min_perf_pct; 1318 } else { 1319 req++; 1320 perf_pct = global.max_perf_pct; 1321 } 1322 1323 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100); 1324 1325 if (freq_qos_update_request(req, freq) < 0) 1326 pr_warn("Failed to update freq constraint: CPU%d\n", i); 1327 } 1328 } 1329 1330 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b, 1331 const char *buf, size_t count) 1332 { 1333 unsigned int input; 1334 int ret; 1335 1336 ret = sscanf(buf, "%u", &input); 1337 if (ret != 1) 1338 return -EINVAL; 1339 1340 mutex_lock(&intel_pstate_driver_lock); 1341 1342 if (!intel_pstate_driver) { 1343 mutex_unlock(&intel_pstate_driver_lock); 1344 return -EAGAIN; 1345 } 1346 1347 mutex_lock(&intel_pstate_limits_lock); 1348 1349 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100); 1350 1351 mutex_unlock(&intel_pstate_limits_lock); 1352 1353 if (intel_pstate_driver == &intel_pstate) 1354 intel_pstate_update_policies(); 1355 else 1356 update_qos_request(FREQ_QOS_MAX); 1357 1358 mutex_unlock(&intel_pstate_driver_lock); 1359 1360 return count; 1361 } 1362 1363 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b, 1364 const char *buf, size_t count) 1365 { 1366 unsigned int input; 1367 int ret; 1368 1369 ret = sscanf(buf, "%u", &input); 1370 if (ret != 1) 1371 return -EINVAL; 1372 1373 mutex_lock(&intel_pstate_driver_lock); 1374 1375 if (!intel_pstate_driver) { 1376 mutex_unlock(&intel_pstate_driver_lock); 1377 return -EAGAIN; 1378 } 1379 1380 mutex_lock(&intel_pstate_limits_lock); 1381 1382 global.min_perf_pct = clamp_t(int, input, 1383 min_perf_pct_min(), global.max_perf_pct); 1384 1385 mutex_unlock(&intel_pstate_limits_lock); 1386 1387 if (intel_pstate_driver == &intel_pstate) 1388 intel_pstate_update_policies(); 1389 else 1390 update_qos_request(FREQ_QOS_MIN); 1391 1392 mutex_unlock(&intel_pstate_driver_lock); 1393 1394 return count; 1395 } 1396 1397 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj, 1398 struct kobj_attribute *attr, char *buf) 1399 { 1400 return sprintf(buf, "%u\n", hwp_boost); 1401 } 1402 1403 static ssize_t store_hwp_dynamic_boost(struct kobject *a, 1404 struct kobj_attribute *b, 1405 const char *buf, size_t count) 1406 { 1407 unsigned int input; 1408 int ret; 1409 1410 ret = kstrtouint(buf, 10, &input); 1411 if (ret) 1412 return ret; 1413 1414 mutex_lock(&intel_pstate_driver_lock); 1415 hwp_boost = !!input; 1416 intel_pstate_update_policies(); 1417 mutex_unlock(&intel_pstate_driver_lock); 1418 1419 return count; 1420 } 1421 1422 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr, 1423 char *buf) 1424 { 1425 u64 power_ctl; 1426 int enable; 1427 1428 rdmsrl(MSR_IA32_POWER_CTL, power_ctl); 1429 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE)); 1430 return sprintf(buf, "%d\n", !enable); 1431 } 1432 1433 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b, 1434 const char *buf, size_t count) 1435 { 1436 bool input; 1437 int ret; 1438 1439 ret = kstrtobool(buf, &input); 1440 if (ret) 1441 return ret; 1442 1443 set_power_ctl_ee_state(input); 1444 1445 return count; 1446 } 1447 1448 show_one(max_perf_pct, max_perf_pct); 1449 show_one(min_perf_pct, min_perf_pct); 1450 1451 define_one_global_rw(status); 1452 define_one_global_rw(no_turbo); 1453 define_one_global_rw(max_perf_pct); 1454 define_one_global_rw(min_perf_pct); 1455 define_one_global_ro(turbo_pct); 1456 define_one_global_ro(num_pstates); 1457 define_one_global_rw(hwp_dynamic_boost); 1458 define_one_global_rw(energy_efficiency); 1459 1460 static struct attribute *intel_pstate_attributes[] = { 1461 &status.attr, 1462 &no_turbo.attr, 1463 NULL 1464 }; 1465 1466 static const struct attribute_group intel_pstate_attr_group = { 1467 .attrs = intel_pstate_attributes, 1468 }; 1469 1470 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[]; 1471 1472 static struct kobject *intel_pstate_kobject; 1473 1474 static void __init intel_pstate_sysfs_expose_params(void) 1475 { 1476 struct device *dev_root = bus_get_dev_root(&cpu_subsys); 1477 int rc; 1478 1479 if (dev_root) { 1480 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj); 1481 put_device(dev_root); 1482 } 1483 if (WARN_ON(!intel_pstate_kobject)) 1484 return; 1485 1486 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); 1487 if (WARN_ON(rc)) 1488 return; 1489 1490 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 1491 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr); 1492 WARN_ON(rc); 1493 1494 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr); 1495 WARN_ON(rc); 1496 } 1497 1498 /* 1499 * If per cpu limits are enforced there are no global limits, so 1500 * return without creating max/min_perf_pct attributes 1501 */ 1502 if (per_cpu_limits) 1503 return; 1504 1505 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); 1506 WARN_ON(rc); 1507 1508 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); 1509 WARN_ON(rc); 1510 1511 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) { 1512 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr); 1513 WARN_ON(rc); 1514 } 1515 } 1516 1517 static void __init intel_pstate_sysfs_remove(void) 1518 { 1519 if (!intel_pstate_kobject) 1520 return; 1521 1522 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group); 1523 1524 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 1525 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr); 1526 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr); 1527 } 1528 1529 if (!per_cpu_limits) { 1530 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr); 1531 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr); 1532 1533 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) 1534 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr); 1535 } 1536 1537 kobject_put(intel_pstate_kobject); 1538 } 1539 1540 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void) 1541 { 1542 int rc; 1543 1544 if (!hwp_active) 1545 return; 1546 1547 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1548 WARN_ON_ONCE(rc); 1549 } 1550 1551 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void) 1552 { 1553 if (!hwp_active) 1554 return; 1555 1556 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr); 1557 } 1558 1559 /************************** sysfs end ************************/ 1560 1561 static void intel_pstate_notify_work(struct work_struct *work) 1562 { 1563 struct cpudata *cpudata = 1564 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work); 1565 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu); 1566 1567 if (policy) { 1568 intel_pstate_get_hwp_cap(cpudata); 1569 __intel_pstate_update_max_freq(cpudata, policy); 1570 1571 cpufreq_cpu_release(policy); 1572 } 1573 1574 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); 1575 } 1576 1577 static DEFINE_SPINLOCK(hwp_notify_lock); 1578 static cpumask_t hwp_intr_enable_mask; 1579 1580 void notify_hwp_interrupt(void) 1581 { 1582 unsigned int this_cpu = smp_processor_id(); 1583 struct cpudata *cpudata; 1584 unsigned long flags; 1585 u64 value; 1586 1587 if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1588 return; 1589 1590 rdmsrl_safe(MSR_HWP_STATUS, &value); 1591 if (!(value & 0x01)) 1592 return; 1593 1594 spin_lock_irqsave(&hwp_notify_lock, flags); 1595 1596 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask)) 1597 goto ack_intr; 1598 1599 /* 1600 * Currently we never free all_cpu_data. And we can't reach here 1601 * without this allocated. But for safety for future changes, added 1602 * check. 1603 */ 1604 if (unlikely(!READ_ONCE(all_cpu_data))) 1605 goto ack_intr; 1606 1607 /* 1608 * The free is done during cleanup, when cpufreq registry is failed. 1609 * We wouldn't be here if it fails on init or switch status. But for 1610 * future changes, added check. 1611 */ 1612 cpudata = READ_ONCE(all_cpu_data[this_cpu]); 1613 if (unlikely(!cpudata)) 1614 goto ack_intr; 1615 1616 schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10)); 1617 1618 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1619 1620 return; 1621 1622 ack_intr: 1623 wrmsrl_safe(MSR_HWP_STATUS, 0); 1624 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1625 } 1626 1627 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata) 1628 { 1629 unsigned long flags; 1630 1631 if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1632 return; 1633 1634 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ 1635 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1636 1637 spin_lock_irqsave(&hwp_notify_lock, flags); 1638 if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask)) 1639 cancel_delayed_work(&cpudata->hwp_notify_work); 1640 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1641 } 1642 1643 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata) 1644 { 1645 /* Enable HWP notification interrupt for guaranteed performance change */ 1646 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) { 1647 unsigned long flags; 1648 1649 spin_lock_irqsave(&hwp_notify_lock, flags); 1650 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work); 1651 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask); 1652 spin_unlock_irqrestore(&hwp_notify_lock, flags); 1653 1654 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */ 1655 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01); 1656 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0); 1657 } 1658 } 1659 1660 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata) 1661 { 1662 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); 1663 1664 /* 1665 * If this CPU gen doesn't call for change in balance_perf 1666 * EPP return. 1667 */ 1668 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE) 1669 return; 1670 1671 /* 1672 * If the EPP is set by firmware, which means that firmware enabled HWP 1673 * - Is equal or less than 0x80 (default balance_perf EPP) 1674 * - But less performance oriented than performance EPP 1675 * then use this as new balance_perf EPP. 1676 */ 1677 if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE && 1678 cpudata->epp_default > HWP_EPP_PERFORMANCE) { 1679 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default; 1680 return; 1681 } 1682 1683 /* 1684 * Use hard coded value per gen to update the balance_perf 1685 * and default EPP. 1686 */ 1687 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE]; 1688 intel_pstate_set_epp(cpudata, cpudata->epp_default); 1689 } 1690 1691 static void intel_pstate_hwp_enable(struct cpudata *cpudata) 1692 { 1693 /* First disable HWP notification interrupt till we activate again */ 1694 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) 1695 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); 1696 1697 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); 1698 1699 intel_pstate_enable_hwp_interrupt(cpudata); 1700 1701 if (cpudata->epp_default >= 0) 1702 return; 1703 1704 intel_pstate_update_epp_defaults(cpudata); 1705 } 1706 1707 static int atom_get_min_pstate(int not_used) 1708 { 1709 u64 value; 1710 1711 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1712 return (value >> 8) & 0x7F; 1713 } 1714 1715 static int atom_get_max_pstate(int not_used) 1716 { 1717 u64 value; 1718 1719 rdmsrl(MSR_ATOM_CORE_RATIOS, value); 1720 return (value >> 16) & 0x7F; 1721 } 1722 1723 static int atom_get_turbo_pstate(int not_used) 1724 { 1725 u64 value; 1726 1727 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value); 1728 return value & 0x7F; 1729 } 1730 1731 static u64 atom_get_val(struct cpudata *cpudata, int pstate) 1732 { 1733 u64 val; 1734 int32_t vid_fp; 1735 u32 vid; 1736 1737 val = (u64)pstate << 8; 1738 if (global.no_turbo && !global.turbo_disabled) 1739 val |= (u64)1 << 32; 1740 1741 vid_fp = cpudata->vid.min + mul_fp( 1742 int_tofp(pstate - cpudata->pstate.min_pstate), 1743 cpudata->vid.ratio); 1744 1745 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); 1746 vid = ceiling_fp(vid_fp); 1747 1748 if (pstate > cpudata->pstate.max_pstate) 1749 vid = cpudata->vid.turbo; 1750 1751 return val | vid; 1752 } 1753 1754 static int silvermont_get_scaling(void) 1755 { 1756 u64 value; 1757 int i; 1758 /* Defined in Table 35-6 from SDM (Sept 2015) */ 1759 static int silvermont_freq_table[] = { 1760 83300, 100000, 133300, 116700, 80000}; 1761 1762 rdmsrl(MSR_FSB_FREQ, value); 1763 i = value & 0x7; 1764 WARN_ON(i > 4); 1765 1766 return silvermont_freq_table[i]; 1767 } 1768 1769 static int airmont_get_scaling(void) 1770 { 1771 u64 value; 1772 int i; 1773 /* Defined in Table 35-10 from SDM (Sept 2015) */ 1774 static int airmont_freq_table[] = { 1775 83300, 100000, 133300, 116700, 80000, 1776 93300, 90000, 88900, 87500}; 1777 1778 rdmsrl(MSR_FSB_FREQ, value); 1779 i = value & 0xF; 1780 WARN_ON(i > 8); 1781 1782 return airmont_freq_table[i]; 1783 } 1784 1785 static void atom_get_vid(struct cpudata *cpudata) 1786 { 1787 u64 value; 1788 1789 rdmsrl(MSR_ATOM_CORE_VIDS, value); 1790 cpudata->vid.min = int_tofp((value >> 8) & 0x7f); 1791 cpudata->vid.max = int_tofp((value >> 16) & 0x7f); 1792 cpudata->vid.ratio = div_fp( 1793 cpudata->vid.max - cpudata->vid.min, 1794 int_tofp(cpudata->pstate.max_pstate - 1795 cpudata->pstate.min_pstate)); 1796 1797 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value); 1798 cpudata->vid.turbo = value & 0x7f; 1799 } 1800 1801 static int core_get_min_pstate(int cpu) 1802 { 1803 u64 value; 1804 1805 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value); 1806 return (value >> 40) & 0xFF; 1807 } 1808 1809 static int core_get_max_pstate_physical(int cpu) 1810 { 1811 u64 value; 1812 1813 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value); 1814 return (value >> 8) & 0xFF; 1815 } 1816 1817 static int core_get_tdp_ratio(int cpu, u64 plat_info) 1818 { 1819 /* Check how many TDP levels present */ 1820 if (plat_info & 0x600000000) { 1821 u64 tdp_ctrl; 1822 u64 tdp_ratio; 1823 int tdp_msr; 1824 int err; 1825 1826 /* Get the TDP level (0, 1, 2) to get ratios */ 1827 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); 1828 if (err) 1829 return err; 1830 1831 /* TDP MSR are continuous starting at 0x648 */ 1832 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); 1833 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio); 1834 if (err) 1835 return err; 1836 1837 /* For level 1 and 2, bits[23:16] contain the ratio */ 1838 if (tdp_ctrl & 0x03) 1839 tdp_ratio >>= 16; 1840 1841 tdp_ratio &= 0xff; /* ratios are only 8 bits long */ 1842 pr_debug("tdp_ratio %x\n", (int)tdp_ratio); 1843 1844 return (int)tdp_ratio; 1845 } 1846 1847 return -ENXIO; 1848 } 1849 1850 static int core_get_max_pstate(int cpu) 1851 { 1852 u64 tar; 1853 u64 plat_info; 1854 int max_pstate; 1855 int tdp_ratio; 1856 int err; 1857 1858 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info); 1859 max_pstate = (plat_info >> 8) & 0xFF; 1860 1861 tdp_ratio = core_get_tdp_ratio(cpu, plat_info); 1862 if (tdp_ratio <= 0) 1863 return max_pstate; 1864 1865 if (hwp_active) { 1866 /* Turbo activation ratio is not used on HWP platforms */ 1867 return tdp_ratio; 1868 } 1869 1870 err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar); 1871 if (!err) { 1872 int tar_levels; 1873 1874 /* Do some sanity checking for safety */ 1875 tar_levels = tar & 0xff; 1876 if (tdp_ratio - 1 == tar_levels) { 1877 max_pstate = tar_levels; 1878 pr_debug("max_pstate=TAC %x\n", max_pstate); 1879 } 1880 } 1881 1882 return max_pstate; 1883 } 1884 1885 static int core_get_turbo_pstate(int cpu) 1886 { 1887 u64 value; 1888 int nont, ret; 1889 1890 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); 1891 nont = core_get_max_pstate(cpu); 1892 ret = (value) & 255; 1893 if (ret <= nont) 1894 ret = nont; 1895 return ret; 1896 } 1897 1898 static inline int core_get_scaling(void) 1899 { 1900 return 100000; 1901 } 1902 1903 static u64 core_get_val(struct cpudata *cpudata, int pstate) 1904 { 1905 u64 val; 1906 1907 val = (u64)pstate << 8; 1908 if (global.no_turbo && !global.turbo_disabled) 1909 val |= (u64)1 << 32; 1910 1911 return val; 1912 } 1913 1914 static int knl_get_aperf_mperf_shift(void) 1915 { 1916 return 10; 1917 } 1918 1919 static int knl_get_turbo_pstate(int cpu) 1920 { 1921 u64 value; 1922 int nont, ret; 1923 1924 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value); 1925 nont = core_get_max_pstate(cpu); 1926 ret = (((value) >> 8) & 0xFF); 1927 if (ret <= nont) 1928 ret = nont; 1929 return ret; 1930 } 1931 1932 static void hybrid_get_type(void *data) 1933 { 1934 u8 *cpu_type = data; 1935 1936 *cpu_type = get_this_hybrid_cpu_type(); 1937 } 1938 1939 static int hybrid_get_cpu_scaling(int cpu) 1940 { 1941 u8 cpu_type = 0; 1942 1943 smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1); 1944 /* P-cores have a smaller perf level-to-freqency scaling factor. */ 1945 if (cpu_type == 0x40) 1946 return 78741; 1947 1948 return core_get_scaling(); 1949 } 1950 1951 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) 1952 { 1953 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); 1954 cpu->pstate.current_pstate = pstate; 1955 /* 1956 * Generally, there is no guarantee that this code will always run on 1957 * the CPU being updated, so force the register update to run on the 1958 * right CPU. 1959 */ 1960 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 1961 pstate_funcs.get_val(cpu, pstate)); 1962 } 1963 1964 static void intel_pstate_set_min_pstate(struct cpudata *cpu) 1965 { 1966 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); 1967 } 1968 1969 static void intel_pstate_max_within_limits(struct cpudata *cpu) 1970 { 1971 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio); 1972 1973 update_turbo_state(); 1974 intel_pstate_set_pstate(cpu, pstate); 1975 } 1976 1977 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) 1978 { 1979 int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu); 1980 int perf_ctl_scaling = pstate_funcs.get_scaling(); 1981 1982 cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu); 1983 cpu->pstate.max_pstate_physical = perf_ctl_max_phys; 1984 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling; 1985 1986 if (hwp_active && !hwp_mode_bdw) { 1987 __intel_pstate_get_hwp_cap(cpu); 1988 1989 if (pstate_funcs.get_cpu_scaling) { 1990 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu); 1991 if (cpu->pstate.scaling != perf_ctl_scaling) 1992 intel_pstate_hybrid_hwp_adjust(cpu); 1993 } else { 1994 cpu->pstate.scaling = perf_ctl_scaling; 1995 } 1996 } else { 1997 cpu->pstate.scaling = perf_ctl_scaling; 1998 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu); 1999 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu); 2000 } 2001 2002 if (cpu->pstate.scaling == perf_ctl_scaling) { 2003 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling; 2004 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling; 2005 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling; 2006 } 2007 2008 if (pstate_funcs.get_aperf_mperf_shift) 2009 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift(); 2010 2011 if (pstate_funcs.get_vid) 2012 pstate_funcs.get_vid(cpu); 2013 2014 intel_pstate_set_min_pstate(cpu); 2015 } 2016 2017 /* 2018 * Long hold time will keep high perf limits for long time, 2019 * which negatively impacts perf/watt for some workloads, 2020 * like specpower. 3ms is based on experiements on some 2021 * workoads. 2022 */ 2023 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC; 2024 2025 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu) 2026 { 2027 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached); 2028 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 2029 u32 max_limit = (hwp_req & 0xff00) >> 8; 2030 u32 min_limit = (hwp_req & 0xff); 2031 u32 boost_level1; 2032 2033 /* 2034 * Cases to consider (User changes via sysfs or boot time): 2035 * If, P0 (Turbo max) = P1 (Guaranteed max) = min: 2036 * No boost, return. 2037 * If, P0 (Turbo max) > P1 (Guaranteed max) = min: 2038 * Should result in one level boost only for P0. 2039 * If, P0 (Turbo max) = P1 (Guaranteed max) > min: 2040 * Should result in two level boost: 2041 * (min + p1)/2 and P1. 2042 * If, P0 (Turbo max) > P1 (Guaranteed max) > min: 2043 * Should result in three level boost: 2044 * (min + p1)/2, P1 and P0. 2045 */ 2046 2047 /* If max and min are equal or already at max, nothing to boost */ 2048 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit) 2049 return; 2050 2051 if (!cpu->hwp_boost_min) 2052 cpu->hwp_boost_min = min_limit; 2053 2054 /* level at half way mark between min and guranteed */ 2055 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1; 2056 2057 if (cpu->hwp_boost_min < boost_level1) 2058 cpu->hwp_boost_min = boost_level1; 2059 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap)) 2060 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap); 2061 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) && 2062 max_limit != HWP_GUARANTEED_PERF(hwp_cap)) 2063 cpu->hwp_boost_min = max_limit; 2064 else 2065 return; 2066 2067 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min; 2068 wrmsrl(MSR_HWP_REQUEST, hwp_req); 2069 cpu->last_update = cpu->sample.time; 2070 } 2071 2072 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu) 2073 { 2074 if (cpu->hwp_boost_min) { 2075 bool expired; 2076 2077 /* Check if we are idle for hold time to boost down */ 2078 expired = time_after64(cpu->sample.time, cpu->last_update + 2079 hwp_boost_hold_time_ns); 2080 if (expired) { 2081 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached); 2082 cpu->hwp_boost_min = 0; 2083 } 2084 } 2085 cpu->last_update = cpu->sample.time; 2086 } 2087 2088 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu, 2089 u64 time) 2090 { 2091 cpu->sample.time = time; 2092 2093 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) { 2094 bool do_io = false; 2095 2096 cpu->sched_flags = 0; 2097 /* 2098 * Set iowait_boost flag and update time. Since IO WAIT flag 2099 * is set all the time, we can't just conclude that there is 2100 * some IO bound activity is scheduled on this CPU with just 2101 * one occurrence. If we receive at least two in two 2102 * consecutive ticks, then we treat as boost candidate. 2103 */ 2104 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC)) 2105 do_io = true; 2106 2107 cpu->last_io_update = time; 2108 2109 if (do_io) 2110 intel_pstate_hwp_boost_up(cpu); 2111 2112 } else { 2113 intel_pstate_hwp_boost_down(cpu); 2114 } 2115 } 2116 2117 static inline void intel_pstate_update_util_hwp(struct update_util_data *data, 2118 u64 time, unsigned int flags) 2119 { 2120 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 2121 2122 cpu->sched_flags |= flags; 2123 2124 if (smp_processor_id() == cpu->cpu) 2125 intel_pstate_update_util_hwp_local(cpu, time); 2126 } 2127 2128 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) 2129 { 2130 struct sample *sample = &cpu->sample; 2131 2132 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); 2133 } 2134 2135 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) 2136 { 2137 u64 aperf, mperf; 2138 unsigned long flags; 2139 u64 tsc; 2140 2141 local_irq_save(flags); 2142 rdmsrl(MSR_IA32_APERF, aperf); 2143 rdmsrl(MSR_IA32_MPERF, mperf); 2144 tsc = rdtsc(); 2145 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { 2146 local_irq_restore(flags); 2147 return false; 2148 } 2149 local_irq_restore(flags); 2150 2151 cpu->last_sample_time = cpu->sample.time; 2152 cpu->sample.time = time; 2153 cpu->sample.aperf = aperf; 2154 cpu->sample.mperf = mperf; 2155 cpu->sample.tsc = tsc; 2156 cpu->sample.aperf -= cpu->prev_aperf; 2157 cpu->sample.mperf -= cpu->prev_mperf; 2158 cpu->sample.tsc -= cpu->prev_tsc; 2159 2160 cpu->prev_aperf = aperf; 2161 cpu->prev_mperf = mperf; 2162 cpu->prev_tsc = tsc; 2163 /* 2164 * First time this function is invoked in a given cycle, all of the 2165 * previous sample data fields are equal to zero or stale and they must 2166 * be populated with meaningful numbers for things to work, so assume 2167 * that sample.time will always be reset before setting the utilization 2168 * update hook and make the caller skip the sample then. 2169 */ 2170 if (cpu->last_sample_time) { 2171 intel_pstate_calc_avg_perf(cpu); 2172 return true; 2173 } 2174 return false; 2175 } 2176 2177 static inline int32_t get_avg_frequency(struct cpudata *cpu) 2178 { 2179 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz); 2180 } 2181 2182 static inline int32_t get_avg_pstate(struct cpudata *cpu) 2183 { 2184 return mul_ext_fp(cpu->pstate.max_pstate_physical, 2185 cpu->sample.core_avg_perf); 2186 } 2187 2188 static inline int32_t get_target_pstate(struct cpudata *cpu) 2189 { 2190 struct sample *sample = &cpu->sample; 2191 int32_t busy_frac; 2192 int target, avg_pstate; 2193 2194 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift, 2195 sample->tsc); 2196 2197 if (busy_frac < cpu->iowait_boost) 2198 busy_frac = cpu->iowait_boost; 2199 2200 sample->busy_scaled = busy_frac * 100; 2201 2202 target = global.no_turbo || global.turbo_disabled ? 2203 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; 2204 target += target >> 2; 2205 target = mul_fp(target, busy_frac); 2206 if (target < cpu->pstate.min_pstate) 2207 target = cpu->pstate.min_pstate; 2208 2209 /* 2210 * If the average P-state during the previous cycle was higher than the 2211 * current target, add 50% of the difference to the target to reduce 2212 * possible performance oscillations and offset possible performance 2213 * loss related to moving the workload from one CPU to another within 2214 * a package/module. 2215 */ 2216 avg_pstate = get_avg_pstate(cpu); 2217 if (avg_pstate > target) 2218 target += (avg_pstate - target) >> 1; 2219 2220 return target; 2221 } 2222 2223 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) 2224 { 2225 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio); 2226 int max_pstate = max(min_pstate, cpu->max_perf_ratio); 2227 2228 return clamp_t(int, pstate, min_pstate, max_pstate); 2229 } 2230 2231 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) 2232 { 2233 if (pstate == cpu->pstate.current_pstate) 2234 return; 2235 2236 cpu->pstate.current_pstate = pstate; 2237 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); 2238 } 2239 2240 static void intel_pstate_adjust_pstate(struct cpudata *cpu) 2241 { 2242 int from = cpu->pstate.current_pstate; 2243 struct sample *sample; 2244 int target_pstate; 2245 2246 update_turbo_state(); 2247 2248 target_pstate = get_target_pstate(cpu); 2249 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2250 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu); 2251 intel_pstate_update_pstate(cpu, target_pstate); 2252 2253 sample = &cpu->sample; 2254 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), 2255 fp_toint(sample->busy_scaled), 2256 from, 2257 cpu->pstate.current_pstate, 2258 sample->mperf, 2259 sample->aperf, 2260 sample->tsc, 2261 get_avg_frequency(cpu), 2262 fp_toint(cpu->iowait_boost * 100)); 2263 } 2264 2265 static void intel_pstate_update_util(struct update_util_data *data, u64 time, 2266 unsigned int flags) 2267 { 2268 struct cpudata *cpu = container_of(data, struct cpudata, update_util); 2269 u64 delta_ns; 2270 2271 /* Don't allow remote callbacks */ 2272 if (smp_processor_id() != cpu->cpu) 2273 return; 2274 2275 delta_ns = time - cpu->last_update; 2276 if (flags & SCHED_CPUFREQ_IOWAIT) { 2277 /* Start over if the CPU may have been idle. */ 2278 if (delta_ns > TICK_NSEC) { 2279 cpu->iowait_boost = ONE_EIGHTH_FP; 2280 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) { 2281 cpu->iowait_boost <<= 1; 2282 if (cpu->iowait_boost > int_tofp(1)) 2283 cpu->iowait_boost = int_tofp(1); 2284 } else { 2285 cpu->iowait_boost = ONE_EIGHTH_FP; 2286 } 2287 } else if (cpu->iowait_boost) { 2288 /* Clear iowait_boost if the CPU may have been idle. */ 2289 if (delta_ns > TICK_NSEC) 2290 cpu->iowait_boost = 0; 2291 else 2292 cpu->iowait_boost >>= 1; 2293 } 2294 cpu->last_update = time; 2295 delta_ns = time - cpu->sample.time; 2296 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL) 2297 return; 2298 2299 if (intel_pstate_sample(cpu, time)) 2300 intel_pstate_adjust_pstate(cpu); 2301 } 2302 2303 static struct pstate_funcs core_funcs = { 2304 .get_max = core_get_max_pstate, 2305 .get_max_physical = core_get_max_pstate_physical, 2306 .get_min = core_get_min_pstate, 2307 .get_turbo = core_get_turbo_pstate, 2308 .get_scaling = core_get_scaling, 2309 .get_val = core_get_val, 2310 }; 2311 2312 static const struct pstate_funcs silvermont_funcs = { 2313 .get_max = atom_get_max_pstate, 2314 .get_max_physical = atom_get_max_pstate, 2315 .get_min = atom_get_min_pstate, 2316 .get_turbo = atom_get_turbo_pstate, 2317 .get_val = atom_get_val, 2318 .get_scaling = silvermont_get_scaling, 2319 .get_vid = atom_get_vid, 2320 }; 2321 2322 static const struct pstate_funcs airmont_funcs = { 2323 .get_max = atom_get_max_pstate, 2324 .get_max_physical = atom_get_max_pstate, 2325 .get_min = atom_get_min_pstate, 2326 .get_turbo = atom_get_turbo_pstate, 2327 .get_val = atom_get_val, 2328 .get_scaling = airmont_get_scaling, 2329 .get_vid = atom_get_vid, 2330 }; 2331 2332 static const struct pstate_funcs knl_funcs = { 2333 .get_max = core_get_max_pstate, 2334 .get_max_physical = core_get_max_pstate_physical, 2335 .get_min = core_get_min_pstate, 2336 .get_turbo = knl_get_turbo_pstate, 2337 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift, 2338 .get_scaling = core_get_scaling, 2339 .get_val = core_get_val, 2340 }; 2341 2342 #define X86_MATCH(model, policy) \ 2343 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 2344 X86_FEATURE_APERFMPERF, &policy) 2345 2346 static const struct x86_cpu_id intel_pstate_cpu_ids[] = { 2347 X86_MATCH(SANDYBRIDGE, core_funcs), 2348 X86_MATCH(SANDYBRIDGE_X, core_funcs), 2349 X86_MATCH(ATOM_SILVERMONT, silvermont_funcs), 2350 X86_MATCH(IVYBRIDGE, core_funcs), 2351 X86_MATCH(HASWELL, core_funcs), 2352 X86_MATCH(BROADWELL, core_funcs), 2353 X86_MATCH(IVYBRIDGE_X, core_funcs), 2354 X86_MATCH(HASWELL_X, core_funcs), 2355 X86_MATCH(HASWELL_L, core_funcs), 2356 X86_MATCH(HASWELL_G, core_funcs), 2357 X86_MATCH(BROADWELL_G, core_funcs), 2358 X86_MATCH(ATOM_AIRMONT, airmont_funcs), 2359 X86_MATCH(SKYLAKE_L, core_funcs), 2360 X86_MATCH(BROADWELL_X, core_funcs), 2361 X86_MATCH(SKYLAKE, core_funcs), 2362 X86_MATCH(BROADWELL_D, core_funcs), 2363 X86_MATCH(XEON_PHI_KNL, knl_funcs), 2364 X86_MATCH(XEON_PHI_KNM, knl_funcs), 2365 X86_MATCH(ATOM_GOLDMONT, core_funcs), 2366 X86_MATCH(ATOM_GOLDMONT_PLUS, core_funcs), 2367 X86_MATCH(SKYLAKE_X, core_funcs), 2368 X86_MATCH(COMETLAKE, core_funcs), 2369 X86_MATCH(ICELAKE_X, core_funcs), 2370 X86_MATCH(TIGERLAKE, core_funcs), 2371 X86_MATCH(SAPPHIRERAPIDS_X, core_funcs), 2372 {} 2373 }; 2374 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); 2375 2376 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { 2377 X86_MATCH(BROADWELL_D, core_funcs), 2378 X86_MATCH(BROADWELL_X, core_funcs), 2379 X86_MATCH(SKYLAKE_X, core_funcs), 2380 X86_MATCH(ICELAKE_X, core_funcs), 2381 X86_MATCH(SAPPHIRERAPIDS_X, core_funcs), 2382 {} 2383 }; 2384 2385 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { 2386 X86_MATCH(KABYLAKE, core_funcs), 2387 {} 2388 }; 2389 2390 static int intel_pstate_init_cpu(unsigned int cpunum) 2391 { 2392 struct cpudata *cpu; 2393 2394 cpu = all_cpu_data[cpunum]; 2395 2396 if (!cpu) { 2397 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); 2398 if (!cpu) 2399 return -ENOMEM; 2400 2401 WRITE_ONCE(all_cpu_data[cpunum], cpu); 2402 2403 cpu->cpu = cpunum; 2404 2405 cpu->epp_default = -EINVAL; 2406 2407 if (hwp_active) { 2408 intel_pstate_hwp_enable(cpu); 2409 2410 if (intel_pstate_acpi_pm_profile_server()) 2411 hwp_boost = true; 2412 } 2413 } else if (hwp_active) { 2414 /* 2415 * Re-enable HWP in case this happens after a resume from ACPI 2416 * S3 if the CPU was offline during the whole system/resume 2417 * cycle. 2418 */ 2419 intel_pstate_hwp_reenable(cpu); 2420 } 2421 2422 cpu->epp_powersave = -EINVAL; 2423 cpu->epp_policy = 0; 2424 2425 intel_pstate_get_cpu_pstates(cpu); 2426 2427 pr_debug("controlling: cpu %d\n", cpunum); 2428 2429 return 0; 2430 } 2431 2432 static void intel_pstate_set_update_util_hook(unsigned int cpu_num) 2433 { 2434 struct cpudata *cpu = all_cpu_data[cpu_num]; 2435 2436 if (hwp_active && !hwp_boost) 2437 return; 2438 2439 if (cpu->update_util_set) 2440 return; 2441 2442 /* Prevent intel_pstate_update_util() from using stale data. */ 2443 cpu->sample.time = 0; 2444 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, 2445 (hwp_active ? 2446 intel_pstate_update_util_hwp : 2447 intel_pstate_update_util)); 2448 cpu->update_util_set = true; 2449 } 2450 2451 static void intel_pstate_clear_update_util_hook(unsigned int cpu) 2452 { 2453 struct cpudata *cpu_data = all_cpu_data[cpu]; 2454 2455 if (!cpu_data->update_util_set) 2456 return; 2457 2458 cpufreq_remove_update_util_hook(cpu); 2459 cpu_data->update_util_set = false; 2460 synchronize_rcu(); 2461 } 2462 2463 static int intel_pstate_get_max_freq(struct cpudata *cpu) 2464 { 2465 return global.turbo_disabled || global.no_turbo ? 2466 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2467 } 2468 2469 static void intel_pstate_update_perf_limits(struct cpudata *cpu, 2470 unsigned int policy_min, 2471 unsigned int policy_max) 2472 { 2473 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling; 2474 int32_t max_policy_perf, min_policy_perf; 2475 2476 max_policy_perf = policy_max / perf_ctl_scaling; 2477 if (policy_max == policy_min) { 2478 min_policy_perf = max_policy_perf; 2479 } else { 2480 min_policy_perf = policy_min / perf_ctl_scaling; 2481 min_policy_perf = clamp_t(int32_t, min_policy_perf, 2482 0, max_policy_perf); 2483 } 2484 2485 /* 2486 * HWP needs some special consideration, because HWP_REQUEST uses 2487 * abstract values to represent performance rather than pure ratios. 2488 */ 2489 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) { 2490 int scaling = cpu->pstate.scaling; 2491 int freq; 2492 2493 freq = max_policy_perf * perf_ctl_scaling; 2494 max_policy_perf = DIV_ROUND_UP(freq, scaling); 2495 freq = min_policy_perf * perf_ctl_scaling; 2496 min_policy_perf = DIV_ROUND_UP(freq, scaling); 2497 } 2498 2499 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n", 2500 cpu->cpu, min_policy_perf, max_policy_perf); 2501 2502 /* Normalize user input to [min_perf, max_perf] */ 2503 if (per_cpu_limits) { 2504 cpu->min_perf_ratio = min_policy_perf; 2505 cpu->max_perf_ratio = max_policy_perf; 2506 } else { 2507 int turbo_max = cpu->pstate.turbo_pstate; 2508 int32_t global_min, global_max; 2509 2510 /* Global limits are in percent of the maximum turbo P-state. */ 2511 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); 2512 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); 2513 global_min = clamp_t(int32_t, global_min, 0, global_max); 2514 2515 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu, 2516 global_min, global_max); 2517 2518 cpu->min_perf_ratio = max(min_policy_perf, global_min); 2519 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf); 2520 cpu->max_perf_ratio = min(max_policy_perf, global_max); 2521 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio); 2522 2523 /* Make sure min_perf <= max_perf */ 2524 cpu->min_perf_ratio = min(cpu->min_perf_ratio, 2525 cpu->max_perf_ratio); 2526 2527 } 2528 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu, 2529 cpu->max_perf_ratio, 2530 cpu->min_perf_ratio); 2531 } 2532 2533 static int intel_pstate_set_policy(struct cpufreq_policy *policy) 2534 { 2535 struct cpudata *cpu; 2536 2537 if (!policy->cpuinfo.max_freq) 2538 return -ENODEV; 2539 2540 pr_debug("set_policy cpuinfo.max %u policy->max %u\n", 2541 policy->cpuinfo.max_freq, policy->max); 2542 2543 cpu = all_cpu_data[policy->cpu]; 2544 cpu->policy = policy->policy; 2545 2546 mutex_lock(&intel_pstate_limits_lock); 2547 2548 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2549 2550 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { 2551 /* 2552 * NOHZ_FULL CPUs need this as the governor callback may not 2553 * be invoked on them. 2554 */ 2555 intel_pstate_clear_update_util_hook(policy->cpu); 2556 intel_pstate_max_within_limits(cpu); 2557 } else { 2558 intel_pstate_set_update_util_hook(policy->cpu); 2559 } 2560 2561 if (hwp_active) { 2562 /* 2563 * When hwp_boost was active before and dynamically it 2564 * was turned off, in that case we need to clear the 2565 * update util hook. 2566 */ 2567 if (!hwp_boost) 2568 intel_pstate_clear_update_util_hook(policy->cpu); 2569 intel_pstate_hwp_set(policy->cpu); 2570 } 2571 2572 mutex_unlock(&intel_pstate_limits_lock); 2573 2574 return 0; 2575 } 2576 2577 static void intel_pstate_adjust_policy_max(struct cpudata *cpu, 2578 struct cpufreq_policy_data *policy) 2579 { 2580 if (!hwp_active && 2581 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && 2582 policy->max < policy->cpuinfo.max_freq && 2583 policy->max > cpu->pstate.max_freq) { 2584 pr_debug("policy->max > max non turbo frequency\n"); 2585 policy->max = policy->cpuinfo.max_freq; 2586 } 2587 } 2588 2589 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu, 2590 struct cpufreq_policy_data *policy) 2591 { 2592 int max_freq; 2593 2594 update_turbo_state(); 2595 if (hwp_active) { 2596 intel_pstate_get_hwp_cap(cpu); 2597 max_freq = global.no_turbo || global.turbo_disabled ? 2598 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2599 } else { 2600 max_freq = intel_pstate_get_max_freq(cpu); 2601 } 2602 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq); 2603 2604 intel_pstate_adjust_policy_max(cpu, policy); 2605 } 2606 2607 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy) 2608 { 2609 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy); 2610 2611 return 0; 2612 } 2613 2614 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy) 2615 { 2616 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2617 2618 pr_debug("CPU %d going offline\n", cpu->cpu); 2619 2620 if (cpu->suspended) 2621 return 0; 2622 2623 /* 2624 * If the CPU is an SMT thread and it goes offline with the performance 2625 * settings different from the minimum, it will prevent its sibling 2626 * from getting to lower performance levels, so force the minimum 2627 * performance on CPU offline to prevent that from happening. 2628 */ 2629 if (hwp_active) 2630 intel_pstate_hwp_offline(cpu); 2631 else 2632 intel_pstate_set_min_pstate(cpu); 2633 2634 intel_pstate_exit_perf_limits(policy); 2635 2636 return 0; 2637 } 2638 2639 static int intel_pstate_cpu_online(struct cpufreq_policy *policy) 2640 { 2641 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2642 2643 pr_debug("CPU %d going online\n", cpu->cpu); 2644 2645 intel_pstate_init_acpi_perf_limits(policy); 2646 2647 if (hwp_active) { 2648 /* 2649 * Re-enable HWP and clear the "suspended" flag to let "resume" 2650 * know that it need not do that. 2651 */ 2652 intel_pstate_hwp_reenable(cpu); 2653 cpu->suspended = false; 2654 } 2655 2656 return 0; 2657 } 2658 2659 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy) 2660 { 2661 intel_pstate_clear_update_util_hook(policy->cpu); 2662 2663 return intel_cpufreq_cpu_offline(policy); 2664 } 2665 2666 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy) 2667 { 2668 pr_debug("CPU %d exiting\n", policy->cpu); 2669 2670 policy->fast_switch_possible = false; 2671 2672 return 0; 2673 } 2674 2675 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) 2676 { 2677 struct cpudata *cpu; 2678 int rc; 2679 2680 rc = intel_pstate_init_cpu(policy->cpu); 2681 if (rc) 2682 return rc; 2683 2684 cpu = all_cpu_data[policy->cpu]; 2685 2686 cpu->max_perf_ratio = 0xFF; 2687 cpu->min_perf_ratio = 0; 2688 2689 /* cpuinfo and default policy values */ 2690 policy->cpuinfo.min_freq = cpu->pstate.min_freq; 2691 update_turbo_state(); 2692 global.turbo_disabled_mf = global.turbo_disabled; 2693 policy->cpuinfo.max_freq = global.turbo_disabled ? 2694 cpu->pstate.max_freq : cpu->pstate.turbo_freq; 2695 2696 policy->min = policy->cpuinfo.min_freq; 2697 policy->max = policy->cpuinfo.max_freq; 2698 2699 intel_pstate_init_acpi_perf_limits(policy); 2700 2701 policy->fast_switch_possible = true; 2702 2703 return 0; 2704 } 2705 2706 static int intel_pstate_cpu_init(struct cpufreq_policy *policy) 2707 { 2708 int ret = __intel_pstate_cpu_init(policy); 2709 2710 if (ret) 2711 return ret; 2712 2713 /* 2714 * Set the policy to powersave to provide a valid fallback value in case 2715 * the default cpufreq governor is neither powersave nor performance. 2716 */ 2717 policy->policy = CPUFREQ_POLICY_POWERSAVE; 2718 2719 if (hwp_active) { 2720 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2721 2722 cpu->epp_cached = intel_pstate_get_epp(cpu, 0); 2723 } 2724 2725 return 0; 2726 } 2727 2728 static struct cpufreq_driver intel_pstate = { 2729 .flags = CPUFREQ_CONST_LOOPS, 2730 .verify = intel_pstate_verify_policy, 2731 .setpolicy = intel_pstate_set_policy, 2732 .suspend = intel_pstate_suspend, 2733 .resume = intel_pstate_resume, 2734 .init = intel_pstate_cpu_init, 2735 .exit = intel_pstate_cpu_exit, 2736 .offline = intel_pstate_cpu_offline, 2737 .online = intel_pstate_cpu_online, 2738 .update_limits = intel_pstate_update_limits, 2739 .name = "intel_pstate", 2740 }; 2741 2742 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy) 2743 { 2744 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2745 2746 intel_pstate_verify_cpu_policy(cpu, policy); 2747 intel_pstate_update_perf_limits(cpu, policy->min, policy->max); 2748 2749 return 0; 2750 } 2751 2752 /* Use of trace in passive mode: 2753 * 2754 * In passive mode the trace core_busy field (also known as the 2755 * performance field, and lablelled as such on the graphs; also known as 2756 * core_avg_perf) is not needed and so is re-assigned to indicate if the 2757 * driver call was via the normal or fast switch path. Various graphs 2758 * output from the intel_pstate_tracer.py utility that include core_busy 2759 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%, 2760 * so we use 10 to indicate the normal path through the driver, and 2761 * 90 to indicate the fast switch path through the driver. 2762 * The scaled_busy field is not used, and is set to 0. 2763 */ 2764 2765 #define INTEL_PSTATE_TRACE_TARGET 10 2766 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90 2767 2768 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate) 2769 { 2770 struct sample *sample; 2771 2772 if (!trace_pstate_sample_enabled()) 2773 return; 2774 2775 if (!intel_pstate_sample(cpu, ktime_get())) 2776 return; 2777 2778 sample = &cpu->sample; 2779 trace_pstate_sample(trace_type, 2780 0, 2781 old_pstate, 2782 cpu->pstate.current_pstate, 2783 sample->mperf, 2784 sample->aperf, 2785 sample->tsc, 2786 get_avg_frequency(cpu), 2787 fp_toint(cpu->iowait_boost * 100)); 2788 } 2789 2790 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max, 2791 u32 desired, bool fast_switch) 2792 { 2793 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev; 2794 2795 value &= ~HWP_MIN_PERF(~0L); 2796 value |= HWP_MIN_PERF(min); 2797 2798 value &= ~HWP_MAX_PERF(~0L); 2799 value |= HWP_MAX_PERF(max); 2800 2801 value &= ~HWP_DESIRED_PERF(~0L); 2802 value |= HWP_DESIRED_PERF(desired); 2803 2804 if (value == prev) 2805 return; 2806 2807 WRITE_ONCE(cpu->hwp_req_cached, value); 2808 if (fast_switch) 2809 wrmsrl(MSR_HWP_REQUEST, value); 2810 else 2811 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 2812 } 2813 2814 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu, 2815 u32 target_pstate, bool fast_switch) 2816 { 2817 if (fast_switch) 2818 wrmsrl(MSR_IA32_PERF_CTL, 2819 pstate_funcs.get_val(cpu, target_pstate)); 2820 else 2821 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, 2822 pstate_funcs.get_val(cpu, target_pstate)); 2823 } 2824 2825 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy, 2826 int target_pstate, bool fast_switch) 2827 { 2828 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2829 int old_pstate = cpu->pstate.current_pstate; 2830 2831 target_pstate = intel_pstate_prepare_request(cpu, target_pstate); 2832 if (hwp_active) { 2833 int max_pstate = policy->strict_target ? 2834 target_pstate : cpu->max_perf_ratio; 2835 2836 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0, 2837 fast_switch); 2838 } else if (target_pstate != old_pstate) { 2839 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch); 2840 } 2841 2842 cpu->pstate.current_pstate = target_pstate; 2843 2844 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH : 2845 INTEL_PSTATE_TRACE_TARGET, old_pstate); 2846 2847 return target_pstate; 2848 } 2849 2850 static int intel_cpufreq_target(struct cpufreq_policy *policy, 2851 unsigned int target_freq, 2852 unsigned int relation) 2853 { 2854 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2855 struct cpufreq_freqs freqs; 2856 int target_pstate; 2857 2858 update_turbo_state(); 2859 2860 freqs.old = policy->cur; 2861 freqs.new = target_freq; 2862 2863 cpufreq_freq_transition_begin(policy, &freqs); 2864 2865 switch (relation) { 2866 case CPUFREQ_RELATION_L: 2867 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling); 2868 break; 2869 case CPUFREQ_RELATION_H: 2870 target_pstate = freqs.new / cpu->pstate.scaling; 2871 break; 2872 default: 2873 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling); 2874 break; 2875 } 2876 2877 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false); 2878 2879 freqs.new = target_pstate * cpu->pstate.scaling; 2880 2881 cpufreq_freq_transition_end(policy, &freqs, false); 2882 2883 return 0; 2884 } 2885 2886 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, 2887 unsigned int target_freq) 2888 { 2889 struct cpudata *cpu = all_cpu_data[policy->cpu]; 2890 int target_pstate; 2891 2892 update_turbo_state(); 2893 2894 target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling); 2895 2896 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true); 2897 2898 return target_pstate * cpu->pstate.scaling; 2899 } 2900 2901 static void intel_cpufreq_adjust_perf(unsigned int cpunum, 2902 unsigned long min_perf, 2903 unsigned long target_perf, 2904 unsigned long capacity) 2905 { 2906 struct cpudata *cpu = all_cpu_data[cpunum]; 2907 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached); 2908 int old_pstate = cpu->pstate.current_pstate; 2909 int cap_pstate, min_pstate, max_pstate, target_pstate; 2910 2911 update_turbo_state(); 2912 cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) : 2913 HWP_HIGHEST_PERF(hwp_cap); 2914 2915 /* Optimization: Avoid unnecessary divisions. */ 2916 2917 target_pstate = cap_pstate; 2918 if (target_perf < capacity) 2919 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity); 2920 2921 min_pstate = cap_pstate; 2922 if (min_perf < capacity) 2923 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity); 2924 2925 if (min_pstate < cpu->pstate.min_pstate) 2926 min_pstate = cpu->pstate.min_pstate; 2927 2928 if (min_pstate < cpu->min_perf_ratio) 2929 min_pstate = cpu->min_perf_ratio; 2930 2931 max_pstate = min(cap_pstate, cpu->max_perf_ratio); 2932 if (max_pstate < min_pstate) 2933 max_pstate = min_pstate; 2934 2935 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate); 2936 2937 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true); 2938 2939 cpu->pstate.current_pstate = target_pstate; 2940 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate); 2941 } 2942 2943 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) 2944 { 2945 struct freq_qos_request *req; 2946 struct cpudata *cpu; 2947 struct device *dev; 2948 int ret, freq; 2949 2950 dev = get_cpu_device(policy->cpu); 2951 if (!dev) 2952 return -ENODEV; 2953 2954 ret = __intel_pstate_cpu_init(policy); 2955 if (ret) 2956 return ret; 2957 2958 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; 2959 /* This reflects the intel_pstate_get_cpu_pstates() setting. */ 2960 policy->cur = policy->cpuinfo.min_freq; 2961 2962 req = kcalloc(2, sizeof(*req), GFP_KERNEL); 2963 if (!req) { 2964 ret = -ENOMEM; 2965 goto pstate_exit; 2966 } 2967 2968 cpu = all_cpu_data[policy->cpu]; 2969 2970 if (hwp_active) { 2971 u64 value; 2972 2973 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP; 2974 2975 intel_pstate_get_hwp_cap(cpu); 2976 2977 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value); 2978 WRITE_ONCE(cpu->hwp_req_cached, value); 2979 2980 cpu->epp_cached = intel_pstate_get_epp(cpu, value); 2981 } else { 2982 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY; 2983 } 2984 2985 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100); 2986 2987 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN, 2988 freq); 2989 if (ret < 0) { 2990 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret); 2991 goto free_req; 2992 } 2993 2994 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100); 2995 2996 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX, 2997 freq); 2998 if (ret < 0) { 2999 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret); 3000 goto remove_min_req; 3001 } 3002 3003 policy->driver_data = req; 3004 3005 return 0; 3006 3007 remove_min_req: 3008 freq_qos_remove_request(req); 3009 free_req: 3010 kfree(req); 3011 pstate_exit: 3012 intel_pstate_exit_perf_limits(policy); 3013 3014 return ret; 3015 } 3016 3017 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy) 3018 { 3019 struct freq_qos_request *req; 3020 3021 req = policy->driver_data; 3022 3023 freq_qos_remove_request(req + 1); 3024 freq_qos_remove_request(req); 3025 kfree(req); 3026 3027 return intel_pstate_cpu_exit(policy); 3028 } 3029 3030 static int intel_cpufreq_suspend(struct cpufreq_policy *policy) 3031 { 3032 intel_pstate_suspend(policy); 3033 3034 if (hwp_active) { 3035 struct cpudata *cpu = all_cpu_data[policy->cpu]; 3036 u64 value = READ_ONCE(cpu->hwp_req_cached); 3037 3038 /* 3039 * Clear the desired perf field in MSR_HWP_REQUEST in case 3040 * intel_cpufreq_adjust_perf() is in use and the last value 3041 * written by it may not be suitable. 3042 */ 3043 value &= ~HWP_DESIRED_PERF(~0L); 3044 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value); 3045 WRITE_ONCE(cpu->hwp_req_cached, value); 3046 } 3047 3048 return 0; 3049 } 3050 3051 static struct cpufreq_driver intel_cpufreq = { 3052 .flags = CPUFREQ_CONST_LOOPS, 3053 .verify = intel_cpufreq_verify_policy, 3054 .target = intel_cpufreq_target, 3055 .fast_switch = intel_cpufreq_fast_switch, 3056 .init = intel_cpufreq_cpu_init, 3057 .exit = intel_cpufreq_cpu_exit, 3058 .offline = intel_cpufreq_cpu_offline, 3059 .online = intel_pstate_cpu_online, 3060 .suspend = intel_cpufreq_suspend, 3061 .resume = intel_pstate_resume, 3062 .update_limits = intel_pstate_update_limits, 3063 .name = "intel_cpufreq", 3064 }; 3065 3066 static struct cpufreq_driver *default_driver; 3067 3068 static void intel_pstate_driver_cleanup(void) 3069 { 3070 unsigned int cpu; 3071 3072 cpus_read_lock(); 3073 for_each_online_cpu(cpu) { 3074 if (all_cpu_data[cpu]) { 3075 if (intel_pstate_driver == &intel_pstate) 3076 intel_pstate_clear_update_util_hook(cpu); 3077 3078 spin_lock(&hwp_notify_lock); 3079 kfree(all_cpu_data[cpu]); 3080 WRITE_ONCE(all_cpu_data[cpu], NULL); 3081 spin_unlock(&hwp_notify_lock); 3082 } 3083 } 3084 cpus_read_unlock(); 3085 3086 intel_pstate_driver = NULL; 3087 } 3088 3089 static int intel_pstate_register_driver(struct cpufreq_driver *driver) 3090 { 3091 int ret; 3092 3093 if (driver == &intel_pstate) 3094 intel_pstate_sysfs_expose_hwp_dynamic_boost(); 3095 3096 memset(&global, 0, sizeof(global)); 3097 global.max_perf_pct = 100; 3098 3099 intel_pstate_driver = driver; 3100 ret = cpufreq_register_driver(intel_pstate_driver); 3101 if (ret) { 3102 intel_pstate_driver_cleanup(); 3103 return ret; 3104 } 3105 3106 global.min_perf_pct = min_perf_pct_min(); 3107 3108 return 0; 3109 } 3110 3111 static ssize_t intel_pstate_show_status(char *buf) 3112 { 3113 if (!intel_pstate_driver) 3114 return sprintf(buf, "off\n"); 3115 3116 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? 3117 "active" : "passive"); 3118 } 3119 3120 static int intel_pstate_update_status(const char *buf, size_t size) 3121 { 3122 if (size == 3 && !strncmp(buf, "off", size)) { 3123 if (!intel_pstate_driver) 3124 return -EINVAL; 3125 3126 if (hwp_active) 3127 return -EBUSY; 3128 3129 cpufreq_unregister_driver(intel_pstate_driver); 3130 intel_pstate_driver_cleanup(); 3131 return 0; 3132 } 3133 3134 if (size == 6 && !strncmp(buf, "active", size)) { 3135 if (intel_pstate_driver) { 3136 if (intel_pstate_driver == &intel_pstate) 3137 return 0; 3138 3139 cpufreq_unregister_driver(intel_pstate_driver); 3140 } 3141 3142 return intel_pstate_register_driver(&intel_pstate); 3143 } 3144 3145 if (size == 7 && !strncmp(buf, "passive", size)) { 3146 if (intel_pstate_driver) { 3147 if (intel_pstate_driver == &intel_cpufreq) 3148 return 0; 3149 3150 cpufreq_unregister_driver(intel_pstate_driver); 3151 intel_pstate_sysfs_hide_hwp_dynamic_boost(); 3152 } 3153 3154 return intel_pstate_register_driver(&intel_cpufreq); 3155 } 3156 3157 return -EINVAL; 3158 } 3159 3160 static int no_load __initdata; 3161 static int no_hwp __initdata; 3162 static int hwp_only __initdata; 3163 static unsigned int force_load __initdata; 3164 3165 static int __init intel_pstate_msrs_not_valid(void) 3166 { 3167 if (!pstate_funcs.get_max(0) || 3168 !pstate_funcs.get_min(0) || 3169 !pstate_funcs.get_turbo(0)) 3170 return -ENODEV; 3171 3172 return 0; 3173 } 3174 3175 static void __init copy_cpu_funcs(struct pstate_funcs *funcs) 3176 { 3177 pstate_funcs.get_max = funcs->get_max; 3178 pstate_funcs.get_max_physical = funcs->get_max_physical; 3179 pstate_funcs.get_min = funcs->get_min; 3180 pstate_funcs.get_turbo = funcs->get_turbo; 3181 pstate_funcs.get_scaling = funcs->get_scaling; 3182 pstate_funcs.get_val = funcs->get_val; 3183 pstate_funcs.get_vid = funcs->get_vid; 3184 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift; 3185 } 3186 3187 #ifdef CONFIG_ACPI 3188 3189 static bool __init intel_pstate_no_acpi_pss(void) 3190 { 3191 int i; 3192 3193 for_each_possible_cpu(i) { 3194 acpi_status status; 3195 union acpi_object *pss; 3196 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 3197 struct acpi_processor *pr = per_cpu(processors, i); 3198 3199 if (!pr) 3200 continue; 3201 3202 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); 3203 if (ACPI_FAILURE(status)) 3204 continue; 3205 3206 pss = buffer.pointer; 3207 if (pss && pss->type == ACPI_TYPE_PACKAGE) { 3208 kfree(pss); 3209 return false; 3210 } 3211 3212 kfree(pss); 3213 } 3214 3215 pr_debug("ACPI _PSS not found\n"); 3216 return true; 3217 } 3218 3219 static bool __init intel_pstate_no_acpi_pcch(void) 3220 { 3221 acpi_status status; 3222 acpi_handle handle; 3223 3224 status = acpi_get_handle(NULL, "\\_SB", &handle); 3225 if (ACPI_FAILURE(status)) 3226 goto not_found; 3227 3228 if (acpi_has_method(handle, "PCCH")) 3229 return false; 3230 3231 not_found: 3232 pr_debug("ACPI PCCH not found\n"); 3233 return true; 3234 } 3235 3236 static bool __init intel_pstate_has_acpi_ppc(void) 3237 { 3238 int i; 3239 3240 for_each_possible_cpu(i) { 3241 struct acpi_processor *pr = per_cpu(processors, i); 3242 3243 if (!pr) 3244 continue; 3245 if (acpi_has_method(pr->handle, "_PPC")) 3246 return true; 3247 } 3248 pr_debug("ACPI _PPC not found\n"); 3249 return false; 3250 } 3251 3252 enum { 3253 PSS, 3254 PPC, 3255 }; 3256 3257 /* Hardware vendor-specific info that has its own power management modes */ 3258 static struct acpi_platform_list plat_info[] __initdata = { 3259 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS}, 3260 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3261 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3262 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3263 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3264 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3265 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3266 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3267 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3268 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3269 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3270 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3271 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3272 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3273 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC}, 3274 { } /* End */ 3275 }; 3276 3277 #define BITMASK_OOB (BIT(8) | BIT(18)) 3278 3279 static bool __init intel_pstate_platform_pwr_mgmt_exists(void) 3280 { 3281 const struct x86_cpu_id *id; 3282 u64 misc_pwr; 3283 int idx; 3284 3285 id = x86_match_cpu(intel_pstate_cpu_oob_ids); 3286 if (id) { 3287 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); 3288 if (misc_pwr & BITMASK_OOB) { 3289 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n"); 3290 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n"); 3291 return true; 3292 } 3293 } 3294 3295 idx = acpi_match_platform_list(plat_info); 3296 if (idx < 0) 3297 return false; 3298 3299 switch (plat_info[idx].data) { 3300 case PSS: 3301 if (!intel_pstate_no_acpi_pss()) 3302 return false; 3303 3304 return intel_pstate_no_acpi_pcch(); 3305 case PPC: 3306 return intel_pstate_has_acpi_ppc() && !force_load; 3307 } 3308 3309 return false; 3310 } 3311 3312 static void intel_pstate_request_control_from_smm(void) 3313 { 3314 /* 3315 * It may be unsafe to request P-states control from SMM if _PPC support 3316 * has not been enabled. 3317 */ 3318 if (acpi_ppc) 3319 acpi_processor_pstate_control(); 3320 } 3321 #else /* CONFIG_ACPI not enabled */ 3322 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } 3323 static inline bool intel_pstate_has_acpi_ppc(void) { return false; } 3324 static inline void intel_pstate_request_control_from_smm(void) {} 3325 #endif /* CONFIG_ACPI */ 3326 3327 #define INTEL_PSTATE_HWP_BROADWELL 0x01 3328 3329 #define X86_MATCH_HWP(model, hwp_mode) \ 3330 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \ 3331 X86_FEATURE_HWP, hwp_mode) 3332 3333 static const struct x86_cpu_id hwp_support_ids[] __initconst = { 3334 X86_MATCH_HWP(BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL), 3335 X86_MATCH_HWP(BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL), 3336 X86_MATCH_HWP(ANY, 0), 3337 {} 3338 }; 3339 3340 static bool intel_pstate_hwp_is_enabled(void) 3341 { 3342 u64 value; 3343 3344 rdmsrl(MSR_PM_ENABLE, value); 3345 return !!(value & 0x1); 3346 } 3347 3348 static const struct x86_cpu_id intel_epp_balance_perf[] = { 3349 /* 3350 * Set EPP value as 102, this is the max suggested EPP 3351 * which can result in one core turbo frequency for 3352 * AlderLake Mobile CPUs. 3353 */ 3354 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102), 3355 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 32), 3356 {} 3357 }; 3358 3359 static int __init intel_pstate_init(void) 3360 { 3361 static struct cpudata **_all_cpu_data; 3362 const struct x86_cpu_id *id; 3363 int rc; 3364 3365 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 3366 return -ENODEV; 3367 3368 id = x86_match_cpu(hwp_support_ids); 3369 if (id) { 3370 hwp_forced = intel_pstate_hwp_is_enabled(); 3371 3372 if (hwp_forced) 3373 pr_info("HWP enabled by BIOS\n"); 3374 else if (no_load) 3375 return -ENODEV; 3376 3377 copy_cpu_funcs(&core_funcs); 3378 /* 3379 * Avoid enabling HWP for processors without EPP support, 3380 * because that means incomplete HWP implementation which is a 3381 * corner case and supporting it is generally problematic. 3382 * 3383 * If HWP is enabled already, though, there is no choice but to 3384 * deal with it. 3385 */ 3386 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) { 3387 WRITE_ONCE(hwp_active, 1); 3388 hwp_mode_bdw = id->driver_data; 3389 intel_pstate.attr = hwp_cpufreq_attrs; 3390 intel_cpufreq.attr = hwp_cpufreq_attrs; 3391 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS; 3392 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf; 3393 if (!default_driver) 3394 default_driver = &intel_pstate; 3395 3396 if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) 3397 pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling; 3398 3399 goto hwp_cpu_matched; 3400 } 3401 pr_info("HWP not enabled\n"); 3402 } else { 3403 if (no_load) 3404 return -ENODEV; 3405 3406 id = x86_match_cpu(intel_pstate_cpu_ids); 3407 if (!id) { 3408 pr_info("CPU model not supported\n"); 3409 return -ENODEV; 3410 } 3411 3412 copy_cpu_funcs((struct pstate_funcs *)id->driver_data); 3413 } 3414 3415 if (intel_pstate_msrs_not_valid()) { 3416 pr_info("Invalid MSRs\n"); 3417 return -ENODEV; 3418 } 3419 /* Without HWP start in the passive mode. */ 3420 if (!default_driver) 3421 default_driver = &intel_cpufreq; 3422 3423 hwp_cpu_matched: 3424 /* 3425 * The Intel pstate driver will be ignored if the platform 3426 * firmware has its own power management modes. 3427 */ 3428 if (intel_pstate_platform_pwr_mgmt_exists()) { 3429 pr_info("P-states controlled by the platform\n"); 3430 return -ENODEV; 3431 } 3432 3433 if (!hwp_active && hwp_only) 3434 return -ENOTSUPP; 3435 3436 pr_info("Intel P-state driver initializing\n"); 3437 3438 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus())); 3439 if (!_all_cpu_data) 3440 return -ENOMEM; 3441 3442 WRITE_ONCE(all_cpu_data, _all_cpu_data); 3443 3444 intel_pstate_request_control_from_smm(); 3445 3446 intel_pstate_sysfs_expose_params(); 3447 3448 if (hwp_active) { 3449 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf); 3450 3451 if (id) 3452 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data; 3453 } 3454 3455 mutex_lock(&intel_pstate_driver_lock); 3456 rc = intel_pstate_register_driver(default_driver); 3457 mutex_unlock(&intel_pstate_driver_lock); 3458 if (rc) { 3459 intel_pstate_sysfs_remove(); 3460 return rc; 3461 } 3462 3463 if (hwp_active) { 3464 const struct x86_cpu_id *id; 3465 3466 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); 3467 if (id) { 3468 set_power_ctl_ee_state(false); 3469 pr_info("Disabling energy efficiency optimization\n"); 3470 } 3471 3472 pr_info("HWP enabled\n"); 3473 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) { 3474 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n"); 3475 } 3476 3477 return 0; 3478 } 3479 device_initcall(intel_pstate_init); 3480 3481 static int __init intel_pstate_setup(char *str) 3482 { 3483 if (!str) 3484 return -EINVAL; 3485 3486 if (!strcmp(str, "disable")) 3487 no_load = 1; 3488 else if (!strcmp(str, "active")) 3489 default_driver = &intel_pstate; 3490 else if (!strcmp(str, "passive")) 3491 default_driver = &intel_cpufreq; 3492 3493 if (!strcmp(str, "no_hwp")) 3494 no_hwp = 1; 3495 3496 if (!strcmp(str, "force")) 3497 force_load = 1; 3498 if (!strcmp(str, "hwp_only")) 3499 hwp_only = 1; 3500 if (!strcmp(str, "per_cpu_perf_limits")) 3501 per_cpu_limits = true; 3502 3503 #ifdef CONFIG_ACPI 3504 if (!strcmp(str, "support_acpi_ppc")) 3505 acpi_ppc = true; 3506 #endif 3507 3508 return 0; 3509 } 3510 early_param("intel_pstate", intel_pstate_setup); 3511 3512 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); 3513 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); 3514