1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
41 
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46 
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50 
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55 
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60 
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 	return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65 
66 static inline int ceiling_fp(int32_t x)
67 {
68 	int mask, ret;
69 
70 	ret = fp_toint(x);
71 	mask = (1 << FRAC_BITS) - 1;
72 	if (x & mask)
73 		ret += 1;
74 	return ret;
75 }
76 
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 	return (x * y) >> EXT_FRAC_BITS;
80 }
81 
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 	return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86 
87 static inline int32_t percent_ext_fp(int percent)
88 {
89 	return div_ext_fp(percent, 100);
90 }
91 
92 /**
93  * struct sample -	Store performance sample
94  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
95  *			performance during last sample period
96  * @busy_scaled:	Scaled busy value which is used to calculate next
97  *			P state. This can be different than core_avg_perf
98  *			to account for cpu idle period
99  * @aperf:		Difference of actual performance frequency clock count
100  *			read from APERF MSR between last and current sample
101  * @mperf:		Difference of maximum performance frequency clock count
102  *			read from MPERF MSR between last and current sample
103  * @tsc:		Difference of time stamp counter between last and
104  *			current sample
105  * @time:		Current time from scheduler
106  *
107  * This structure is used in the cpudata structure to store performance sample
108  * data for choosing next P State.
109  */
110 struct sample {
111 	int32_t core_avg_perf;
112 	int32_t busy_scaled;
113 	u64 aperf;
114 	u64 mperf;
115 	u64 tsc;
116 	u64 time;
117 };
118 
119 /**
120  * struct pstate_data - Store P state data
121  * @current_pstate:	Current requested P state
122  * @min_pstate:		Min P state possible for this platform
123  * @max_pstate:		Max P state possible for this platform
124  * @max_pstate_physical:This is physical Max P state for a processor
125  *			This can be higher than the max_pstate which can
126  *			be limited by platform thermal design power limits
127  * @scaling:		Scaling factor to  convert frequency to cpufreq
128  *			frequency units
129  * @turbo_pstate:	Max Turbo P state possible for this platform
130  * @max_freq:		@max_pstate frequency in cpufreq units
131  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132  *
133  * Stores the per cpu model P state limits and current P state.
134  */
135 struct pstate_data {
136 	int	current_pstate;
137 	int	min_pstate;
138 	int	max_pstate;
139 	int	max_pstate_physical;
140 	int	scaling;
141 	int	turbo_pstate;
142 	unsigned int max_freq;
143 	unsigned int turbo_freq;
144 };
145 
146 /**
147  * struct vid_data -	Stores voltage information data
148  * @min:		VID data for this platform corresponding to
149  *			the lowest P state
150  * @max:		VID data corresponding to the highest P State.
151  * @turbo:		VID data for turbo P state
152  * @ratio:		Ratio of (vid max - vid min) /
153  *			(max P state - Min P State)
154  *
155  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156  * This data is used in Atom platforms, where in addition to target P state,
157  * the voltage data needs to be specified to select next P State.
158  */
159 struct vid_data {
160 	int min;
161 	int max;
162 	int turbo;
163 	int32_t ratio;
164 };
165 
166 /**
167  * struct _pid -	Stores PID data
168  * @setpoint:		Target set point for busyness or performance
169  * @integral:		Storage for accumulated error values
170  * @p_gain:		PID proportional gain
171  * @i_gain:		PID integral gain
172  * @d_gain:		PID derivative gain
173  * @deadband:		PID deadband
174  * @last_err:		Last error storage for integral part of PID calculation
175  *
176  * Stores PID coefficients and last error for PID controller.
177  */
178 struct _pid {
179 	int setpoint;
180 	int32_t integral;
181 	int32_t p_gain;
182 	int32_t i_gain;
183 	int32_t d_gain;
184 	int deadband;
185 	int32_t last_err;
186 };
187 
188 /**
189  * struct global_params - Global parameters, mostly tunable via sysfs.
190  * @no_turbo:		Whether or not to use turbo P-states.
191  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
192  *			based on the MSR_IA32_MISC_ENABLE value and whether or
193  *			not the maximum reported turbo P-state is different from
194  *			the maximum reported non-turbo one.
195  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
196  *			P-state capacity.
197  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
198  *			P-state capacity.
199  */
200 struct global_params {
201 	bool no_turbo;
202 	bool turbo_disabled;
203 	int max_perf_pct;
204 	int min_perf_pct;
205 };
206 
207 /**
208  * struct cpudata -	Per CPU instance data storage
209  * @cpu:		CPU number for this instance data
210  * @policy:		CPUFreq policy value
211  * @update_util:	CPUFreq utility callback information
212  * @update_util_set:	CPUFreq utility callback is set
213  * @iowait_boost:	iowait-related boost fraction
214  * @last_update:	Time of the last update.
215  * @pstate:		Stores P state limits for this CPU
216  * @vid:		Stores VID limits for this CPU
217  * @pid:		Stores PID parameters for this CPU
218  * @last_sample_time:	Last Sample time
219  * @prev_aperf:		Last APERF value read from APERF MSR
220  * @prev_mperf:		Last MPERF value read from MPERF MSR
221  * @prev_tsc:		Last timestamp counter (TSC) value
222  * @prev_cummulative_iowait: IO Wait time difference from last and
223  *			current sample
224  * @sample:		Storage for storing last Sample data
225  * @min_perf:		Minimum capacity limit as a fraction of the maximum
226  *			turbo P-state capacity.
227  * @max_perf:		Maximum capacity limit as a fraction of the maximum
228  *			turbo P-state capacity.
229  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
230  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
231  * @epp_powersave:	Last saved HWP energy performance preference
232  *			(EPP) or energy performance bias (EPB),
233  *			when policy switched to performance
234  * @epp_policy:		Last saved policy used to set EPP/EPB
235  * @epp_default:	Power on default HWP energy performance
236  *			preference/bias
237  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
238  *			operation
239  *
240  * This structure stores per CPU instance data for all CPUs.
241  */
242 struct cpudata {
243 	int cpu;
244 
245 	unsigned int policy;
246 	struct update_util_data update_util;
247 	bool   update_util_set;
248 
249 	struct pstate_data pstate;
250 	struct vid_data vid;
251 	struct _pid pid;
252 
253 	u64	last_update;
254 	u64	last_sample_time;
255 	u64	prev_aperf;
256 	u64	prev_mperf;
257 	u64	prev_tsc;
258 	u64	prev_cummulative_iowait;
259 	struct sample sample;
260 	int32_t	min_perf;
261 	int32_t	max_perf;
262 #ifdef CONFIG_ACPI
263 	struct acpi_processor_performance acpi_perf_data;
264 	bool valid_pss_table;
265 #endif
266 	unsigned int iowait_boost;
267 	s16 epp_powersave;
268 	s16 epp_policy;
269 	s16 epp_default;
270 	s16 epp_saved;
271 };
272 
273 static struct cpudata **all_cpu_data;
274 
275 /**
276  * struct pstate_adjust_policy - Stores static PID configuration data
277  * @sample_rate_ms:	PID calculation sample rate in ms
278  * @sample_rate_ns:	Sample rate calculation in ns
279  * @deadband:		PID deadband
280  * @setpoint:		PID Setpoint
281  * @p_gain_pct:		PID proportional gain
282  * @i_gain_pct:		PID integral gain
283  * @d_gain_pct:		PID derivative gain
284  *
285  * Stores per CPU model static PID configuration data.
286  */
287 struct pstate_adjust_policy {
288 	int sample_rate_ms;
289 	s64 sample_rate_ns;
290 	int deadband;
291 	int setpoint;
292 	int p_gain_pct;
293 	int d_gain_pct;
294 	int i_gain_pct;
295 };
296 
297 /**
298  * struct pstate_funcs - Per CPU model specific callbacks
299  * @get_max:		Callback to get maximum non turbo effective P state
300  * @get_max_physical:	Callback to get maximum non turbo physical P state
301  * @get_min:		Callback to get minimum P state
302  * @get_turbo:		Callback to get turbo P state
303  * @get_scaling:	Callback to get frequency scaling factor
304  * @get_val:		Callback to convert P state to actual MSR write value
305  * @get_vid:		Callback to get VID data for Atom platforms
306  * @get_target_pstate:	Callback to a function to calculate next P state to use
307  *
308  * Core and Atom CPU models have different way to get P State limits. This
309  * structure is used to store those callbacks.
310  */
311 struct pstate_funcs {
312 	int (*get_max)(void);
313 	int (*get_max_physical)(void);
314 	int (*get_min)(void);
315 	int (*get_turbo)(void);
316 	int (*get_scaling)(void);
317 	u64 (*get_val)(struct cpudata*, int pstate);
318 	void (*get_vid)(struct cpudata *);
319 	int32_t (*get_target_pstate)(struct cpudata *);
320 };
321 
322 /**
323  * struct cpu_defaults- Per CPU model default config data
324  * @funcs:		Callback function data
325  */
326 struct cpu_defaults {
327 	struct pstate_funcs funcs;
328 };
329 
330 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
331 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
332 
333 static struct pstate_funcs pstate_funcs __read_mostly;
334 static struct pstate_adjust_policy pid_params __read_mostly = {
335 	.sample_rate_ms = 10,
336 	.sample_rate_ns = 10 * NSEC_PER_MSEC,
337 	.deadband = 0,
338 	.setpoint = 97,
339 	.p_gain_pct = 20,
340 	.d_gain_pct = 0,
341 	.i_gain_pct = 0,
342 };
343 
344 static int hwp_active __read_mostly;
345 static bool per_cpu_limits __read_mostly;
346 
347 static bool driver_registered __read_mostly;
348 
349 #ifdef CONFIG_ACPI
350 static bool acpi_ppc;
351 #endif
352 
353 static struct global_params global;
354 
355 static DEFINE_MUTEX(intel_pstate_driver_lock);
356 static DEFINE_MUTEX(intel_pstate_limits_lock);
357 
358 #ifdef CONFIG_ACPI
359 
360 static bool intel_pstate_get_ppc_enable_status(void)
361 {
362 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
363 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
364 		return true;
365 
366 	return acpi_ppc;
367 }
368 
369 #ifdef CONFIG_ACPI_CPPC_LIB
370 
371 /* The work item is needed to avoid CPU hotplug locking issues */
372 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
373 {
374 	sched_set_itmt_support();
375 }
376 
377 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
378 
379 static void intel_pstate_set_itmt_prio(int cpu)
380 {
381 	struct cppc_perf_caps cppc_perf;
382 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
383 	int ret;
384 
385 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
386 	if (ret)
387 		return;
388 
389 	/*
390 	 * The priorities can be set regardless of whether or not
391 	 * sched_set_itmt_support(true) has been called and it is valid to
392 	 * update them at any time after it has been called.
393 	 */
394 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
395 
396 	if (max_highest_perf <= min_highest_perf) {
397 		if (cppc_perf.highest_perf > max_highest_perf)
398 			max_highest_perf = cppc_perf.highest_perf;
399 
400 		if (cppc_perf.highest_perf < min_highest_perf)
401 			min_highest_perf = cppc_perf.highest_perf;
402 
403 		if (max_highest_perf > min_highest_perf) {
404 			/*
405 			 * This code can be run during CPU online under the
406 			 * CPU hotplug locks, so sched_set_itmt_support()
407 			 * cannot be called from here.  Queue up a work item
408 			 * to invoke it.
409 			 */
410 			schedule_work(&sched_itmt_work);
411 		}
412 	}
413 }
414 #else
415 static void intel_pstate_set_itmt_prio(int cpu)
416 {
417 }
418 #endif
419 
420 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
421 {
422 	struct cpudata *cpu;
423 	int ret;
424 	int i;
425 
426 	if (hwp_active) {
427 		intel_pstate_set_itmt_prio(policy->cpu);
428 		return;
429 	}
430 
431 	if (!intel_pstate_get_ppc_enable_status())
432 		return;
433 
434 	cpu = all_cpu_data[policy->cpu];
435 
436 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
437 						  policy->cpu);
438 	if (ret)
439 		return;
440 
441 	/*
442 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
443 	 * guarantee that the states returned by it map to the states in our
444 	 * list directly.
445 	 */
446 	if (cpu->acpi_perf_data.control_register.space_id !=
447 						ACPI_ADR_SPACE_FIXED_HARDWARE)
448 		goto err;
449 
450 	/*
451 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
452 	 * usual without taking _PSS into account
453 	 */
454 	if (cpu->acpi_perf_data.state_count < 2)
455 		goto err;
456 
457 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
458 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
459 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
460 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
461 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
462 			 (u32) cpu->acpi_perf_data.states[i].power,
463 			 (u32) cpu->acpi_perf_data.states[i].control);
464 	}
465 
466 	/*
467 	 * The _PSS table doesn't contain whole turbo frequency range.
468 	 * This just contains +1 MHZ above the max non turbo frequency,
469 	 * with control value corresponding to max turbo ratio. But
470 	 * when cpufreq set policy is called, it will call with this
471 	 * max frequency, which will cause a reduced performance as
472 	 * this driver uses real max turbo frequency as the max
473 	 * frequency. So correct this frequency in _PSS table to
474 	 * correct max turbo frequency based on the turbo state.
475 	 * Also need to convert to MHz as _PSS freq is in MHz.
476 	 */
477 	if (!global.turbo_disabled)
478 		cpu->acpi_perf_data.states[0].core_frequency =
479 					policy->cpuinfo.max_freq / 1000;
480 	cpu->valid_pss_table = true;
481 	pr_debug("_PPC limits will be enforced\n");
482 
483 	return;
484 
485  err:
486 	cpu->valid_pss_table = false;
487 	acpi_processor_unregister_performance(policy->cpu);
488 }
489 
490 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
491 {
492 	struct cpudata *cpu;
493 
494 	cpu = all_cpu_data[policy->cpu];
495 	if (!cpu->valid_pss_table)
496 		return;
497 
498 	acpi_processor_unregister_performance(policy->cpu);
499 }
500 #else
501 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
502 {
503 }
504 
505 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
506 {
507 }
508 #endif
509 
510 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
511 			     int deadband, int integral) {
512 	pid->setpoint = int_tofp(setpoint);
513 	pid->deadband  = int_tofp(deadband);
514 	pid->integral  = int_tofp(integral);
515 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
516 }
517 
518 static inline void pid_p_gain_set(struct _pid *pid, int percent)
519 {
520 	pid->p_gain = div_fp(percent, 100);
521 }
522 
523 static inline void pid_i_gain_set(struct _pid *pid, int percent)
524 {
525 	pid->i_gain = div_fp(percent, 100);
526 }
527 
528 static inline void pid_d_gain_set(struct _pid *pid, int percent)
529 {
530 	pid->d_gain = div_fp(percent, 100);
531 }
532 
533 static signed int pid_calc(struct _pid *pid, int32_t busy)
534 {
535 	signed int result;
536 	int32_t pterm, dterm, fp_error;
537 	int32_t integral_limit;
538 
539 	fp_error = pid->setpoint - busy;
540 
541 	if (abs(fp_error) <= pid->deadband)
542 		return 0;
543 
544 	pterm = mul_fp(pid->p_gain, fp_error);
545 
546 	pid->integral += fp_error;
547 
548 	/*
549 	 * We limit the integral here so that it will never
550 	 * get higher than 30.  This prevents it from becoming
551 	 * too large an input over long periods of time and allows
552 	 * it to get factored out sooner.
553 	 *
554 	 * The value of 30 was chosen through experimentation.
555 	 */
556 	integral_limit = int_tofp(30);
557 	if (pid->integral > integral_limit)
558 		pid->integral = integral_limit;
559 	if (pid->integral < -integral_limit)
560 		pid->integral = -integral_limit;
561 
562 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
563 	pid->last_err = fp_error;
564 
565 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
566 	result = result + (1 << (FRAC_BITS-1));
567 	return (signed int)fp_toint(result);
568 }
569 
570 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
571 {
572 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
573 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
574 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
575 
576 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
577 }
578 
579 static inline void intel_pstate_reset_all_pid(void)
580 {
581 	unsigned int cpu;
582 
583 	for_each_online_cpu(cpu) {
584 		if (all_cpu_data[cpu])
585 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
586 	}
587 }
588 
589 static inline void update_turbo_state(void)
590 {
591 	u64 misc_en;
592 	struct cpudata *cpu;
593 
594 	cpu = all_cpu_data[0];
595 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
596 	global.turbo_disabled =
597 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
598 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
599 }
600 
601 static int min_perf_pct_min(void)
602 {
603 	struct cpudata *cpu = all_cpu_data[0];
604 
605 	return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
606 			    cpu->pstate.turbo_pstate);
607 }
608 
609 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
610 {
611 	u64 epb;
612 	int ret;
613 
614 	if (!static_cpu_has(X86_FEATURE_EPB))
615 		return -ENXIO;
616 
617 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
618 	if (ret)
619 		return (s16)ret;
620 
621 	return (s16)(epb & 0x0f);
622 }
623 
624 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
625 {
626 	s16 epp;
627 
628 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
629 		/*
630 		 * When hwp_req_data is 0, means that caller didn't read
631 		 * MSR_HWP_REQUEST, so need to read and get EPP.
632 		 */
633 		if (!hwp_req_data) {
634 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
635 					    &hwp_req_data);
636 			if (epp)
637 				return epp;
638 		}
639 		epp = (hwp_req_data >> 24) & 0xff;
640 	} else {
641 		/* When there is no EPP present, HWP uses EPB settings */
642 		epp = intel_pstate_get_epb(cpu_data);
643 	}
644 
645 	return epp;
646 }
647 
648 static int intel_pstate_set_epb(int cpu, s16 pref)
649 {
650 	u64 epb;
651 	int ret;
652 
653 	if (!static_cpu_has(X86_FEATURE_EPB))
654 		return -ENXIO;
655 
656 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
657 	if (ret)
658 		return ret;
659 
660 	epb = (epb & ~0x0f) | pref;
661 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
662 
663 	return 0;
664 }
665 
666 /*
667  * EPP/EPB display strings corresponding to EPP index in the
668  * energy_perf_strings[]
669  *	index		String
670  *-------------------------------------
671  *	0		default
672  *	1		performance
673  *	2		balance_performance
674  *	3		balance_power
675  *	4		power
676  */
677 static const char * const energy_perf_strings[] = {
678 	"default",
679 	"performance",
680 	"balance_performance",
681 	"balance_power",
682 	"power",
683 	NULL
684 };
685 
686 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
687 {
688 	s16 epp;
689 	int index = -EINVAL;
690 
691 	epp = intel_pstate_get_epp(cpu_data, 0);
692 	if (epp < 0)
693 		return epp;
694 
695 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
696 		/*
697 		 * Range:
698 		 *	0x00-0x3F	:	Performance
699 		 *	0x40-0x7F	:	Balance performance
700 		 *	0x80-0xBF	:	Balance power
701 		 *	0xC0-0xFF	:	Power
702 		 * The EPP is a 8 bit value, but our ranges restrict the
703 		 * value which can be set. Here only using top two bits
704 		 * effectively.
705 		 */
706 		index = (epp >> 6) + 1;
707 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
708 		/*
709 		 * Range:
710 		 *	0x00-0x03	:	Performance
711 		 *	0x04-0x07	:	Balance performance
712 		 *	0x08-0x0B	:	Balance power
713 		 *	0x0C-0x0F	:	Power
714 		 * The EPB is a 4 bit value, but our ranges restrict the
715 		 * value which can be set. Here only using top two bits
716 		 * effectively.
717 		 */
718 		index = (epp >> 2) + 1;
719 	}
720 
721 	return index;
722 }
723 
724 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
725 					      int pref_index)
726 {
727 	int epp = -EINVAL;
728 	int ret;
729 
730 	if (!pref_index)
731 		epp = cpu_data->epp_default;
732 
733 	mutex_lock(&intel_pstate_limits_lock);
734 
735 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
736 		u64 value;
737 
738 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
739 		if (ret)
740 			goto return_pref;
741 
742 		value &= ~GENMASK_ULL(31, 24);
743 
744 		/*
745 		 * If epp is not default, convert from index into
746 		 * energy_perf_strings to epp value, by shifting 6
747 		 * bits left to use only top two bits in epp.
748 		 * The resultant epp need to shifted by 24 bits to
749 		 * epp position in MSR_HWP_REQUEST.
750 		 */
751 		if (epp == -EINVAL)
752 			epp = (pref_index - 1) << 6;
753 
754 		value |= (u64)epp << 24;
755 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
756 	} else {
757 		if (epp == -EINVAL)
758 			epp = (pref_index - 1) << 2;
759 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
760 	}
761 return_pref:
762 	mutex_unlock(&intel_pstate_limits_lock);
763 
764 	return ret;
765 }
766 
767 static ssize_t show_energy_performance_available_preferences(
768 				struct cpufreq_policy *policy, char *buf)
769 {
770 	int i = 0;
771 	int ret = 0;
772 
773 	while (energy_perf_strings[i] != NULL)
774 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
775 
776 	ret += sprintf(&buf[ret], "\n");
777 
778 	return ret;
779 }
780 
781 cpufreq_freq_attr_ro(energy_performance_available_preferences);
782 
783 static ssize_t store_energy_performance_preference(
784 		struct cpufreq_policy *policy, const char *buf, size_t count)
785 {
786 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
787 	char str_preference[21];
788 	int ret, i = 0;
789 
790 	ret = sscanf(buf, "%20s", str_preference);
791 	if (ret != 1)
792 		return -EINVAL;
793 
794 	while (energy_perf_strings[i] != NULL) {
795 		if (!strcmp(str_preference, energy_perf_strings[i])) {
796 			intel_pstate_set_energy_pref_index(cpu_data, i);
797 			return count;
798 		}
799 		++i;
800 	}
801 
802 	return -EINVAL;
803 }
804 
805 static ssize_t show_energy_performance_preference(
806 				struct cpufreq_policy *policy, char *buf)
807 {
808 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
809 	int preference;
810 
811 	preference = intel_pstate_get_energy_pref_index(cpu_data);
812 	if (preference < 0)
813 		return preference;
814 
815 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
816 }
817 
818 cpufreq_freq_attr_rw(energy_performance_preference);
819 
820 static struct freq_attr *hwp_cpufreq_attrs[] = {
821 	&energy_performance_preference,
822 	&energy_performance_available_preferences,
823 	NULL,
824 };
825 
826 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
827 {
828 	int min, hw_min, max, hw_max, cpu;
829 	u64 value, cap;
830 
831 	for_each_cpu(cpu, policy->cpus) {
832 		struct cpudata *cpu_data = all_cpu_data[cpu];
833 		s16 epp;
834 
835 		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
836 		hw_min = HWP_LOWEST_PERF(cap);
837 		if (global.no_turbo)
838 			hw_max = HWP_GUARANTEED_PERF(cap);
839 		else
840 			hw_max = HWP_HIGHEST_PERF(cap);
841 
842 		max = fp_ext_toint(hw_max * cpu_data->max_perf);
843 		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
844 			min = max;
845 		else
846 			min = fp_ext_toint(hw_max * cpu_data->min_perf);
847 
848 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
849 
850 		value &= ~HWP_MIN_PERF(~0L);
851 		value |= HWP_MIN_PERF(min);
852 
853 		value &= ~HWP_MAX_PERF(~0L);
854 		value |= HWP_MAX_PERF(max);
855 
856 		if (cpu_data->epp_policy == cpu_data->policy)
857 			goto skip_epp;
858 
859 		cpu_data->epp_policy = cpu_data->policy;
860 
861 		if (cpu_data->epp_saved >= 0) {
862 			epp = cpu_data->epp_saved;
863 			cpu_data->epp_saved = -EINVAL;
864 			goto update_epp;
865 		}
866 
867 		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
868 			epp = intel_pstate_get_epp(cpu_data, value);
869 			cpu_data->epp_powersave = epp;
870 			/* If EPP read was failed, then don't try to write */
871 			if (epp < 0)
872 				goto skip_epp;
873 
874 
875 			epp = 0;
876 		} else {
877 			/* skip setting EPP, when saved value is invalid */
878 			if (cpu_data->epp_powersave < 0)
879 				goto skip_epp;
880 
881 			/*
882 			 * No need to restore EPP when it is not zero. This
883 			 * means:
884 			 *  - Policy is not changed
885 			 *  - user has manually changed
886 			 *  - Error reading EPB
887 			 */
888 			epp = intel_pstate_get_epp(cpu_data, value);
889 			if (epp)
890 				goto skip_epp;
891 
892 			epp = cpu_data->epp_powersave;
893 		}
894 update_epp:
895 		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
896 			value &= ~GENMASK_ULL(31, 24);
897 			value |= (u64)epp << 24;
898 		} else {
899 			intel_pstate_set_epb(cpu, epp);
900 		}
901 skip_epp:
902 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
903 	}
904 }
905 
906 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
907 {
908 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
909 
910 	if (!hwp_active)
911 		return 0;
912 
913 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
914 
915 	return 0;
916 }
917 
918 static int intel_pstate_resume(struct cpufreq_policy *policy)
919 {
920 	if (!hwp_active)
921 		return 0;
922 
923 	mutex_lock(&intel_pstate_limits_lock);
924 
925 	all_cpu_data[policy->cpu]->epp_policy = 0;
926 	intel_pstate_hwp_set(policy);
927 
928 	mutex_unlock(&intel_pstate_limits_lock);
929 
930 	return 0;
931 }
932 
933 static void intel_pstate_update_policies(void)
934 {
935 	int cpu;
936 
937 	for_each_possible_cpu(cpu)
938 		cpufreq_update_policy(cpu);
939 }
940 
941 /************************** debugfs begin ************************/
942 static int pid_param_set(void *data, u64 val)
943 {
944 	*(u32 *)data = val;
945 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
946 	intel_pstate_reset_all_pid();
947 	return 0;
948 }
949 
950 static int pid_param_get(void *data, u64 *val)
951 {
952 	*val = *(u32 *)data;
953 	return 0;
954 }
955 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
956 
957 static struct dentry *debugfs_parent;
958 
959 struct pid_param {
960 	char *name;
961 	void *value;
962 	struct dentry *dentry;
963 };
964 
965 static struct pid_param pid_files[] = {
966 	{"sample_rate_ms", &pid_params.sample_rate_ms, },
967 	{"d_gain_pct", &pid_params.d_gain_pct, },
968 	{"i_gain_pct", &pid_params.i_gain_pct, },
969 	{"deadband", &pid_params.deadband, },
970 	{"setpoint", &pid_params.setpoint, },
971 	{"p_gain_pct", &pid_params.p_gain_pct, },
972 	{NULL, NULL, }
973 };
974 
975 static void intel_pstate_debug_expose_params(void)
976 {
977 	int i;
978 
979 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
980 	if (IS_ERR_OR_NULL(debugfs_parent))
981 		return;
982 
983 	for (i = 0; pid_files[i].name; i++) {
984 		struct dentry *dentry;
985 
986 		dentry = debugfs_create_file(pid_files[i].name, 0660,
987 					     debugfs_parent, pid_files[i].value,
988 					     &fops_pid_param);
989 		if (!IS_ERR(dentry))
990 			pid_files[i].dentry = dentry;
991 	}
992 }
993 
994 static void intel_pstate_debug_hide_params(void)
995 {
996 	int i;
997 
998 	if (IS_ERR_OR_NULL(debugfs_parent))
999 		return;
1000 
1001 	for (i = 0; pid_files[i].name; i++) {
1002 		debugfs_remove(pid_files[i].dentry);
1003 		pid_files[i].dentry = NULL;
1004 	}
1005 
1006 	debugfs_remove(debugfs_parent);
1007 	debugfs_parent = NULL;
1008 }
1009 
1010 /************************** debugfs end ************************/
1011 
1012 /************************** sysfs begin ************************/
1013 #define show_one(file_name, object)					\
1014 	static ssize_t show_##file_name					\
1015 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
1016 	{								\
1017 		return sprintf(buf, "%u\n", global.object);		\
1018 	}
1019 
1020 static ssize_t intel_pstate_show_status(char *buf);
1021 static int intel_pstate_update_status(const char *buf, size_t size);
1022 
1023 static ssize_t show_status(struct kobject *kobj,
1024 			   struct attribute *attr, char *buf)
1025 {
1026 	ssize_t ret;
1027 
1028 	mutex_lock(&intel_pstate_driver_lock);
1029 	ret = intel_pstate_show_status(buf);
1030 	mutex_unlock(&intel_pstate_driver_lock);
1031 
1032 	return ret;
1033 }
1034 
1035 static ssize_t store_status(struct kobject *a, struct attribute *b,
1036 			    const char *buf, size_t count)
1037 {
1038 	char *p = memchr(buf, '\n', count);
1039 	int ret;
1040 
1041 	mutex_lock(&intel_pstate_driver_lock);
1042 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1043 	mutex_unlock(&intel_pstate_driver_lock);
1044 
1045 	return ret < 0 ? ret : count;
1046 }
1047 
1048 static ssize_t show_turbo_pct(struct kobject *kobj,
1049 				struct attribute *attr, char *buf)
1050 {
1051 	struct cpudata *cpu;
1052 	int total, no_turbo, turbo_pct;
1053 	uint32_t turbo_fp;
1054 
1055 	mutex_lock(&intel_pstate_driver_lock);
1056 
1057 	if (!driver_registered) {
1058 		mutex_unlock(&intel_pstate_driver_lock);
1059 		return -EAGAIN;
1060 	}
1061 
1062 	cpu = all_cpu_data[0];
1063 
1064 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1065 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1066 	turbo_fp = div_fp(no_turbo, total);
1067 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1068 
1069 	mutex_unlock(&intel_pstate_driver_lock);
1070 
1071 	return sprintf(buf, "%u\n", turbo_pct);
1072 }
1073 
1074 static ssize_t show_num_pstates(struct kobject *kobj,
1075 				struct attribute *attr, char *buf)
1076 {
1077 	struct cpudata *cpu;
1078 	int total;
1079 
1080 	mutex_lock(&intel_pstate_driver_lock);
1081 
1082 	if (!driver_registered) {
1083 		mutex_unlock(&intel_pstate_driver_lock);
1084 		return -EAGAIN;
1085 	}
1086 
1087 	cpu = all_cpu_data[0];
1088 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1089 
1090 	mutex_unlock(&intel_pstate_driver_lock);
1091 
1092 	return sprintf(buf, "%u\n", total);
1093 }
1094 
1095 static ssize_t show_no_turbo(struct kobject *kobj,
1096 			     struct attribute *attr, char *buf)
1097 {
1098 	ssize_t ret;
1099 
1100 	mutex_lock(&intel_pstate_driver_lock);
1101 
1102 	if (!driver_registered) {
1103 		mutex_unlock(&intel_pstate_driver_lock);
1104 		return -EAGAIN;
1105 	}
1106 
1107 	update_turbo_state();
1108 	if (global.turbo_disabled)
1109 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1110 	else
1111 		ret = sprintf(buf, "%u\n", global.no_turbo);
1112 
1113 	mutex_unlock(&intel_pstate_driver_lock);
1114 
1115 	return ret;
1116 }
1117 
1118 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1119 			      const char *buf, size_t count)
1120 {
1121 	unsigned int input;
1122 	int ret;
1123 
1124 	ret = sscanf(buf, "%u", &input);
1125 	if (ret != 1)
1126 		return -EINVAL;
1127 
1128 	mutex_lock(&intel_pstate_driver_lock);
1129 
1130 	if (!driver_registered) {
1131 		mutex_unlock(&intel_pstate_driver_lock);
1132 		return -EAGAIN;
1133 	}
1134 
1135 	mutex_lock(&intel_pstate_limits_lock);
1136 
1137 	update_turbo_state();
1138 	if (global.turbo_disabled) {
1139 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1140 		mutex_unlock(&intel_pstate_limits_lock);
1141 		mutex_unlock(&intel_pstate_driver_lock);
1142 		return -EPERM;
1143 	}
1144 
1145 	global.no_turbo = clamp_t(int, input, 0, 1);
1146 
1147 	if (global.no_turbo) {
1148 		struct cpudata *cpu = all_cpu_data[0];
1149 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1150 
1151 		/* Squash the global minimum into the permitted range. */
1152 		if (global.min_perf_pct > pct)
1153 			global.min_perf_pct = pct;
1154 	}
1155 
1156 	mutex_unlock(&intel_pstate_limits_lock);
1157 
1158 	intel_pstate_update_policies();
1159 
1160 	mutex_unlock(&intel_pstate_driver_lock);
1161 
1162 	return count;
1163 }
1164 
1165 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1166 				  const char *buf, size_t count)
1167 {
1168 	unsigned int input;
1169 	int ret;
1170 
1171 	ret = sscanf(buf, "%u", &input);
1172 	if (ret != 1)
1173 		return -EINVAL;
1174 
1175 	mutex_lock(&intel_pstate_driver_lock);
1176 
1177 	if (!driver_registered) {
1178 		mutex_unlock(&intel_pstate_driver_lock);
1179 		return -EAGAIN;
1180 	}
1181 
1182 	mutex_lock(&intel_pstate_limits_lock);
1183 
1184 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1185 
1186 	mutex_unlock(&intel_pstate_limits_lock);
1187 
1188 	intel_pstate_update_policies();
1189 
1190 	mutex_unlock(&intel_pstate_driver_lock);
1191 
1192 	return count;
1193 }
1194 
1195 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1196 				  const char *buf, size_t count)
1197 {
1198 	unsigned int input;
1199 	int ret;
1200 
1201 	ret = sscanf(buf, "%u", &input);
1202 	if (ret != 1)
1203 		return -EINVAL;
1204 
1205 	mutex_lock(&intel_pstate_driver_lock);
1206 
1207 	if (!driver_registered) {
1208 		mutex_unlock(&intel_pstate_driver_lock);
1209 		return -EAGAIN;
1210 	}
1211 
1212 	mutex_lock(&intel_pstate_limits_lock);
1213 
1214 	global.min_perf_pct = clamp_t(int, input,
1215 				      min_perf_pct_min(), global.max_perf_pct);
1216 
1217 	mutex_unlock(&intel_pstate_limits_lock);
1218 
1219 	intel_pstate_update_policies();
1220 
1221 	mutex_unlock(&intel_pstate_driver_lock);
1222 
1223 	return count;
1224 }
1225 
1226 show_one(max_perf_pct, max_perf_pct);
1227 show_one(min_perf_pct, min_perf_pct);
1228 
1229 define_one_global_rw(status);
1230 define_one_global_rw(no_turbo);
1231 define_one_global_rw(max_perf_pct);
1232 define_one_global_rw(min_perf_pct);
1233 define_one_global_ro(turbo_pct);
1234 define_one_global_ro(num_pstates);
1235 
1236 static struct attribute *intel_pstate_attributes[] = {
1237 	&status.attr,
1238 	&no_turbo.attr,
1239 	&turbo_pct.attr,
1240 	&num_pstates.attr,
1241 	NULL
1242 };
1243 
1244 static struct attribute_group intel_pstate_attr_group = {
1245 	.attrs = intel_pstate_attributes,
1246 };
1247 
1248 static void __init intel_pstate_sysfs_expose_params(void)
1249 {
1250 	struct kobject *intel_pstate_kobject;
1251 	int rc;
1252 
1253 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1254 						&cpu_subsys.dev_root->kobj);
1255 	if (WARN_ON(!intel_pstate_kobject))
1256 		return;
1257 
1258 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1259 	if (WARN_ON(rc))
1260 		return;
1261 
1262 	/*
1263 	 * If per cpu limits are enforced there are no global limits, so
1264 	 * return without creating max/min_perf_pct attributes
1265 	 */
1266 	if (per_cpu_limits)
1267 		return;
1268 
1269 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1270 	WARN_ON(rc);
1271 
1272 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1273 	WARN_ON(rc);
1274 
1275 }
1276 /************************** sysfs end ************************/
1277 
1278 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1279 {
1280 	/* First disable HWP notification interrupt as we don't process them */
1281 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1282 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1283 
1284 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1285 	cpudata->epp_policy = 0;
1286 	if (cpudata->epp_default == -EINVAL)
1287 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1288 }
1289 
1290 #define MSR_IA32_POWER_CTL_BIT_EE	19
1291 
1292 /* Disable energy efficiency optimization */
1293 static void intel_pstate_disable_ee(int cpu)
1294 {
1295 	u64 power_ctl;
1296 	int ret;
1297 
1298 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1299 	if (ret)
1300 		return;
1301 
1302 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1303 		pr_info("Disabling energy efficiency optimization\n");
1304 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1305 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1306 	}
1307 }
1308 
1309 static int atom_get_min_pstate(void)
1310 {
1311 	u64 value;
1312 
1313 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1314 	return (value >> 8) & 0x7F;
1315 }
1316 
1317 static int atom_get_max_pstate(void)
1318 {
1319 	u64 value;
1320 
1321 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1322 	return (value >> 16) & 0x7F;
1323 }
1324 
1325 static int atom_get_turbo_pstate(void)
1326 {
1327 	u64 value;
1328 
1329 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1330 	return value & 0x7F;
1331 }
1332 
1333 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1334 {
1335 	u64 val;
1336 	int32_t vid_fp;
1337 	u32 vid;
1338 
1339 	val = (u64)pstate << 8;
1340 	if (global.no_turbo && !global.turbo_disabled)
1341 		val |= (u64)1 << 32;
1342 
1343 	vid_fp = cpudata->vid.min + mul_fp(
1344 		int_tofp(pstate - cpudata->pstate.min_pstate),
1345 		cpudata->vid.ratio);
1346 
1347 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1348 	vid = ceiling_fp(vid_fp);
1349 
1350 	if (pstate > cpudata->pstate.max_pstate)
1351 		vid = cpudata->vid.turbo;
1352 
1353 	return val | vid;
1354 }
1355 
1356 static int silvermont_get_scaling(void)
1357 {
1358 	u64 value;
1359 	int i;
1360 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1361 	static int silvermont_freq_table[] = {
1362 		83300, 100000, 133300, 116700, 80000};
1363 
1364 	rdmsrl(MSR_FSB_FREQ, value);
1365 	i = value & 0x7;
1366 	WARN_ON(i > 4);
1367 
1368 	return silvermont_freq_table[i];
1369 }
1370 
1371 static int airmont_get_scaling(void)
1372 {
1373 	u64 value;
1374 	int i;
1375 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1376 	static int airmont_freq_table[] = {
1377 		83300, 100000, 133300, 116700, 80000,
1378 		93300, 90000, 88900, 87500};
1379 
1380 	rdmsrl(MSR_FSB_FREQ, value);
1381 	i = value & 0xF;
1382 	WARN_ON(i > 8);
1383 
1384 	return airmont_freq_table[i];
1385 }
1386 
1387 static void atom_get_vid(struct cpudata *cpudata)
1388 {
1389 	u64 value;
1390 
1391 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1392 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1393 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1394 	cpudata->vid.ratio = div_fp(
1395 		cpudata->vid.max - cpudata->vid.min,
1396 		int_tofp(cpudata->pstate.max_pstate -
1397 			cpudata->pstate.min_pstate));
1398 
1399 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1400 	cpudata->vid.turbo = value & 0x7f;
1401 }
1402 
1403 static int core_get_min_pstate(void)
1404 {
1405 	u64 value;
1406 
1407 	rdmsrl(MSR_PLATFORM_INFO, value);
1408 	return (value >> 40) & 0xFF;
1409 }
1410 
1411 static int core_get_max_pstate_physical(void)
1412 {
1413 	u64 value;
1414 
1415 	rdmsrl(MSR_PLATFORM_INFO, value);
1416 	return (value >> 8) & 0xFF;
1417 }
1418 
1419 static int core_get_tdp_ratio(u64 plat_info)
1420 {
1421 	/* Check how many TDP levels present */
1422 	if (plat_info & 0x600000000) {
1423 		u64 tdp_ctrl;
1424 		u64 tdp_ratio;
1425 		int tdp_msr;
1426 		int err;
1427 
1428 		/* Get the TDP level (0, 1, 2) to get ratios */
1429 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1430 		if (err)
1431 			return err;
1432 
1433 		/* TDP MSR are continuous starting at 0x648 */
1434 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1435 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1436 		if (err)
1437 			return err;
1438 
1439 		/* For level 1 and 2, bits[23:16] contain the ratio */
1440 		if (tdp_ctrl & 0x03)
1441 			tdp_ratio >>= 16;
1442 
1443 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1444 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1445 
1446 		return (int)tdp_ratio;
1447 	}
1448 
1449 	return -ENXIO;
1450 }
1451 
1452 static int core_get_max_pstate(void)
1453 {
1454 	u64 tar;
1455 	u64 plat_info;
1456 	int max_pstate;
1457 	int tdp_ratio;
1458 	int err;
1459 
1460 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1461 	max_pstate = (plat_info >> 8) & 0xFF;
1462 
1463 	tdp_ratio = core_get_tdp_ratio(plat_info);
1464 	if (tdp_ratio <= 0)
1465 		return max_pstate;
1466 
1467 	if (hwp_active) {
1468 		/* Turbo activation ratio is not used on HWP platforms */
1469 		return tdp_ratio;
1470 	}
1471 
1472 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1473 	if (!err) {
1474 		int tar_levels;
1475 
1476 		/* Do some sanity checking for safety */
1477 		tar_levels = tar & 0xff;
1478 		if (tdp_ratio - 1 == tar_levels) {
1479 			max_pstate = tar_levels;
1480 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1481 		}
1482 	}
1483 
1484 	return max_pstate;
1485 }
1486 
1487 static int core_get_turbo_pstate(void)
1488 {
1489 	u64 value;
1490 	int nont, ret;
1491 
1492 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1493 	nont = core_get_max_pstate();
1494 	ret = (value) & 255;
1495 	if (ret <= nont)
1496 		ret = nont;
1497 	return ret;
1498 }
1499 
1500 static inline int core_get_scaling(void)
1501 {
1502 	return 100000;
1503 }
1504 
1505 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1506 {
1507 	u64 val;
1508 
1509 	val = (u64)pstate << 8;
1510 	if (global.no_turbo && !global.turbo_disabled)
1511 		val |= (u64)1 << 32;
1512 
1513 	return val;
1514 }
1515 
1516 static int knl_get_turbo_pstate(void)
1517 {
1518 	u64 value;
1519 	int nont, ret;
1520 
1521 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1522 	nont = core_get_max_pstate();
1523 	ret = (((value) >> 8) & 0xFF);
1524 	if (ret <= nont)
1525 		ret = nont;
1526 	return ret;
1527 }
1528 
1529 static struct cpu_defaults core_params = {
1530 	.funcs = {
1531 		.get_max = core_get_max_pstate,
1532 		.get_max_physical = core_get_max_pstate_physical,
1533 		.get_min = core_get_min_pstate,
1534 		.get_turbo = core_get_turbo_pstate,
1535 		.get_scaling = core_get_scaling,
1536 		.get_val = core_get_val,
1537 		.get_target_pstate = get_target_pstate_use_performance,
1538 	},
1539 };
1540 
1541 static const struct cpu_defaults silvermont_params = {
1542 	.funcs = {
1543 		.get_max = atom_get_max_pstate,
1544 		.get_max_physical = atom_get_max_pstate,
1545 		.get_min = atom_get_min_pstate,
1546 		.get_turbo = atom_get_turbo_pstate,
1547 		.get_val = atom_get_val,
1548 		.get_scaling = silvermont_get_scaling,
1549 		.get_vid = atom_get_vid,
1550 		.get_target_pstate = get_target_pstate_use_cpu_load,
1551 	},
1552 };
1553 
1554 static const struct cpu_defaults airmont_params = {
1555 	.funcs = {
1556 		.get_max = atom_get_max_pstate,
1557 		.get_max_physical = atom_get_max_pstate,
1558 		.get_min = atom_get_min_pstate,
1559 		.get_turbo = atom_get_turbo_pstate,
1560 		.get_val = atom_get_val,
1561 		.get_scaling = airmont_get_scaling,
1562 		.get_vid = atom_get_vid,
1563 		.get_target_pstate = get_target_pstate_use_cpu_load,
1564 	},
1565 };
1566 
1567 static const struct cpu_defaults knl_params = {
1568 	.funcs = {
1569 		.get_max = core_get_max_pstate,
1570 		.get_max_physical = core_get_max_pstate_physical,
1571 		.get_min = core_get_min_pstate,
1572 		.get_turbo = knl_get_turbo_pstate,
1573 		.get_scaling = core_get_scaling,
1574 		.get_val = core_get_val,
1575 		.get_target_pstate = get_target_pstate_use_performance,
1576 	},
1577 };
1578 
1579 static const struct cpu_defaults bxt_params = {
1580 	.funcs = {
1581 		.get_max = core_get_max_pstate,
1582 		.get_max_physical = core_get_max_pstate_physical,
1583 		.get_min = core_get_min_pstate,
1584 		.get_turbo = core_get_turbo_pstate,
1585 		.get_scaling = core_get_scaling,
1586 		.get_val = core_get_val,
1587 		.get_target_pstate = get_target_pstate_use_cpu_load,
1588 	},
1589 };
1590 
1591 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1592 {
1593 	int max_perf = cpu->pstate.turbo_pstate;
1594 	int max_perf_adj;
1595 	int min_perf;
1596 
1597 	if (global.no_turbo || global.turbo_disabled)
1598 		max_perf = cpu->pstate.max_pstate;
1599 
1600 	/*
1601 	 * performance can be limited by user through sysfs, by cpufreq
1602 	 * policy, or by cpu specific default values determined through
1603 	 * experimentation.
1604 	 */
1605 	max_perf_adj = fp_ext_toint(max_perf * cpu->max_perf);
1606 	*max = clamp_t(int, max_perf_adj,
1607 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1608 
1609 	min_perf = fp_ext_toint(max_perf * cpu->min_perf);
1610 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1611 }
1612 
1613 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1614 {
1615 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1616 	cpu->pstate.current_pstate = pstate;
1617 	/*
1618 	 * Generally, there is no guarantee that this code will always run on
1619 	 * the CPU being updated, so force the register update to run on the
1620 	 * right CPU.
1621 	 */
1622 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1623 		      pstate_funcs.get_val(cpu, pstate));
1624 }
1625 
1626 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1627 {
1628 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1629 }
1630 
1631 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1632 {
1633 	int min_pstate, max_pstate;
1634 
1635 	update_turbo_state();
1636 	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1637 	intel_pstate_set_pstate(cpu, max_pstate);
1638 }
1639 
1640 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1641 {
1642 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1643 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1644 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1645 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1646 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1647 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1648 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1649 
1650 	if (pstate_funcs.get_vid)
1651 		pstate_funcs.get_vid(cpu);
1652 
1653 	intel_pstate_set_min_pstate(cpu);
1654 }
1655 
1656 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1657 {
1658 	struct sample *sample = &cpu->sample;
1659 
1660 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1661 }
1662 
1663 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1664 {
1665 	u64 aperf, mperf;
1666 	unsigned long flags;
1667 	u64 tsc;
1668 
1669 	local_irq_save(flags);
1670 	rdmsrl(MSR_IA32_APERF, aperf);
1671 	rdmsrl(MSR_IA32_MPERF, mperf);
1672 	tsc = rdtsc();
1673 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1674 		local_irq_restore(flags);
1675 		return false;
1676 	}
1677 	local_irq_restore(flags);
1678 
1679 	cpu->last_sample_time = cpu->sample.time;
1680 	cpu->sample.time = time;
1681 	cpu->sample.aperf = aperf;
1682 	cpu->sample.mperf = mperf;
1683 	cpu->sample.tsc =  tsc;
1684 	cpu->sample.aperf -= cpu->prev_aperf;
1685 	cpu->sample.mperf -= cpu->prev_mperf;
1686 	cpu->sample.tsc -= cpu->prev_tsc;
1687 
1688 	cpu->prev_aperf = aperf;
1689 	cpu->prev_mperf = mperf;
1690 	cpu->prev_tsc = tsc;
1691 	/*
1692 	 * First time this function is invoked in a given cycle, all of the
1693 	 * previous sample data fields are equal to zero or stale and they must
1694 	 * be populated with meaningful numbers for things to work, so assume
1695 	 * that sample.time will always be reset before setting the utilization
1696 	 * update hook and make the caller skip the sample then.
1697 	 */
1698 	return !!cpu->last_sample_time;
1699 }
1700 
1701 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1702 {
1703 	return mul_ext_fp(cpu->sample.core_avg_perf,
1704 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1705 }
1706 
1707 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1708 {
1709 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1710 			  cpu->sample.core_avg_perf);
1711 }
1712 
1713 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1714 {
1715 	struct sample *sample = &cpu->sample;
1716 	int32_t busy_frac, boost;
1717 	int target, avg_pstate;
1718 
1719 	busy_frac = div_fp(sample->mperf, sample->tsc);
1720 
1721 	boost = cpu->iowait_boost;
1722 	cpu->iowait_boost >>= 1;
1723 
1724 	if (busy_frac < boost)
1725 		busy_frac = boost;
1726 
1727 	sample->busy_scaled = busy_frac * 100;
1728 
1729 	target = global.no_turbo || global.turbo_disabled ?
1730 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1731 	target += target >> 2;
1732 	target = mul_fp(target, busy_frac);
1733 	if (target < cpu->pstate.min_pstate)
1734 		target = cpu->pstate.min_pstate;
1735 
1736 	/*
1737 	 * If the average P-state during the previous cycle was higher than the
1738 	 * current target, add 50% of the difference to the target to reduce
1739 	 * possible performance oscillations and offset possible performance
1740 	 * loss related to moving the workload from one CPU to another within
1741 	 * a package/module.
1742 	 */
1743 	avg_pstate = get_avg_pstate(cpu);
1744 	if (avg_pstate > target)
1745 		target += (avg_pstate - target) >> 1;
1746 
1747 	return target;
1748 }
1749 
1750 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1751 {
1752 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1753 	u64 duration_ns;
1754 
1755 	/*
1756 	 * perf_scaled is the ratio of the average P-state during the last
1757 	 * sampling period to the P-state requested last time (in percent).
1758 	 *
1759 	 * That measures the system's response to the previous P-state
1760 	 * selection.
1761 	 */
1762 	max_pstate = cpu->pstate.max_pstate_physical;
1763 	current_pstate = cpu->pstate.current_pstate;
1764 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1765 			       div_fp(100 * max_pstate, current_pstate));
1766 
1767 	/*
1768 	 * Since our utilization update callback will not run unless we are
1769 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1770 	 * than our sample interval.  If it is, then we were idle for a long
1771 	 * enough period of time to adjust our performance metric.
1772 	 */
1773 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1774 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1775 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1776 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1777 	} else {
1778 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1779 		if (sample_ratio < int_tofp(1))
1780 			perf_scaled = 0;
1781 	}
1782 
1783 	cpu->sample.busy_scaled = perf_scaled;
1784 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1785 }
1786 
1787 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1788 {
1789 	int max_perf, min_perf;
1790 
1791 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1792 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1793 	return pstate;
1794 }
1795 
1796 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1797 {
1798 	if (pstate == cpu->pstate.current_pstate)
1799 		return;
1800 
1801 	cpu->pstate.current_pstate = pstate;
1802 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1803 }
1804 
1805 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1806 {
1807 	int from, target_pstate;
1808 	struct sample *sample;
1809 
1810 	from = cpu->pstate.current_pstate;
1811 
1812 	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1813 		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1814 
1815 	update_turbo_state();
1816 
1817 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1818 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1819 	intel_pstate_update_pstate(cpu, target_pstate);
1820 
1821 	sample = &cpu->sample;
1822 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1823 		fp_toint(sample->busy_scaled),
1824 		from,
1825 		cpu->pstate.current_pstate,
1826 		sample->mperf,
1827 		sample->aperf,
1828 		sample->tsc,
1829 		get_avg_frequency(cpu),
1830 		fp_toint(cpu->iowait_boost * 100));
1831 }
1832 
1833 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1834 				     unsigned int flags)
1835 {
1836 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1837 	u64 delta_ns;
1838 
1839 	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1840 		if (flags & SCHED_CPUFREQ_IOWAIT) {
1841 			cpu->iowait_boost = int_tofp(1);
1842 		} else if (cpu->iowait_boost) {
1843 			/* Clear iowait_boost if the CPU may have been idle. */
1844 			delta_ns = time - cpu->last_update;
1845 			if (delta_ns > TICK_NSEC)
1846 				cpu->iowait_boost = 0;
1847 		}
1848 		cpu->last_update = time;
1849 	}
1850 
1851 	delta_ns = time - cpu->sample.time;
1852 	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1853 		bool sample_taken = intel_pstate_sample(cpu, time);
1854 
1855 		if (sample_taken) {
1856 			intel_pstate_calc_avg_perf(cpu);
1857 			if (!hwp_active)
1858 				intel_pstate_adjust_busy_pstate(cpu);
1859 		}
1860 	}
1861 }
1862 
1863 #define ICPU(model, policy) \
1864 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1865 			(unsigned long)&policy }
1866 
1867 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1868 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
1869 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
1870 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
1871 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
1872 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
1873 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
1874 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
1875 	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
1876 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
1877 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
1878 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
1879 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
1880 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
1881 	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
1882 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
1883 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
1884 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1885 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1886 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1887 	{}
1888 };
1889 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1890 
1891 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1892 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1893 	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1894 	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1895 	{}
1896 };
1897 
1898 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1899 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1900 	{}
1901 };
1902 
1903 static int intel_pstate_init_cpu(unsigned int cpunum)
1904 {
1905 	struct cpudata *cpu;
1906 
1907 	cpu = all_cpu_data[cpunum];
1908 
1909 	if (!cpu) {
1910 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1911 		if (!cpu)
1912 			return -ENOMEM;
1913 
1914 		all_cpu_data[cpunum] = cpu;
1915 
1916 		cpu->epp_default = -EINVAL;
1917 		cpu->epp_powersave = -EINVAL;
1918 		cpu->epp_saved = -EINVAL;
1919 	}
1920 
1921 	cpu = all_cpu_data[cpunum];
1922 
1923 	cpu->cpu = cpunum;
1924 
1925 	if (hwp_active) {
1926 		const struct x86_cpu_id *id;
1927 
1928 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1929 		if (id)
1930 			intel_pstate_disable_ee(cpunum);
1931 
1932 		intel_pstate_hwp_enable(cpu);
1933 		pid_params.sample_rate_ms = 50;
1934 		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1935 	}
1936 
1937 	intel_pstate_get_cpu_pstates(cpu);
1938 
1939 	intel_pstate_busy_pid_reset(cpu);
1940 
1941 	pr_debug("controlling: cpu %d\n", cpunum);
1942 
1943 	return 0;
1944 }
1945 
1946 static unsigned int intel_pstate_get(unsigned int cpu_num)
1947 {
1948 	struct cpudata *cpu = all_cpu_data[cpu_num];
1949 
1950 	return cpu ? get_avg_frequency(cpu) : 0;
1951 }
1952 
1953 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1954 {
1955 	struct cpudata *cpu = all_cpu_data[cpu_num];
1956 
1957 	if (cpu->update_util_set)
1958 		return;
1959 
1960 	/* Prevent intel_pstate_update_util() from using stale data. */
1961 	cpu->sample.time = 0;
1962 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1963 				     intel_pstate_update_util);
1964 	cpu->update_util_set = true;
1965 }
1966 
1967 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1968 {
1969 	struct cpudata *cpu_data = all_cpu_data[cpu];
1970 
1971 	if (!cpu_data->update_util_set)
1972 		return;
1973 
1974 	cpufreq_remove_update_util_hook(cpu);
1975 	cpu_data->update_util_set = false;
1976 	synchronize_sched();
1977 }
1978 
1979 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1980 {
1981 	return global.turbo_disabled || global.no_turbo ?
1982 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1983 }
1984 
1985 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1986 					    struct cpudata *cpu)
1987 {
1988 	int max_freq = intel_pstate_get_max_freq(cpu);
1989 	int32_t max_policy_perf, min_policy_perf;
1990 
1991 	max_policy_perf = div_ext_fp(policy->max, max_freq);
1992 	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
1993 	if (policy->max == policy->min) {
1994 		min_policy_perf = max_policy_perf;
1995 	} else {
1996 		min_policy_perf = div_ext_fp(policy->min, max_freq);
1997 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1998 					  0, max_policy_perf);
1999 	}
2000 
2001 	/* Normalize user input to [min_perf, max_perf] */
2002 	if (per_cpu_limits) {
2003 		cpu->min_perf = min_policy_perf;
2004 		cpu->max_perf = max_policy_perf;
2005 	} else {
2006 		int32_t global_min, global_max;
2007 
2008 		/* Global limits are in percent of the maximum turbo P-state. */
2009 		global_max = percent_ext_fp(global.max_perf_pct);
2010 		global_min = percent_ext_fp(global.min_perf_pct);
2011 		if (max_freq != cpu->pstate.turbo_freq) {
2012 			int32_t turbo_factor;
2013 
2014 			turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
2015 						  cpu->pstate.max_pstate);
2016 			global_min = mul_ext_fp(global_min, turbo_factor);
2017 			global_max = mul_ext_fp(global_max, turbo_factor);
2018 		}
2019 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2020 
2021 		cpu->min_perf = max(min_policy_perf, global_min);
2022 		cpu->min_perf = min(cpu->min_perf, max_policy_perf);
2023 		cpu->max_perf = min(max_policy_perf, global_max);
2024 		cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2025 
2026 		/* Make sure min_perf <= max_perf */
2027 		cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2028 	}
2029 
2030 	cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
2031 	cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2032 
2033 	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2034 		 fp_ext_toint(cpu->max_perf * 100),
2035 		 fp_ext_toint(cpu->min_perf * 100));
2036 }
2037 
2038 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2039 {
2040 	struct cpudata *cpu;
2041 
2042 	if (!policy->cpuinfo.max_freq)
2043 		return -ENODEV;
2044 
2045 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2046 		 policy->cpuinfo.max_freq, policy->max);
2047 
2048 	cpu = all_cpu_data[policy->cpu];
2049 	cpu->policy = policy->policy;
2050 
2051 	mutex_lock(&intel_pstate_limits_lock);
2052 
2053 	intel_pstate_update_perf_limits(policy, cpu);
2054 
2055 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2056 		/*
2057 		 * NOHZ_FULL CPUs need this as the governor callback may not
2058 		 * be invoked on them.
2059 		 */
2060 		intel_pstate_clear_update_util_hook(policy->cpu);
2061 		intel_pstate_max_within_limits(cpu);
2062 	}
2063 
2064 	intel_pstate_set_update_util_hook(policy->cpu);
2065 
2066 	if (hwp_active)
2067 		intel_pstate_hwp_set(policy);
2068 
2069 	mutex_unlock(&intel_pstate_limits_lock);
2070 
2071 	return 0;
2072 }
2073 
2074 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2075 					 struct cpudata *cpu)
2076 {
2077 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2078 	    policy->max < policy->cpuinfo.max_freq &&
2079 	    policy->max > cpu->pstate.max_freq) {
2080 		pr_debug("policy->max > max non turbo frequency\n");
2081 		policy->max = policy->cpuinfo.max_freq;
2082 	}
2083 }
2084 
2085 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2086 {
2087 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2088 
2089 	update_turbo_state();
2090 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2091 				     intel_pstate_get_max_freq(cpu));
2092 
2093 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2094 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2095 		return -EINVAL;
2096 
2097 	intel_pstate_adjust_policy_max(policy, cpu);
2098 
2099 	return 0;
2100 }
2101 
2102 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2103 {
2104 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2105 }
2106 
2107 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2108 {
2109 	pr_debug("CPU %d exiting\n", policy->cpu);
2110 
2111 	intel_pstate_clear_update_util_hook(policy->cpu);
2112 	if (hwp_active)
2113 		intel_pstate_hwp_save_state(policy);
2114 	else
2115 		intel_cpufreq_stop_cpu(policy);
2116 }
2117 
2118 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2119 {
2120 	intel_pstate_exit_perf_limits(policy);
2121 
2122 	policy->fast_switch_possible = false;
2123 
2124 	return 0;
2125 }
2126 
2127 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2128 {
2129 	struct cpudata *cpu;
2130 	int rc;
2131 
2132 	rc = intel_pstate_init_cpu(policy->cpu);
2133 	if (rc)
2134 		return rc;
2135 
2136 	cpu = all_cpu_data[policy->cpu];
2137 
2138 	cpu->max_perf = int_ext_tofp(1);
2139 	cpu->min_perf = 0;
2140 
2141 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2142 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2143 
2144 	/* cpuinfo and default policy values */
2145 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2146 	update_turbo_state();
2147 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2148 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2149 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2150 
2151 	intel_pstate_init_acpi_perf_limits(policy);
2152 	cpumask_set_cpu(policy->cpu, policy->cpus);
2153 
2154 	policy->fast_switch_possible = true;
2155 
2156 	return 0;
2157 }
2158 
2159 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2160 {
2161 	int ret = __intel_pstate_cpu_init(policy);
2162 
2163 	if (ret)
2164 		return ret;
2165 
2166 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2167 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2168 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2169 	else
2170 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2171 
2172 	return 0;
2173 }
2174 
2175 static struct cpufreq_driver intel_pstate = {
2176 	.flags		= CPUFREQ_CONST_LOOPS,
2177 	.verify		= intel_pstate_verify_policy,
2178 	.setpolicy	= intel_pstate_set_policy,
2179 	.suspend	= intel_pstate_hwp_save_state,
2180 	.resume		= intel_pstate_resume,
2181 	.get		= intel_pstate_get,
2182 	.init		= intel_pstate_cpu_init,
2183 	.exit		= intel_pstate_cpu_exit,
2184 	.stop_cpu	= intel_pstate_stop_cpu,
2185 	.name		= "intel_pstate",
2186 };
2187 
2188 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2189 {
2190 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2191 
2192 	update_turbo_state();
2193 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2194 				     intel_pstate_get_max_freq(cpu));
2195 
2196 	intel_pstate_adjust_policy_max(policy, cpu);
2197 
2198 	intel_pstate_update_perf_limits(policy, cpu);
2199 
2200 	return 0;
2201 }
2202 
2203 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2204 				unsigned int target_freq,
2205 				unsigned int relation)
2206 {
2207 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2208 	struct cpufreq_freqs freqs;
2209 	int target_pstate;
2210 
2211 	update_turbo_state();
2212 
2213 	freqs.old = policy->cur;
2214 	freqs.new = target_freq;
2215 
2216 	cpufreq_freq_transition_begin(policy, &freqs);
2217 	switch (relation) {
2218 	case CPUFREQ_RELATION_L:
2219 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2220 		break;
2221 	case CPUFREQ_RELATION_H:
2222 		target_pstate = freqs.new / cpu->pstate.scaling;
2223 		break;
2224 	default:
2225 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2226 		break;
2227 	}
2228 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2229 	if (target_pstate != cpu->pstate.current_pstate) {
2230 		cpu->pstate.current_pstate = target_pstate;
2231 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2232 			      pstate_funcs.get_val(cpu, target_pstate));
2233 	}
2234 	freqs.new = target_pstate * cpu->pstate.scaling;
2235 	cpufreq_freq_transition_end(policy, &freqs, false);
2236 
2237 	return 0;
2238 }
2239 
2240 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2241 					      unsigned int target_freq)
2242 {
2243 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2244 	int target_pstate;
2245 
2246 	update_turbo_state();
2247 
2248 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2249 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2250 	intel_pstate_update_pstate(cpu, target_pstate);
2251 	return target_pstate * cpu->pstate.scaling;
2252 }
2253 
2254 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2255 {
2256 	int ret = __intel_pstate_cpu_init(policy);
2257 
2258 	if (ret)
2259 		return ret;
2260 
2261 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2262 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2263 	policy->cur = policy->cpuinfo.min_freq;
2264 
2265 	return 0;
2266 }
2267 
2268 static struct cpufreq_driver intel_cpufreq = {
2269 	.flags		= CPUFREQ_CONST_LOOPS,
2270 	.verify		= intel_cpufreq_verify_policy,
2271 	.target		= intel_cpufreq_target,
2272 	.fast_switch	= intel_cpufreq_fast_switch,
2273 	.init		= intel_cpufreq_cpu_init,
2274 	.exit		= intel_pstate_cpu_exit,
2275 	.stop_cpu	= intel_cpufreq_stop_cpu,
2276 	.name		= "intel_cpufreq",
2277 };
2278 
2279 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2280 
2281 static void intel_pstate_driver_cleanup(void)
2282 {
2283 	unsigned int cpu;
2284 
2285 	get_online_cpus();
2286 	for_each_online_cpu(cpu) {
2287 		if (all_cpu_data[cpu]) {
2288 			if (intel_pstate_driver == &intel_pstate)
2289 				intel_pstate_clear_update_util_hook(cpu);
2290 
2291 			kfree(all_cpu_data[cpu]);
2292 			all_cpu_data[cpu] = NULL;
2293 		}
2294 	}
2295 	put_online_cpus();
2296 }
2297 
2298 static int intel_pstate_register_driver(void)
2299 {
2300 	int ret;
2301 
2302 	memset(&global, 0, sizeof(global));
2303 	global.max_perf_pct = 100;
2304 
2305 	ret = cpufreq_register_driver(intel_pstate_driver);
2306 	if (ret) {
2307 		intel_pstate_driver_cleanup();
2308 		return ret;
2309 	}
2310 
2311 	global.min_perf_pct = min_perf_pct_min();
2312 
2313 	mutex_lock(&intel_pstate_limits_lock);
2314 	driver_registered = true;
2315 	mutex_unlock(&intel_pstate_limits_lock);
2316 
2317 	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2318 	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2319 		intel_pstate_debug_expose_params();
2320 
2321 	return 0;
2322 }
2323 
2324 static int intel_pstate_unregister_driver(void)
2325 {
2326 	if (hwp_active)
2327 		return -EBUSY;
2328 
2329 	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2330 	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2331 		intel_pstate_debug_hide_params();
2332 
2333 	mutex_lock(&intel_pstate_limits_lock);
2334 	driver_registered = false;
2335 	mutex_unlock(&intel_pstate_limits_lock);
2336 
2337 	cpufreq_unregister_driver(intel_pstate_driver);
2338 	intel_pstate_driver_cleanup();
2339 
2340 	return 0;
2341 }
2342 
2343 static ssize_t intel_pstate_show_status(char *buf)
2344 {
2345 	if (!driver_registered)
2346 		return sprintf(buf, "off\n");
2347 
2348 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2349 					"active" : "passive");
2350 }
2351 
2352 static int intel_pstate_update_status(const char *buf, size_t size)
2353 {
2354 	int ret;
2355 
2356 	if (size == 3 && !strncmp(buf, "off", size))
2357 		return driver_registered ?
2358 			intel_pstate_unregister_driver() : -EINVAL;
2359 
2360 	if (size == 6 && !strncmp(buf, "active", size)) {
2361 		if (driver_registered) {
2362 			if (intel_pstate_driver == &intel_pstate)
2363 				return 0;
2364 
2365 			ret = intel_pstate_unregister_driver();
2366 			if (ret)
2367 				return ret;
2368 		}
2369 
2370 		intel_pstate_driver = &intel_pstate;
2371 		return intel_pstate_register_driver();
2372 	}
2373 
2374 	if (size == 7 && !strncmp(buf, "passive", size)) {
2375 		if (driver_registered) {
2376 			if (intel_pstate_driver != &intel_pstate)
2377 				return 0;
2378 
2379 			ret = intel_pstate_unregister_driver();
2380 			if (ret)
2381 				return ret;
2382 		}
2383 
2384 		intel_pstate_driver = &intel_cpufreq;
2385 		return intel_pstate_register_driver();
2386 	}
2387 
2388 	return -EINVAL;
2389 }
2390 
2391 static int no_load __initdata;
2392 static int no_hwp __initdata;
2393 static int hwp_only __initdata;
2394 static unsigned int force_load __initdata;
2395 
2396 static int __init intel_pstate_msrs_not_valid(void)
2397 {
2398 	if (!pstate_funcs.get_max() ||
2399 	    !pstate_funcs.get_min() ||
2400 	    !pstate_funcs.get_turbo())
2401 		return -ENODEV;
2402 
2403 	return 0;
2404 }
2405 
2406 #ifdef CONFIG_ACPI
2407 static void intel_pstate_use_acpi_profile(void)
2408 {
2409 	switch (acpi_gbl_FADT.preferred_profile) {
2410 	case PM_MOBILE:
2411 	case PM_TABLET:
2412 	case PM_APPLIANCE_PC:
2413 	case PM_DESKTOP:
2414 	case PM_WORKSTATION:
2415 		pstate_funcs.get_target_pstate =
2416 				get_target_pstate_use_cpu_load;
2417 	}
2418 }
2419 #else
2420 static void intel_pstate_use_acpi_profile(void)
2421 {
2422 }
2423 #endif
2424 
2425 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2426 {
2427 	pstate_funcs.get_max   = funcs->get_max;
2428 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2429 	pstate_funcs.get_min   = funcs->get_min;
2430 	pstate_funcs.get_turbo = funcs->get_turbo;
2431 	pstate_funcs.get_scaling = funcs->get_scaling;
2432 	pstate_funcs.get_val   = funcs->get_val;
2433 	pstate_funcs.get_vid   = funcs->get_vid;
2434 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2435 
2436 	intel_pstate_use_acpi_profile();
2437 }
2438 
2439 #ifdef CONFIG_ACPI
2440 
2441 static bool __init intel_pstate_no_acpi_pss(void)
2442 {
2443 	int i;
2444 
2445 	for_each_possible_cpu(i) {
2446 		acpi_status status;
2447 		union acpi_object *pss;
2448 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2449 		struct acpi_processor *pr = per_cpu(processors, i);
2450 
2451 		if (!pr)
2452 			continue;
2453 
2454 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2455 		if (ACPI_FAILURE(status))
2456 			continue;
2457 
2458 		pss = buffer.pointer;
2459 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2460 			kfree(pss);
2461 			return false;
2462 		}
2463 
2464 		kfree(pss);
2465 	}
2466 
2467 	return true;
2468 }
2469 
2470 static bool __init intel_pstate_has_acpi_ppc(void)
2471 {
2472 	int i;
2473 
2474 	for_each_possible_cpu(i) {
2475 		struct acpi_processor *pr = per_cpu(processors, i);
2476 
2477 		if (!pr)
2478 			continue;
2479 		if (acpi_has_method(pr->handle, "_PPC"))
2480 			return true;
2481 	}
2482 	return false;
2483 }
2484 
2485 enum {
2486 	PSS,
2487 	PPC,
2488 };
2489 
2490 struct hw_vendor_info {
2491 	u16  valid;
2492 	char oem_id[ACPI_OEM_ID_SIZE];
2493 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2494 	int  oem_pwr_table;
2495 };
2496 
2497 /* Hardware vendor-specific info that has its own power management modes */
2498 static struct hw_vendor_info vendor_info[] __initdata = {
2499 	{1, "HP    ", "ProLiant", PSS},
2500 	{1, "ORACLE", "X4-2    ", PPC},
2501 	{1, "ORACLE", "X4-2L   ", PPC},
2502 	{1, "ORACLE", "X4-2B   ", PPC},
2503 	{1, "ORACLE", "X3-2    ", PPC},
2504 	{1, "ORACLE", "X3-2L   ", PPC},
2505 	{1, "ORACLE", "X3-2B   ", PPC},
2506 	{1, "ORACLE", "X4470M2 ", PPC},
2507 	{1, "ORACLE", "X4270M3 ", PPC},
2508 	{1, "ORACLE", "X4270M2 ", PPC},
2509 	{1, "ORACLE", "X4170M2 ", PPC},
2510 	{1, "ORACLE", "X4170 M3", PPC},
2511 	{1, "ORACLE", "X4275 M3", PPC},
2512 	{1, "ORACLE", "X6-2    ", PPC},
2513 	{1, "ORACLE", "Sudbury ", PPC},
2514 	{0, "", ""},
2515 };
2516 
2517 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2518 {
2519 	struct acpi_table_header hdr;
2520 	struct hw_vendor_info *v_info;
2521 	const struct x86_cpu_id *id;
2522 	u64 misc_pwr;
2523 
2524 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2525 	if (id) {
2526 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2527 		if ( misc_pwr & (1 << 8))
2528 			return true;
2529 	}
2530 
2531 	if (acpi_disabled ||
2532 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2533 		return false;
2534 
2535 	for (v_info = vendor_info; v_info->valid; v_info++) {
2536 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2537 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
2538 						ACPI_OEM_TABLE_ID_SIZE))
2539 			switch (v_info->oem_pwr_table) {
2540 			case PSS:
2541 				return intel_pstate_no_acpi_pss();
2542 			case PPC:
2543 				return intel_pstate_has_acpi_ppc() &&
2544 					(!force_load);
2545 			}
2546 	}
2547 
2548 	return false;
2549 }
2550 
2551 static void intel_pstate_request_control_from_smm(void)
2552 {
2553 	/*
2554 	 * It may be unsafe to request P-states control from SMM if _PPC support
2555 	 * has not been enabled.
2556 	 */
2557 	if (acpi_ppc)
2558 		acpi_processor_pstate_control();
2559 }
2560 #else /* CONFIG_ACPI not enabled */
2561 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2562 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2563 static inline void intel_pstate_request_control_from_smm(void) {}
2564 #endif /* CONFIG_ACPI */
2565 
2566 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2567 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2568 	{}
2569 };
2570 
2571 static int __init intel_pstate_init(void)
2572 {
2573 	int rc;
2574 
2575 	if (no_load)
2576 		return -ENODEV;
2577 
2578 	if (x86_match_cpu(hwp_support_ids)) {
2579 		copy_cpu_funcs(&core_params.funcs);
2580 		if (no_hwp) {
2581 			pstate_funcs.get_target_pstate = get_target_pstate_use_cpu_load;
2582 		} else {
2583 			hwp_active++;
2584 			intel_pstate.attr = hwp_cpufreq_attrs;
2585 			goto hwp_cpu_matched;
2586 		}
2587 	} else {
2588 		const struct x86_cpu_id *id;
2589 		struct cpu_defaults *cpu_def;
2590 
2591 		id = x86_match_cpu(intel_pstate_cpu_ids);
2592 		if (!id)
2593 			return -ENODEV;
2594 
2595 		cpu_def = (struct cpu_defaults *)id->driver_data;
2596 		copy_cpu_funcs(&cpu_def->funcs);
2597 	}
2598 
2599 	if (intel_pstate_msrs_not_valid())
2600 		return -ENODEV;
2601 
2602 hwp_cpu_matched:
2603 	/*
2604 	 * The Intel pstate driver will be ignored if the platform
2605 	 * firmware has its own power management modes.
2606 	 */
2607 	if (intel_pstate_platform_pwr_mgmt_exists())
2608 		return -ENODEV;
2609 
2610 	if (!hwp_active && hwp_only)
2611 		return -ENOTSUPP;
2612 
2613 	pr_info("Intel P-state driver initializing\n");
2614 
2615 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2616 	if (!all_cpu_data)
2617 		return -ENOMEM;
2618 
2619 	intel_pstate_request_control_from_smm();
2620 
2621 	intel_pstate_sysfs_expose_params();
2622 
2623 	mutex_lock(&intel_pstate_driver_lock);
2624 	rc = intel_pstate_register_driver();
2625 	mutex_unlock(&intel_pstate_driver_lock);
2626 	if (rc)
2627 		return rc;
2628 
2629 	if (hwp_active)
2630 		pr_info("HWP enabled\n");
2631 
2632 	return 0;
2633 }
2634 device_initcall(intel_pstate_init);
2635 
2636 static int __init intel_pstate_setup(char *str)
2637 {
2638 	if (!str)
2639 		return -EINVAL;
2640 
2641 	if (!strcmp(str, "disable")) {
2642 		no_load = 1;
2643 	} else if (!strcmp(str, "passive")) {
2644 		pr_info("Passive mode enabled\n");
2645 		intel_pstate_driver = &intel_cpufreq;
2646 		no_hwp = 1;
2647 	}
2648 	if (!strcmp(str, "no_hwp")) {
2649 		pr_info("HWP disabled\n");
2650 		no_hwp = 1;
2651 	}
2652 	if (!strcmp(str, "force"))
2653 		force_load = 1;
2654 	if (!strcmp(str, "hwp_only"))
2655 		hwp_only = 1;
2656 	if (!strcmp(str, "per_cpu_perf_limits"))
2657 		per_cpu_limits = true;
2658 
2659 #ifdef CONFIG_ACPI
2660 	if (!strcmp(str, "support_acpi_ppc"))
2661 		acpi_ppc = true;
2662 #endif
2663 
2664 	return 0;
2665 }
2666 early_param("intel_pstate", intel_pstate_setup);
2667 
2668 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2669 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2670 MODULE_LICENSE("GPL");
2671