1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <trace/events/power.h>
28 
29 #include <asm/div64.h>
30 #include <asm/msr.h>
31 #include <asm/cpu_device_id.h>
32 #include <asm/cpufeature.h>
33 #include <asm/intel-family.h>
34 
35 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
36 
37 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
38 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
39 
40 #ifdef CONFIG_ACPI
41 #include <acpi/processor.h>
42 #include <acpi/cppc_acpi.h>
43 #endif
44 
45 #define FRAC_BITS 8
46 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
47 #define fp_toint(X) ((X) >> FRAC_BITS)
48 
49 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
50 
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55 
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60 
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 	return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65 
66 static inline int ceiling_fp(int32_t x)
67 {
68 	int mask, ret;
69 
70 	ret = fp_toint(x);
71 	mask = (1 << FRAC_BITS) - 1;
72 	if (x & mask)
73 		ret += 1;
74 	return ret;
75 }
76 
77 static inline int32_t percent_fp(int percent)
78 {
79 	return div_fp(percent, 100);
80 }
81 
82 static inline u64 mul_ext_fp(u64 x, u64 y)
83 {
84 	return (x * y) >> EXT_FRAC_BITS;
85 }
86 
87 static inline u64 div_ext_fp(u64 x, u64 y)
88 {
89 	return div64_u64(x << EXT_FRAC_BITS, y);
90 }
91 
92 static inline int32_t percent_ext_fp(int percent)
93 {
94 	return div_ext_fp(percent, 100);
95 }
96 
97 /**
98  * struct sample -	Store performance sample
99  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
100  *			performance during last sample period
101  * @busy_scaled:	Scaled busy value which is used to calculate next
102  *			P state. This can be different than core_avg_perf
103  *			to account for cpu idle period
104  * @aperf:		Difference of actual performance frequency clock count
105  *			read from APERF MSR between last and current sample
106  * @mperf:		Difference of maximum performance frequency clock count
107  *			read from MPERF MSR between last and current sample
108  * @tsc:		Difference of time stamp counter between last and
109  *			current sample
110  * @time:		Current time from scheduler
111  *
112  * This structure is used in the cpudata structure to store performance sample
113  * data for choosing next P State.
114  */
115 struct sample {
116 	int32_t core_avg_perf;
117 	int32_t busy_scaled;
118 	u64 aperf;
119 	u64 mperf;
120 	u64 tsc;
121 	u64 time;
122 };
123 
124 /**
125  * struct pstate_data - Store P state data
126  * @current_pstate:	Current requested P state
127  * @min_pstate:		Min P state possible for this platform
128  * @max_pstate:		Max P state possible for this platform
129  * @max_pstate_physical:This is physical Max P state for a processor
130  *			This can be higher than the max_pstate which can
131  *			be limited by platform thermal design power limits
132  * @scaling:		Scaling factor to  convert frequency to cpufreq
133  *			frequency units
134  * @turbo_pstate:	Max Turbo P state possible for this platform
135  * @max_freq:		@max_pstate frequency in cpufreq units
136  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
137  *
138  * Stores the per cpu model P state limits and current P state.
139  */
140 struct pstate_data {
141 	int	current_pstate;
142 	int	min_pstate;
143 	int	max_pstate;
144 	int	max_pstate_physical;
145 	int	scaling;
146 	int	turbo_pstate;
147 	unsigned int max_freq;
148 	unsigned int turbo_freq;
149 };
150 
151 /**
152  * struct vid_data -	Stores voltage information data
153  * @min:		VID data for this platform corresponding to
154  *			the lowest P state
155  * @max:		VID data corresponding to the highest P State.
156  * @turbo:		VID data for turbo P state
157  * @ratio:		Ratio of (vid max - vid min) /
158  *			(max P state - Min P State)
159  *
160  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
161  * This data is used in Atom platforms, where in addition to target P state,
162  * the voltage data needs to be specified to select next P State.
163  */
164 struct vid_data {
165 	int min;
166 	int max;
167 	int turbo;
168 	int32_t ratio;
169 };
170 
171 /**
172  * struct global_params - Global parameters, mostly tunable via sysfs.
173  * @no_turbo:		Whether or not to use turbo P-states.
174  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
175  *			based on the MSR_IA32_MISC_ENABLE value and whether or
176  *			not the maximum reported turbo P-state is different from
177  *			the maximum reported non-turbo one.
178  * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
179  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
180  *			P-state capacity.
181  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
182  *			P-state capacity.
183  */
184 struct global_params {
185 	bool no_turbo;
186 	bool turbo_disabled;
187 	bool turbo_disabled_mf;
188 	int max_perf_pct;
189 	int min_perf_pct;
190 };
191 
192 /**
193  * struct cpudata -	Per CPU instance data storage
194  * @cpu:		CPU number for this instance data
195  * @policy:		CPUFreq policy value
196  * @update_util:	CPUFreq utility callback information
197  * @update_util_set:	CPUFreq utility callback is set
198  * @iowait_boost:	iowait-related boost fraction
199  * @last_update:	Time of the last update.
200  * @pstate:		Stores P state limits for this CPU
201  * @vid:		Stores VID limits for this CPU
202  * @last_sample_time:	Last Sample time
203  * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented
204  *			This shift is a multiplier to mperf delta to
205  *			calculate CPU busy.
206  * @prev_aperf:		Last APERF value read from APERF MSR
207  * @prev_mperf:		Last MPERF value read from MPERF MSR
208  * @prev_tsc:		Last timestamp counter (TSC) value
209  * @prev_cummulative_iowait: IO Wait time difference from last and
210  *			current sample
211  * @sample:		Storage for storing last Sample data
212  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
213  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
214  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
215  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
216  * @epp_powersave:	Last saved HWP energy performance preference
217  *			(EPP) or energy performance bias (EPB),
218  *			when policy switched to performance
219  * @epp_policy:		Last saved policy used to set EPP/EPB
220  * @epp_default:	Power on default HWP energy performance
221  *			preference/bias
222  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
223  *			operation
224  * @hwp_req_cached:	Cached value of the last HWP Request MSR
225  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
226  * @last_io_update:	Last time when IO wake flag was set
227  * @sched_flags:	Store scheduler flags for possible cross CPU update
228  * @hwp_boost_min:	Last HWP boosted min performance
229  *
230  * This structure stores per CPU instance data for all CPUs.
231  */
232 struct cpudata {
233 	int cpu;
234 
235 	unsigned int policy;
236 	struct update_util_data update_util;
237 	bool   update_util_set;
238 
239 	struct pstate_data pstate;
240 	struct vid_data vid;
241 
242 	u64	last_update;
243 	u64	last_sample_time;
244 	u64	aperf_mperf_shift;
245 	u64	prev_aperf;
246 	u64	prev_mperf;
247 	u64	prev_tsc;
248 	u64	prev_cummulative_iowait;
249 	struct sample sample;
250 	int32_t	min_perf_ratio;
251 	int32_t	max_perf_ratio;
252 #ifdef CONFIG_ACPI
253 	struct acpi_processor_performance acpi_perf_data;
254 	bool valid_pss_table;
255 #endif
256 	unsigned int iowait_boost;
257 	s16 epp_powersave;
258 	s16 epp_policy;
259 	s16 epp_default;
260 	s16 epp_saved;
261 	u64 hwp_req_cached;
262 	u64 hwp_cap_cached;
263 	u64 last_io_update;
264 	unsigned int sched_flags;
265 	u32 hwp_boost_min;
266 };
267 
268 static struct cpudata **all_cpu_data;
269 
270 /**
271  * struct pstate_funcs - Per CPU model specific callbacks
272  * @get_max:		Callback to get maximum non turbo effective P state
273  * @get_max_physical:	Callback to get maximum non turbo physical P state
274  * @get_min:		Callback to get minimum P state
275  * @get_turbo:		Callback to get turbo P state
276  * @get_scaling:	Callback to get frequency scaling factor
277  * @get_val:		Callback to convert P state to actual MSR write value
278  * @get_vid:		Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284 	int (*get_max)(void);
285 	int (*get_max_physical)(void);
286 	int (*get_min)(void);
287 	int (*get_turbo)(void);
288 	int (*get_scaling)(void);
289 	int (*get_aperf_mperf_shift)(void);
290 	u64 (*get_val)(struct cpudata*, int pstate);
291 	void (*get_vid)(struct cpudata *);
292 };
293 
294 static struct pstate_funcs pstate_funcs __read_mostly;
295 
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300 
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302 
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306 
307 static struct global_params global;
308 
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311 
312 #ifdef CONFIG_ACPI
313 
314 static bool intel_pstate_acpi_pm_profile_server(void)
315 {
316 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318 		return true;
319 
320 	return false;
321 }
322 
323 static bool intel_pstate_get_ppc_enable_status(void)
324 {
325 	if (intel_pstate_acpi_pm_profile_server())
326 		return true;
327 
328 	return acpi_ppc;
329 }
330 
331 #ifdef CONFIG_ACPI_CPPC_LIB
332 
333 /* The work item is needed to avoid CPU hotplug locking issues */
334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335 {
336 	sched_set_itmt_support();
337 }
338 
339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340 
341 static void intel_pstate_set_itmt_prio(int cpu)
342 {
343 	struct cppc_perf_caps cppc_perf;
344 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
345 	int ret;
346 
347 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
348 	if (ret)
349 		return;
350 
351 	/*
352 	 * The priorities can be set regardless of whether or not
353 	 * sched_set_itmt_support(true) has been called and it is valid to
354 	 * update them at any time after it has been called.
355 	 */
356 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
357 
358 	if (max_highest_perf <= min_highest_perf) {
359 		if (cppc_perf.highest_perf > max_highest_perf)
360 			max_highest_perf = cppc_perf.highest_perf;
361 
362 		if (cppc_perf.highest_perf < min_highest_perf)
363 			min_highest_perf = cppc_perf.highest_perf;
364 
365 		if (max_highest_perf > min_highest_perf) {
366 			/*
367 			 * This code can be run during CPU online under the
368 			 * CPU hotplug locks, so sched_set_itmt_support()
369 			 * cannot be called from here.  Queue up a work item
370 			 * to invoke it.
371 			 */
372 			schedule_work(&sched_itmt_work);
373 		}
374 	}
375 }
376 
377 static int intel_pstate_get_cppc_guranteed(int cpu)
378 {
379 	struct cppc_perf_caps cppc_perf;
380 	int ret;
381 
382 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
383 	if (ret)
384 		return ret;
385 
386 	if (cppc_perf.guaranteed_perf)
387 		return cppc_perf.guaranteed_perf;
388 
389 	return cppc_perf.nominal_perf;
390 }
391 
392 #else /* CONFIG_ACPI_CPPC_LIB */
393 static void intel_pstate_set_itmt_prio(int cpu)
394 {
395 }
396 #endif /* CONFIG_ACPI_CPPC_LIB */
397 
398 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
399 {
400 	struct cpudata *cpu;
401 	int ret;
402 	int i;
403 
404 	if (hwp_active) {
405 		intel_pstate_set_itmt_prio(policy->cpu);
406 		return;
407 	}
408 
409 	if (!intel_pstate_get_ppc_enable_status())
410 		return;
411 
412 	cpu = all_cpu_data[policy->cpu];
413 
414 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
415 						  policy->cpu);
416 	if (ret)
417 		return;
418 
419 	/*
420 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
421 	 * guarantee that the states returned by it map to the states in our
422 	 * list directly.
423 	 */
424 	if (cpu->acpi_perf_data.control_register.space_id !=
425 						ACPI_ADR_SPACE_FIXED_HARDWARE)
426 		goto err;
427 
428 	/*
429 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
430 	 * usual without taking _PSS into account
431 	 */
432 	if (cpu->acpi_perf_data.state_count < 2)
433 		goto err;
434 
435 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
436 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
437 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
438 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
439 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
440 			 (u32) cpu->acpi_perf_data.states[i].power,
441 			 (u32) cpu->acpi_perf_data.states[i].control);
442 	}
443 
444 	/*
445 	 * The _PSS table doesn't contain whole turbo frequency range.
446 	 * This just contains +1 MHZ above the max non turbo frequency,
447 	 * with control value corresponding to max turbo ratio. But
448 	 * when cpufreq set policy is called, it will call with this
449 	 * max frequency, which will cause a reduced performance as
450 	 * this driver uses real max turbo frequency as the max
451 	 * frequency. So correct this frequency in _PSS table to
452 	 * correct max turbo frequency based on the turbo state.
453 	 * Also need to convert to MHz as _PSS freq is in MHz.
454 	 */
455 	if (!global.turbo_disabled)
456 		cpu->acpi_perf_data.states[0].core_frequency =
457 					policy->cpuinfo.max_freq / 1000;
458 	cpu->valid_pss_table = true;
459 	pr_debug("_PPC limits will be enforced\n");
460 
461 	return;
462 
463  err:
464 	cpu->valid_pss_table = false;
465 	acpi_processor_unregister_performance(policy->cpu);
466 }
467 
468 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
469 {
470 	struct cpudata *cpu;
471 
472 	cpu = all_cpu_data[policy->cpu];
473 	if (!cpu->valid_pss_table)
474 		return;
475 
476 	acpi_processor_unregister_performance(policy->cpu);
477 }
478 #else /* CONFIG_ACPI */
479 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
480 {
481 }
482 
483 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
484 {
485 }
486 
487 static inline bool intel_pstate_acpi_pm_profile_server(void)
488 {
489 	return false;
490 }
491 #endif /* CONFIG_ACPI */
492 
493 #ifndef CONFIG_ACPI_CPPC_LIB
494 static int intel_pstate_get_cppc_guranteed(int cpu)
495 {
496 	return -ENOTSUPP;
497 }
498 #endif /* CONFIG_ACPI_CPPC_LIB */
499 
500 static inline void update_turbo_state(void)
501 {
502 	u64 misc_en;
503 	struct cpudata *cpu;
504 
505 	cpu = all_cpu_data[0];
506 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
507 	global.turbo_disabled =
508 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
509 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
510 }
511 
512 static int min_perf_pct_min(void)
513 {
514 	struct cpudata *cpu = all_cpu_data[0];
515 	int turbo_pstate = cpu->pstate.turbo_pstate;
516 
517 	return turbo_pstate ?
518 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
519 }
520 
521 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
522 {
523 	u64 epb;
524 	int ret;
525 
526 	if (!boot_cpu_has(X86_FEATURE_EPB))
527 		return -ENXIO;
528 
529 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
530 	if (ret)
531 		return (s16)ret;
532 
533 	return (s16)(epb & 0x0f);
534 }
535 
536 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
537 {
538 	s16 epp;
539 
540 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
541 		/*
542 		 * When hwp_req_data is 0, means that caller didn't read
543 		 * MSR_HWP_REQUEST, so need to read and get EPP.
544 		 */
545 		if (!hwp_req_data) {
546 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
547 					    &hwp_req_data);
548 			if (epp)
549 				return epp;
550 		}
551 		epp = (hwp_req_data >> 24) & 0xff;
552 	} else {
553 		/* When there is no EPP present, HWP uses EPB settings */
554 		epp = intel_pstate_get_epb(cpu_data);
555 	}
556 
557 	return epp;
558 }
559 
560 static int intel_pstate_set_epb(int cpu, s16 pref)
561 {
562 	u64 epb;
563 	int ret;
564 
565 	if (!boot_cpu_has(X86_FEATURE_EPB))
566 		return -ENXIO;
567 
568 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
569 	if (ret)
570 		return ret;
571 
572 	epb = (epb & ~0x0f) | pref;
573 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
574 
575 	return 0;
576 }
577 
578 /*
579  * EPP/EPB display strings corresponding to EPP index in the
580  * energy_perf_strings[]
581  *	index		String
582  *-------------------------------------
583  *	0		default
584  *	1		performance
585  *	2		balance_performance
586  *	3		balance_power
587  *	4		power
588  */
589 static const char * const energy_perf_strings[] = {
590 	"default",
591 	"performance",
592 	"balance_performance",
593 	"balance_power",
594 	"power",
595 	NULL
596 };
597 static const unsigned int epp_values[] = {
598 	HWP_EPP_PERFORMANCE,
599 	HWP_EPP_BALANCE_PERFORMANCE,
600 	HWP_EPP_BALANCE_POWERSAVE,
601 	HWP_EPP_POWERSAVE
602 };
603 
604 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
605 {
606 	s16 epp;
607 	int index = -EINVAL;
608 
609 	epp = intel_pstate_get_epp(cpu_data, 0);
610 	if (epp < 0)
611 		return epp;
612 
613 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
614 		if (epp == HWP_EPP_PERFORMANCE)
615 			return 1;
616 		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
617 			return 2;
618 		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
619 			return 3;
620 		else
621 			return 4;
622 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
623 		/*
624 		 * Range:
625 		 *	0x00-0x03	:	Performance
626 		 *	0x04-0x07	:	Balance performance
627 		 *	0x08-0x0B	:	Balance power
628 		 *	0x0C-0x0F	:	Power
629 		 * The EPB is a 4 bit value, but our ranges restrict the
630 		 * value which can be set. Here only using top two bits
631 		 * effectively.
632 		 */
633 		index = (epp >> 2) + 1;
634 	}
635 
636 	return index;
637 }
638 
639 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
640 					      int pref_index)
641 {
642 	int epp = -EINVAL;
643 	int ret;
644 
645 	if (!pref_index)
646 		epp = cpu_data->epp_default;
647 
648 	mutex_lock(&intel_pstate_limits_lock);
649 
650 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
651 		u64 value;
652 
653 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
654 		if (ret)
655 			goto return_pref;
656 
657 		value &= ~GENMASK_ULL(31, 24);
658 
659 		if (epp == -EINVAL)
660 			epp = epp_values[pref_index - 1];
661 
662 		value |= (u64)epp << 24;
663 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
664 	} else {
665 		if (epp == -EINVAL)
666 			epp = (pref_index - 1) << 2;
667 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
668 	}
669 return_pref:
670 	mutex_unlock(&intel_pstate_limits_lock);
671 
672 	return ret;
673 }
674 
675 static ssize_t show_energy_performance_available_preferences(
676 				struct cpufreq_policy *policy, char *buf)
677 {
678 	int i = 0;
679 	int ret = 0;
680 
681 	while (energy_perf_strings[i] != NULL)
682 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
683 
684 	ret += sprintf(&buf[ret], "\n");
685 
686 	return ret;
687 }
688 
689 cpufreq_freq_attr_ro(energy_performance_available_preferences);
690 
691 static ssize_t store_energy_performance_preference(
692 		struct cpufreq_policy *policy, const char *buf, size_t count)
693 {
694 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
695 	char str_preference[21];
696 	int ret;
697 
698 	ret = sscanf(buf, "%20s", str_preference);
699 	if (ret != 1)
700 		return -EINVAL;
701 
702 	ret = match_string(energy_perf_strings, -1, str_preference);
703 	if (ret < 0)
704 		return ret;
705 
706 	intel_pstate_set_energy_pref_index(cpu_data, ret);
707 	return count;
708 }
709 
710 static ssize_t show_energy_performance_preference(
711 				struct cpufreq_policy *policy, char *buf)
712 {
713 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
714 	int preference;
715 
716 	preference = intel_pstate_get_energy_pref_index(cpu_data);
717 	if (preference < 0)
718 		return preference;
719 
720 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
721 }
722 
723 cpufreq_freq_attr_rw(energy_performance_preference);
724 
725 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
726 {
727 	struct cpudata *cpu;
728 	u64 cap;
729 	int ratio;
730 
731 	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
732 	if (ratio <= 0) {
733 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
734 		ratio = HWP_GUARANTEED_PERF(cap);
735 	}
736 
737 	cpu = all_cpu_data[policy->cpu];
738 
739 	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
740 }
741 
742 cpufreq_freq_attr_ro(base_frequency);
743 
744 static struct freq_attr *hwp_cpufreq_attrs[] = {
745 	&energy_performance_preference,
746 	&energy_performance_available_preferences,
747 	&base_frequency,
748 	NULL,
749 };
750 
751 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
752 				     int *current_max)
753 {
754 	u64 cap;
755 
756 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
757 	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
758 	if (global.no_turbo)
759 		*current_max = HWP_GUARANTEED_PERF(cap);
760 	else
761 		*current_max = HWP_HIGHEST_PERF(cap);
762 
763 	*phy_max = HWP_HIGHEST_PERF(cap);
764 }
765 
766 static void intel_pstate_hwp_set(unsigned int cpu)
767 {
768 	struct cpudata *cpu_data = all_cpu_data[cpu];
769 	int max, min;
770 	u64 value;
771 	s16 epp;
772 
773 	max = cpu_data->max_perf_ratio;
774 	min = cpu_data->min_perf_ratio;
775 
776 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
777 		min = max;
778 
779 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
780 
781 	value &= ~HWP_MIN_PERF(~0L);
782 	value |= HWP_MIN_PERF(min);
783 
784 	value &= ~HWP_MAX_PERF(~0L);
785 	value |= HWP_MAX_PERF(max);
786 
787 	if (cpu_data->epp_policy == cpu_data->policy)
788 		goto skip_epp;
789 
790 	cpu_data->epp_policy = cpu_data->policy;
791 
792 	if (cpu_data->epp_saved >= 0) {
793 		epp = cpu_data->epp_saved;
794 		cpu_data->epp_saved = -EINVAL;
795 		goto update_epp;
796 	}
797 
798 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
799 		epp = intel_pstate_get_epp(cpu_data, value);
800 		cpu_data->epp_powersave = epp;
801 		/* If EPP read was failed, then don't try to write */
802 		if (epp < 0)
803 			goto skip_epp;
804 
805 		epp = 0;
806 	} else {
807 		/* skip setting EPP, when saved value is invalid */
808 		if (cpu_data->epp_powersave < 0)
809 			goto skip_epp;
810 
811 		/*
812 		 * No need to restore EPP when it is not zero. This
813 		 * means:
814 		 *  - Policy is not changed
815 		 *  - user has manually changed
816 		 *  - Error reading EPB
817 		 */
818 		epp = intel_pstate_get_epp(cpu_data, value);
819 		if (epp)
820 			goto skip_epp;
821 
822 		epp = cpu_data->epp_powersave;
823 	}
824 update_epp:
825 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
826 		value &= ~GENMASK_ULL(31, 24);
827 		value |= (u64)epp << 24;
828 	} else {
829 		intel_pstate_set_epb(cpu, epp);
830 	}
831 skip_epp:
832 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
833 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
834 }
835 
836 static void intel_pstate_hwp_force_min_perf(int cpu)
837 {
838 	u64 value;
839 	int min_perf;
840 
841 	value = all_cpu_data[cpu]->hwp_req_cached;
842 	value &= ~GENMASK_ULL(31, 0);
843 	min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
844 
845 	/* Set hwp_max = hwp_min */
846 	value |= HWP_MAX_PERF(min_perf);
847 	value |= HWP_MIN_PERF(min_perf);
848 
849 	/* Set EPP/EPB to min */
850 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
851 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
852 	else
853 		intel_pstate_set_epb(cpu, HWP_EPP_BALANCE_POWERSAVE);
854 
855 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
856 }
857 
858 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
859 {
860 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
861 
862 	if (!hwp_active)
863 		return 0;
864 
865 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
866 
867 	return 0;
868 }
869 
870 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
871 
872 static int intel_pstate_resume(struct cpufreq_policy *policy)
873 {
874 	if (!hwp_active)
875 		return 0;
876 
877 	mutex_lock(&intel_pstate_limits_lock);
878 
879 	if (policy->cpu == 0)
880 		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
881 
882 	all_cpu_data[policy->cpu]->epp_policy = 0;
883 	intel_pstate_hwp_set(policy->cpu);
884 
885 	mutex_unlock(&intel_pstate_limits_lock);
886 
887 	return 0;
888 }
889 
890 static void intel_pstate_update_policies(void)
891 {
892 	int cpu;
893 
894 	for_each_possible_cpu(cpu)
895 		cpufreq_update_policy(cpu);
896 }
897 
898 static void intel_pstate_update_max_freq(unsigned int cpu)
899 {
900 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
901 	struct cpufreq_policy new_policy;
902 	struct cpudata *cpudata;
903 
904 	if (!policy)
905 		return;
906 
907 	cpudata = all_cpu_data[cpu];
908 	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
909 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
910 
911 	memcpy(&new_policy, policy, sizeof(*policy));
912 	new_policy.max = min(policy->user_policy.max, policy->cpuinfo.max_freq);
913 	new_policy.min = min(policy->user_policy.min, new_policy.max);
914 
915 	cpufreq_set_policy(policy, &new_policy);
916 
917 	cpufreq_cpu_release(policy);
918 }
919 
920 static void intel_pstate_update_limits(unsigned int cpu)
921 {
922 	mutex_lock(&intel_pstate_driver_lock);
923 
924 	update_turbo_state();
925 	/*
926 	 * If turbo has been turned on or off globally, policy limits for
927 	 * all CPUs need to be updated to reflect that.
928 	 */
929 	if (global.turbo_disabled_mf != global.turbo_disabled) {
930 		global.turbo_disabled_mf = global.turbo_disabled;
931 		for_each_possible_cpu(cpu)
932 			intel_pstate_update_max_freq(cpu);
933 	} else {
934 		cpufreq_update_policy(cpu);
935 	}
936 
937 	mutex_unlock(&intel_pstate_driver_lock);
938 }
939 
940 /************************** sysfs begin ************************/
941 #define show_one(file_name, object)					\
942 	static ssize_t show_##file_name					\
943 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
944 	{								\
945 		return sprintf(buf, "%u\n", global.object);		\
946 	}
947 
948 static ssize_t intel_pstate_show_status(char *buf);
949 static int intel_pstate_update_status(const char *buf, size_t size);
950 
951 static ssize_t show_status(struct kobject *kobj,
952 			   struct kobj_attribute *attr, char *buf)
953 {
954 	ssize_t ret;
955 
956 	mutex_lock(&intel_pstate_driver_lock);
957 	ret = intel_pstate_show_status(buf);
958 	mutex_unlock(&intel_pstate_driver_lock);
959 
960 	return ret;
961 }
962 
963 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
964 			    const char *buf, size_t count)
965 {
966 	char *p = memchr(buf, '\n', count);
967 	int ret;
968 
969 	mutex_lock(&intel_pstate_driver_lock);
970 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
971 	mutex_unlock(&intel_pstate_driver_lock);
972 
973 	return ret < 0 ? ret : count;
974 }
975 
976 static ssize_t show_turbo_pct(struct kobject *kobj,
977 				struct kobj_attribute *attr, char *buf)
978 {
979 	struct cpudata *cpu;
980 	int total, no_turbo, turbo_pct;
981 	uint32_t turbo_fp;
982 
983 	mutex_lock(&intel_pstate_driver_lock);
984 
985 	if (!intel_pstate_driver) {
986 		mutex_unlock(&intel_pstate_driver_lock);
987 		return -EAGAIN;
988 	}
989 
990 	cpu = all_cpu_data[0];
991 
992 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
993 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
994 	turbo_fp = div_fp(no_turbo, total);
995 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
996 
997 	mutex_unlock(&intel_pstate_driver_lock);
998 
999 	return sprintf(buf, "%u\n", turbo_pct);
1000 }
1001 
1002 static ssize_t show_num_pstates(struct kobject *kobj,
1003 				struct kobj_attribute *attr, char *buf)
1004 {
1005 	struct cpudata *cpu;
1006 	int total;
1007 
1008 	mutex_lock(&intel_pstate_driver_lock);
1009 
1010 	if (!intel_pstate_driver) {
1011 		mutex_unlock(&intel_pstate_driver_lock);
1012 		return -EAGAIN;
1013 	}
1014 
1015 	cpu = all_cpu_data[0];
1016 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1017 
1018 	mutex_unlock(&intel_pstate_driver_lock);
1019 
1020 	return sprintf(buf, "%u\n", total);
1021 }
1022 
1023 static ssize_t show_no_turbo(struct kobject *kobj,
1024 			     struct kobj_attribute *attr, char *buf)
1025 {
1026 	ssize_t ret;
1027 
1028 	mutex_lock(&intel_pstate_driver_lock);
1029 
1030 	if (!intel_pstate_driver) {
1031 		mutex_unlock(&intel_pstate_driver_lock);
1032 		return -EAGAIN;
1033 	}
1034 
1035 	update_turbo_state();
1036 	if (global.turbo_disabled)
1037 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1038 	else
1039 		ret = sprintf(buf, "%u\n", global.no_turbo);
1040 
1041 	mutex_unlock(&intel_pstate_driver_lock);
1042 
1043 	return ret;
1044 }
1045 
1046 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1047 			      const char *buf, size_t count)
1048 {
1049 	unsigned int input;
1050 	int ret;
1051 
1052 	ret = sscanf(buf, "%u", &input);
1053 	if (ret != 1)
1054 		return -EINVAL;
1055 
1056 	mutex_lock(&intel_pstate_driver_lock);
1057 
1058 	if (!intel_pstate_driver) {
1059 		mutex_unlock(&intel_pstate_driver_lock);
1060 		return -EAGAIN;
1061 	}
1062 
1063 	mutex_lock(&intel_pstate_limits_lock);
1064 
1065 	update_turbo_state();
1066 	if (global.turbo_disabled) {
1067 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1068 		mutex_unlock(&intel_pstate_limits_lock);
1069 		mutex_unlock(&intel_pstate_driver_lock);
1070 		return -EPERM;
1071 	}
1072 
1073 	global.no_turbo = clamp_t(int, input, 0, 1);
1074 
1075 	if (global.no_turbo) {
1076 		struct cpudata *cpu = all_cpu_data[0];
1077 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1078 
1079 		/* Squash the global minimum into the permitted range. */
1080 		if (global.min_perf_pct > pct)
1081 			global.min_perf_pct = pct;
1082 	}
1083 
1084 	mutex_unlock(&intel_pstate_limits_lock);
1085 
1086 	intel_pstate_update_policies();
1087 
1088 	mutex_unlock(&intel_pstate_driver_lock);
1089 
1090 	return count;
1091 }
1092 
1093 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1094 				  const char *buf, size_t count)
1095 {
1096 	unsigned int input;
1097 	int ret;
1098 
1099 	ret = sscanf(buf, "%u", &input);
1100 	if (ret != 1)
1101 		return -EINVAL;
1102 
1103 	mutex_lock(&intel_pstate_driver_lock);
1104 
1105 	if (!intel_pstate_driver) {
1106 		mutex_unlock(&intel_pstate_driver_lock);
1107 		return -EAGAIN;
1108 	}
1109 
1110 	mutex_lock(&intel_pstate_limits_lock);
1111 
1112 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1113 
1114 	mutex_unlock(&intel_pstate_limits_lock);
1115 
1116 	intel_pstate_update_policies();
1117 
1118 	mutex_unlock(&intel_pstate_driver_lock);
1119 
1120 	return count;
1121 }
1122 
1123 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1124 				  const char *buf, size_t count)
1125 {
1126 	unsigned int input;
1127 	int ret;
1128 
1129 	ret = sscanf(buf, "%u", &input);
1130 	if (ret != 1)
1131 		return -EINVAL;
1132 
1133 	mutex_lock(&intel_pstate_driver_lock);
1134 
1135 	if (!intel_pstate_driver) {
1136 		mutex_unlock(&intel_pstate_driver_lock);
1137 		return -EAGAIN;
1138 	}
1139 
1140 	mutex_lock(&intel_pstate_limits_lock);
1141 
1142 	global.min_perf_pct = clamp_t(int, input,
1143 				      min_perf_pct_min(), global.max_perf_pct);
1144 
1145 	mutex_unlock(&intel_pstate_limits_lock);
1146 
1147 	intel_pstate_update_policies();
1148 
1149 	mutex_unlock(&intel_pstate_driver_lock);
1150 
1151 	return count;
1152 }
1153 
1154 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1155 				struct kobj_attribute *attr, char *buf)
1156 {
1157 	return sprintf(buf, "%u\n", hwp_boost);
1158 }
1159 
1160 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1161 				       struct kobj_attribute *b,
1162 				       const char *buf, size_t count)
1163 {
1164 	unsigned int input;
1165 	int ret;
1166 
1167 	ret = kstrtouint(buf, 10, &input);
1168 	if (ret)
1169 		return ret;
1170 
1171 	mutex_lock(&intel_pstate_driver_lock);
1172 	hwp_boost = !!input;
1173 	intel_pstate_update_policies();
1174 	mutex_unlock(&intel_pstate_driver_lock);
1175 
1176 	return count;
1177 }
1178 
1179 show_one(max_perf_pct, max_perf_pct);
1180 show_one(min_perf_pct, min_perf_pct);
1181 
1182 define_one_global_rw(status);
1183 define_one_global_rw(no_turbo);
1184 define_one_global_rw(max_perf_pct);
1185 define_one_global_rw(min_perf_pct);
1186 define_one_global_ro(turbo_pct);
1187 define_one_global_ro(num_pstates);
1188 define_one_global_rw(hwp_dynamic_boost);
1189 
1190 static struct attribute *intel_pstate_attributes[] = {
1191 	&status.attr,
1192 	&no_turbo.attr,
1193 	&turbo_pct.attr,
1194 	&num_pstates.attr,
1195 	NULL
1196 };
1197 
1198 static const struct attribute_group intel_pstate_attr_group = {
1199 	.attrs = intel_pstate_attributes,
1200 };
1201 
1202 static void __init intel_pstate_sysfs_expose_params(void)
1203 {
1204 	struct kobject *intel_pstate_kobject;
1205 	int rc;
1206 
1207 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1208 						&cpu_subsys.dev_root->kobj);
1209 	if (WARN_ON(!intel_pstate_kobject))
1210 		return;
1211 
1212 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1213 	if (WARN_ON(rc))
1214 		return;
1215 
1216 	/*
1217 	 * If per cpu limits are enforced there are no global limits, so
1218 	 * return without creating max/min_perf_pct attributes
1219 	 */
1220 	if (per_cpu_limits)
1221 		return;
1222 
1223 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1224 	WARN_ON(rc);
1225 
1226 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1227 	WARN_ON(rc);
1228 
1229 	if (hwp_active) {
1230 		rc = sysfs_create_file(intel_pstate_kobject,
1231 				       &hwp_dynamic_boost.attr);
1232 		WARN_ON(rc);
1233 	}
1234 }
1235 /************************** sysfs end ************************/
1236 
1237 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1238 {
1239 	/* First disable HWP notification interrupt as we don't process them */
1240 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1241 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1242 
1243 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1244 	cpudata->epp_policy = 0;
1245 	if (cpudata->epp_default == -EINVAL)
1246 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1247 }
1248 
1249 #define MSR_IA32_POWER_CTL_BIT_EE	19
1250 
1251 /* Disable energy efficiency optimization */
1252 static void intel_pstate_disable_ee(int cpu)
1253 {
1254 	u64 power_ctl;
1255 	int ret;
1256 
1257 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1258 	if (ret)
1259 		return;
1260 
1261 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1262 		pr_info("Disabling energy efficiency optimization\n");
1263 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1264 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1265 	}
1266 }
1267 
1268 static int atom_get_min_pstate(void)
1269 {
1270 	u64 value;
1271 
1272 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1273 	return (value >> 8) & 0x7F;
1274 }
1275 
1276 static int atom_get_max_pstate(void)
1277 {
1278 	u64 value;
1279 
1280 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1281 	return (value >> 16) & 0x7F;
1282 }
1283 
1284 static int atom_get_turbo_pstate(void)
1285 {
1286 	u64 value;
1287 
1288 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1289 	return value & 0x7F;
1290 }
1291 
1292 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1293 {
1294 	u64 val;
1295 	int32_t vid_fp;
1296 	u32 vid;
1297 
1298 	val = (u64)pstate << 8;
1299 	if (global.no_turbo && !global.turbo_disabled)
1300 		val |= (u64)1 << 32;
1301 
1302 	vid_fp = cpudata->vid.min + mul_fp(
1303 		int_tofp(pstate - cpudata->pstate.min_pstate),
1304 		cpudata->vid.ratio);
1305 
1306 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1307 	vid = ceiling_fp(vid_fp);
1308 
1309 	if (pstate > cpudata->pstate.max_pstate)
1310 		vid = cpudata->vid.turbo;
1311 
1312 	return val | vid;
1313 }
1314 
1315 static int silvermont_get_scaling(void)
1316 {
1317 	u64 value;
1318 	int i;
1319 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1320 	static int silvermont_freq_table[] = {
1321 		83300, 100000, 133300, 116700, 80000};
1322 
1323 	rdmsrl(MSR_FSB_FREQ, value);
1324 	i = value & 0x7;
1325 	WARN_ON(i > 4);
1326 
1327 	return silvermont_freq_table[i];
1328 }
1329 
1330 static int airmont_get_scaling(void)
1331 {
1332 	u64 value;
1333 	int i;
1334 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1335 	static int airmont_freq_table[] = {
1336 		83300, 100000, 133300, 116700, 80000,
1337 		93300, 90000, 88900, 87500};
1338 
1339 	rdmsrl(MSR_FSB_FREQ, value);
1340 	i = value & 0xF;
1341 	WARN_ON(i > 8);
1342 
1343 	return airmont_freq_table[i];
1344 }
1345 
1346 static void atom_get_vid(struct cpudata *cpudata)
1347 {
1348 	u64 value;
1349 
1350 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1351 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1352 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1353 	cpudata->vid.ratio = div_fp(
1354 		cpudata->vid.max - cpudata->vid.min,
1355 		int_tofp(cpudata->pstate.max_pstate -
1356 			cpudata->pstate.min_pstate));
1357 
1358 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1359 	cpudata->vid.turbo = value & 0x7f;
1360 }
1361 
1362 static int core_get_min_pstate(void)
1363 {
1364 	u64 value;
1365 
1366 	rdmsrl(MSR_PLATFORM_INFO, value);
1367 	return (value >> 40) & 0xFF;
1368 }
1369 
1370 static int core_get_max_pstate_physical(void)
1371 {
1372 	u64 value;
1373 
1374 	rdmsrl(MSR_PLATFORM_INFO, value);
1375 	return (value >> 8) & 0xFF;
1376 }
1377 
1378 static int core_get_tdp_ratio(u64 plat_info)
1379 {
1380 	/* Check how many TDP levels present */
1381 	if (plat_info & 0x600000000) {
1382 		u64 tdp_ctrl;
1383 		u64 tdp_ratio;
1384 		int tdp_msr;
1385 		int err;
1386 
1387 		/* Get the TDP level (0, 1, 2) to get ratios */
1388 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1389 		if (err)
1390 			return err;
1391 
1392 		/* TDP MSR are continuous starting at 0x648 */
1393 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1394 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1395 		if (err)
1396 			return err;
1397 
1398 		/* For level 1 and 2, bits[23:16] contain the ratio */
1399 		if (tdp_ctrl & 0x03)
1400 			tdp_ratio >>= 16;
1401 
1402 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1403 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1404 
1405 		return (int)tdp_ratio;
1406 	}
1407 
1408 	return -ENXIO;
1409 }
1410 
1411 static int core_get_max_pstate(void)
1412 {
1413 	u64 tar;
1414 	u64 plat_info;
1415 	int max_pstate;
1416 	int tdp_ratio;
1417 	int err;
1418 
1419 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1420 	max_pstate = (plat_info >> 8) & 0xFF;
1421 
1422 	tdp_ratio = core_get_tdp_ratio(plat_info);
1423 	if (tdp_ratio <= 0)
1424 		return max_pstate;
1425 
1426 	if (hwp_active) {
1427 		/* Turbo activation ratio is not used on HWP platforms */
1428 		return tdp_ratio;
1429 	}
1430 
1431 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1432 	if (!err) {
1433 		int tar_levels;
1434 
1435 		/* Do some sanity checking for safety */
1436 		tar_levels = tar & 0xff;
1437 		if (tdp_ratio - 1 == tar_levels) {
1438 			max_pstate = tar_levels;
1439 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1440 		}
1441 	}
1442 
1443 	return max_pstate;
1444 }
1445 
1446 static int core_get_turbo_pstate(void)
1447 {
1448 	u64 value;
1449 	int nont, ret;
1450 
1451 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1452 	nont = core_get_max_pstate();
1453 	ret = (value) & 255;
1454 	if (ret <= nont)
1455 		ret = nont;
1456 	return ret;
1457 }
1458 
1459 static inline int core_get_scaling(void)
1460 {
1461 	return 100000;
1462 }
1463 
1464 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1465 {
1466 	u64 val;
1467 
1468 	val = (u64)pstate << 8;
1469 	if (global.no_turbo && !global.turbo_disabled)
1470 		val |= (u64)1 << 32;
1471 
1472 	return val;
1473 }
1474 
1475 static int knl_get_aperf_mperf_shift(void)
1476 {
1477 	return 10;
1478 }
1479 
1480 static int knl_get_turbo_pstate(void)
1481 {
1482 	u64 value;
1483 	int nont, ret;
1484 
1485 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1486 	nont = core_get_max_pstate();
1487 	ret = (((value) >> 8) & 0xFF);
1488 	if (ret <= nont)
1489 		ret = nont;
1490 	return ret;
1491 }
1492 
1493 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1494 {
1495 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1496 	cpu->pstate.current_pstate = pstate;
1497 	/*
1498 	 * Generally, there is no guarantee that this code will always run on
1499 	 * the CPU being updated, so force the register update to run on the
1500 	 * right CPU.
1501 	 */
1502 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1503 		      pstate_funcs.get_val(cpu, pstate));
1504 }
1505 
1506 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1507 {
1508 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1509 }
1510 
1511 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1512 {
1513 	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1514 
1515 	update_turbo_state();
1516 	intel_pstate_set_pstate(cpu, pstate);
1517 }
1518 
1519 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1520 {
1521 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1522 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1523 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1524 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1525 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1526 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1527 
1528 	if (hwp_active && !hwp_mode_bdw) {
1529 		unsigned int phy_max, current_max;
1530 
1531 		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1532 		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1533 	} else {
1534 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1535 	}
1536 
1537 	if (pstate_funcs.get_aperf_mperf_shift)
1538 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1539 
1540 	if (pstate_funcs.get_vid)
1541 		pstate_funcs.get_vid(cpu);
1542 
1543 	intel_pstate_set_min_pstate(cpu);
1544 }
1545 
1546 /*
1547  * Long hold time will keep high perf limits for long time,
1548  * which negatively impacts perf/watt for some workloads,
1549  * like specpower. 3ms is based on experiements on some
1550  * workoads.
1551  */
1552 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1553 
1554 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1555 {
1556 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1557 	u32 max_limit = (hwp_req & 0xff00) >> 8;
1558 	u32 min_limit = (hwp_req & 0xff);
1559 	u32 boost_level1;
1560 
1561 	/*
1562 	 * Cases to consider (User changes via sysfs or boot time):
1563 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1564 	 *	No boost, return.
1565 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1566 	 *     Should result in one level boost only for P0.
1567 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1568 	 *     Should result in two level boost:
1569 	 *         (min + p1)/2 and P1.
1570 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1571 	 *     Should result in three level boost:
1572 	 *        (min + p1)/2, P1 and P0.
1573 	 */
1574 
1575 	/* If max and min are equal or already at max, nothing to boost */
1576 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1577 		return;
1578 
1579 	if (!cpu->hwp_boost_min)
1580 		cpu->hwp_boost_min = min_limit;
1581 
1582 	/* level at half way mark between min and guranteed */
1583 	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1584 
1585 	if (cpu->hwp_boost_min < boost_level1)
1586 		cpu->hwp_boost_min = boost_level1;
1587 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1588 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1589 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1590 		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1591 		cpu->hwp_boost_min = max_limit;
1592 	else
1593 		return;
1594 
1595 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1596 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
1597 	cpu->last_update = cpu->sample.time;
1598 }
1599 
1600 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1601 {
1602 	if (cpu->hwp_boost_min) {
1603 		bool expired;
1604 
1605 		/* Check if we are idle for hold time to boost down */
1606 		expired = time_after64(cpu->sample.time, cpu->last_update +
1607 				       hwp_boost_hold_time_ns);
1608 		if (expired) {
1609 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1610 			cpu->hwp_boost_min = 0;
1611 		}
1612 	}
1613 	cpu->last_update = cpu->sample.time;
1614 }
1615 
1616 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1617 						      u64 time)
1618 {
1619 	cpu->sample.time = time;
1620 
1621 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1622 		bool do_io = false;
1623 
1624 		cpu->sched_flags = 0;
1625 		/*
1626 		 * Set iowait_boost flag and update time. Since IO WAIT flag
1627 		 * is set all the time, we can't just conclude that there is
1628 		 * some IO bound activity is scheduled on this CPU with just
1629 		 * one occurrence. If we receive at least two in two
1630 		 * consecutive ticks, then we treat as boost candidate.
1631 		 */
1632 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1633 			do_io = true;
1634 
1635 		cpu->last_io_update = time;
1636 
1637 		if (do_io)
1638 			intel_pstate_hwp_boost_up(cpu);
1639 
1640 	} else {
1641 		intel_pstate_hwp_boost_down(cpu);
1642 	}
1643 }
1644 
1645 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1646 						u64 time, unsigned int flags)
1647 {
1648 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1649 
1650 	cpu->sched_flags |= flags;
1651 
1652 	if (smp_processor_id() == cpu->cpu)
1653 		intel_pstate_update_util_hwp_local(cpu, time);
1654 }
1655 
1656 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1657 {
1658 	struct sample *sample = &cpu->sample;
1659 
1660 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1661 }
1662 
1663 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1664 {
1665 	u64 aperf, mperf;
1666 	unsigned long flags;
1667 	u64 tsc;
1668 
1669 	local_irq_save(flags);
1670 	rdmsrl(MSR_IA32_APERF, aperf);
1671 	rdmsrl(MSR_IA32_MPERF, mperf);
1672 	tsc = rdtsc();
1673 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1674 		local_irq_restore(flags);
1675 		return false;
1676 	}
1677 	local_irq_restore(flags);
1678 
1679 	cpu->last_sample_time = cpu->sample.time;
1680 	cpu->sample.time = time;
1681 	cpu->sample.aperf = aperf;
1682 	cpu->sample.mperf = mperf;
1683 	cpu->sample.tsc =  tsc;
1684 	cpu->sample.aperf -= cpu->prev_aperf;
1685 	cpu->sample.mperf -= cpu->prev_mperf;
1686 	cpu->sample.tsc -= cpu->prev_tsc;
1687 
1688 	cpu->prev_aperf = aperf;
1689 	cpu->prev_mperf = mperf;
1690 	cpu->prev_tsc = tsc;
1691 	/*
1692 	 * First time this function is invoked in a given cycle, all of the
1693 	 * previous sample data fields are equal to zero or stale and they must
1694 	 * be populated with meaningful numbers for things to work, so assume
1695 	 * that sample.time will always be reset before setting the utilization
1696 	 * update hook and make the caller skip the sample then.
1697 	 */
1698 	if (cpu->last_sample_time) {
1699 		intel_pstate_calc_avg_perf(cpu);
1700 		return true;
1701 	}
1702 	return false;
1703 }
1704 
1705 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1706 {
1707 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1708 }
1709 
1710 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1711 {
1712 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1713 			  cpu->sample.core_avg_perf);
1714 }
1715 
1716 static inline int32_t get_target_pstate(struct cpudata *cpu)
1717 {
1718 	struct sample *sample = &cpu->sample;
1719 	int32_t busy_frac;
1720 	int target, avg_pstate;
1721 
1722 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1723 			   sample->tsc);
1724 
1725 	if (busy_frac < cpu->iowait_boost)
1726 		busy_frac = cpu->iowait_boost;
1727 
1728 	sample->busy_scaled = busy_frac * 100;
1729 
1730 	target = global.no_turbo || global.turbo_disabled ?
1731 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1732 	target += target >> 2;
1733 	target = mul_fp(target, busy_frac);
1734 	if (target < cpu->pstate.min_pstate)
1735 		target = cpu->pstate.min_pstate;
1736 
1737 	/*
1738 	 * If the average P-state during the previous cycle was higher than the
1739 	 * current target, add 50% of the difference to the target to reduce
1740 	 * possible performance oscillations and offset possible performance
1741 	 * loss related to moving the workload from one CPU to another within
1742 	 * a package/module.
1743 	 */
1744 	avg_pstate = get_avg_pstate(cpu);
1745 	if (avg_pstate > target)
1746 		target += (avg_pstate - target) >> 1;
1747 
1748 	return target;
1749 }
1750 
1751 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1752 {
1753 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1754 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1755 
1756 	return clamp_t(int, pstate, min_pstate, max_pstate);
1757 }
1758 
1759 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1760 {
1761 	if (pstate == cpu->pstate.current_pstate)
1762 		return;
1763 
1764 	cpu->pstate.current_pstate = pstate;
1765 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1766 }
1767 
1768 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1769 {
1770 	int from = cpu->pstate.current_pstate;
1771 	struct sample *sample;
1772 	int target_pstate;
1773 
1774 	update_turbo_state();
1775 
1776 	target_pstate = get_target_pstate(cpu);
1777 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1778 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1779 	intel_pstate_update_pstate(cpu, target_pstate);
1780 
1781 	sample = &cpu->sample;
1782 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1783 		fp_toint(sample->busy_scaled),
1784 		from,
1785 		cpu->pstate.current_pstate,
1786 		sample->mperf,
1787 		sample->aperf,
1788 		sample->tsc,
1789 		get_avg_frequency(cpu),
1790 		fp_toint(cpu->iowait_boost * 100));
1791 }
1792 
1793 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1794 				     unsigned int flags)
1795 {
1796 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1797 	u64 delta_ns;
1798 
1799 	/* Don't allow remote callbacks */
1800 	if (smp_processor_id() != cpu->cpu)
1801 		return;
1802 
1803 	delta_ns = time - cpu->last_update;
1804 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1805 		/* Start over if the CPU may have been idle. */
1806 		if (delta_ns > TICK_NSEC) {
1807 			cpu->iowait_boost = ONE_EIGHTH_FP;
1808 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1809 			cpu->iowait_boost <<= 1;
1810 			if (cpu->iowait_boost > int_tofp(1))
1811 				cpu->iowait_boost = int_tofp(1);
1812 		} else {
1813 			cpu->iowait_boost = ONE_EIGHTH_FP;
1814 		}
1815 	} else if (cpu->iowait_boost) {
1816 		/* Clear iowait_boost if the CPU may have been idle. */
1817 		if (delta_ns > TICK_NSEC)
1818 			cpu->iowait_boost = 0;
1819 		else
1820 			cpu->iowait_boost >>= 1;
1821 	}
1822 	cpu->last_update = time;
1823 	delta_ns = time - cpu->sample.time;
1824 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1825 		return;
1826 
1827 	if (intel_pstate_sample(cpu, time))
1828 		intel_pstate_adjust_pstate(cpu);
1829 }
1830 
1831 static struct pstate_funcs core_funcs = {
1832 	.get_max = core_get_max_pstate,
1833 	.get_max_physical = core_get_max_pstate_physical,
1834 	.get_min = core_get_min_pstate,
1835 	.get_turbo = core_get_turbo_pstate,
1836 	.get_scaling = core_get_scaling,
1837 	.get_val = core_get_val,
1838 };
1839 
1840 static const struct pstate_funcs silvermont_funcs = {
1841 	.get_max = atom_get_max_pstate,
1842 	.get_max_physical = atom_get_max_pstate,
1843 	.get_min = atom_get_min_pstate,
1844 	.get_turbo = atom_get_turbo_pstate,
1845 	.get_val = atom_get_val,
1846 	.get_scaling = silvermont_get_scaling,
1847 	.get_vid = atom_get_vid,
1848 };
1849 
1850 static const struct pstate_funcs airmont_funcs = {
1851 	.get_max = atom_get_max_pstate,
1852 	.get_max_physical = atom_get_max_pstate,
1853 	.get_min = atom_get_min_pstate,
1854 	.get_turbo = atom_get_turbo_pstate,
1855 	.get_val = atom_get_val,
1856 	.get_scaling = airmont_get_scaling,
1857 	.get_vid = atom_get_vid,
1858 };
1859 
1860 static const struct pstate_funcs knl_funcs = {
1861 	.get_max = core_get_max_pstate,
1862 	.get_max_physical = core_get_max_pstate_physical,
1863 	.get_min = core_get_min_pstate,
1864 	.get_turbo = knl_get_turbo_pstate,
1865 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1866 	.get_scaling = core_get_scaling,
1867 	.get_val = core_get_val,
1868 };
1869 
1870 #define ICPU(model, policy) \
1871 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1872 			(unsigned long)&policy }
1873 
1874 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1875 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
1876 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1877 	ICPU(INTEL_FAM6_ATOM_SILVERMONT,	silvermont_funcs),
1878 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1879 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
1880 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
1881 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
1882 	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1883 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
1884 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
1885 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
1886 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1887 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
1888 	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1889 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
1890 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
1891 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
1892 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1893 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs),
1894 	ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1895 	ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs),
1896 	{}
1897 };
1898 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1899 
1900 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1901 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1902 	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1903 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1904 	{}
1905 };
1906 
1907 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1908 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1909 	{}
1910 };
1911 
1912 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1913 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1914 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs),
1915 	{}
1916 };
1917 
1918 static int intel_pstate_init_cpu(unsigned int cpunum)
1919 {
1920 	struct cpudata *cpu;
1921 
1922 	cpu = all_cpu_data[cpunum];
1923 
1924 	if (!cpu) {
1925 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1926 		if (!cpu)
1927 			return -ENOMEM;
1928 
1929 		all_cpu_data[cpunum] = cpu;
1930 
1931 		cpu->epp_default = -EINVAL;
1932 		cpu->epp_powersave = -EINVAL;
1933 		cpu->epp_saved = -EINVAL;
1934 	}
1935 
1936 	cpu = all_cpu_data[cpunum];
1937 
1938 	cpu->cpu = cpunum;
1939 
1940 	if (hwp_active) {
1941 		const struct x86_cpu_id *id;
1942 
1943 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1944 		if (id)
1945 			intel_pstate_disable_ee(cpunum);
1946 
1947 		intel_pstate_hwp_enable(cpu);
1948 
1949 		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1950 		if (id && intel_pstate_acpi_pm_profile_server())
1951 			hwp_boost = true;
1952 	}
1953 
1954 	intel_pstate_get_cpu_pstates(cpu);
1955 
1956 	pr_debug("controlling: cpu %d\n", cpunum);
1957 
1958 	return 0;
1959 }
1960 
1961 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1962 {
1963 	struct cpudata *cpu = all_cpu_data[cpu_num];
1964 
1965 	if (hwp_active && !hwp_boost)
1966 		return;
1967 
1968 	if (cpu->update_util_set)
1969 		return;
1970 
1971 	/* Prevent intel_pstate_update_util() from using stale data. */
1972 	cpu->sample.time = 0;
1973 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1974 				     (hwp_active ?
1975 				      intel_pstate_update_util_hwp :
1976 				      intel_pstate_update_util));
1977 	cpu->update_util_set = true;
1978 }
1979 
1980 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1981 {
1982 	struct cpudata *cpu_data = all_cpu_data[cpu];
1983 
1984 	if (!cpu_data->update_util_set)
1985 		return;
1986 
1987 	cpufreq_remove_update_util_hook(cpu);
1988 	cpu_data->update_util_set = false;
1989 	synchronize_rcu();
1990 }
1991 
1992 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1993 {
1994 	return global.turbo_disabled || global.no_turbo ?
1995 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1996 }
1997 
1998 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1999 					    struct cpudata *cpu)
2000 {
2001 	int max_freq = intel_pstate_get_max_freq(cpu);
2002 	int32_t max_policy_perf, min_policy_perf;
2003 	int max_state, turbo_max;
2004 
2005 	/*
2006 	 * HWP needs some special consideration, because on BDX the
2007 	 * HWP_REQUEST uses abstract value to represent performance
2008 	 * rather than pure ratios.
2009 	 */
2010 	if (hwp_active) {
2011 		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2012 	} else {
2013 		max_state = global.no_turbo || global.turbo_disabled ?
2014 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2015 		turbo_max = cpu->pstate.turbo_pstate;
2016 	}
2017 
2018 	max_policy_perf = max_state * policy->max / max_freq;
2019 	if (policy->max == policy->min) {
2020 		min_policy_perf = max_policy_perf;
2021 	} else {
2022 		min_policy_perf = max_state * policy->min / max_freq;
2023 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2024 					  0, max_policy_perf);
2025 	}
2026 
2027 	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2028 		 policy->cpu, max_state,
2029 		 min_policy_perf, max_policy_perf);
2030 
2031 	/* Normalize user input to [min_perf, max_perf] */
2032 	if (per_cpu_limits) {
2033 		cpu->min_perf_ratio = min_policy_perf;
2034 		cpu->max_perf_ratio = max_policy_perf;
2035 	} else {
2036 		int32_t global_min, global_max;
2037 
2038 		/* Global limits are in percent of the maximum turbo P-state. */
2039 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2040 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2041 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2042 
2043 		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2044 			 global_min, global_max);
2045 
2046 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2047 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2048 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2049 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2050 
2051 		/* Make sure min_perf <= max_perf */
2052 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2053 					  cpu->max_perf_ratio);
2054 
2055 	}
2056 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2057 		 cpu->max_perf_ratio,
2058 		 cpu->min_perf_ratio);
2059 }
2060 
2061 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2062 {
2063 	struct cpudata *cpu;
2064 
2065 	if (!policy->cpuinfo.max_freq)
2066 		return -ENODEV;
2067 
2068 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2069 		 policy->cpuinfo.max_freq, policy->max);
2070 
2071 	cpu = all_cpu_data[policy->cpu];
2072 	cpu->policy = policy->policy;
2073 
2074 	mutex_lock(&intel_pstate_limits_lock);
2075 
2076 	intel_pstate_update_perf_limits(policy, cpu);
2077 
2078 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2079 		/*
2080 		 * NOHZ_FULL CPUs need this as the governor callback may not
2081 		 * be invoked on them.
2082 		 */
2083 		intel_pstate_clear_update_util_hook(policy->cpu);
2084 		intel_pstate_max_within_limits(cpu);
2085 	} else {
2086 		intel_pstate_set_update_util_hook(policy->cpu);
2087 	}
2088 
2089 	if (hwp_active) {
2090 		/*
2091 		 * When hwp_boost was active before and dynamically it
2092 		 * was turned off, in that case we need to clear the
2093 		 * update util hook.
2094 		 */
2095 		if (!hwp_boost)
2096 			intel_pstate_clear_update_util_hook(policy->cpu);
2097 		intel_pstate_hwp_set(policy->cpu);
2098 	}
2099 
2100 	mutex_unlock(&intel_pstate_limits_lock);
2101 
2102 	return 0;
2103 }
2104 
2105 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2106 					 struct cpudata *cpu)
2107 {
2108 	if (!hwp_active &&
2109 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2110 	    policy->max < policy->cpuinfo.max_freq &&
2111 	    policy->max > cpu->pstate.max_freq) {
2112 		pr_debug("policy->max > max non turbo frequency\n");
2113 		policy->max = policy->cpuinfo.max_freq;
2114 	}
2115 }
2116 
2117 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2118 {
2119 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2120 
2121 	update_turbo_state();
2122 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2123 				     intel_pstate_get_max_freq(cpu));
2124 
2125 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2126 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2127 		return -EINVAL;
2128 
2129 	intel_pstate_adjust_policy_max(policy, cpu);
2130 
2131 	return 0;
2132 }
2133 
2134 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2135 {
2136 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2137 }
2138 
2139 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2140 {
2141 	pr_debug("CPU %d exiting\n", policy->cpu);
2142 
2143 	intel_pstate_clear_update_util_hook(policy->cpu);
2144 	if (hwp_active) {
2145 		intel_pstate_hwp_save_state(policy);
2146 		intel_pstate_hwp_force_min_perf(policy->cpu);
2147 	} else {
2148 		intel_cpufreq_stop_cpu(policy);
2149 	}
2150 }
2151 
2152 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2153 {
2154 	intel_pstate_exit_perf_limits(policy);
2155 
2156 	policy->fast_switch_possible = false;
2157 
2158 	return 0;
2159 }
2160 
2161 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2162 {
2163 	struct cpudata *cpu;
2164 	int rc;
2165 
2166 	rc = intel_pstate_init_cpu(policy->cpu);
2167 	if (rc)
2168 		return rc;
2169 
2170 	cpu = all_cpu_data[policy->cpu];
2171 
2172 	cpu->max_perf_ratio = 0xFF;
2173 	cpu->min_perf_ratio = 0;
2174 
2175 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2176 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2177 
2178 	/* cpuinfo and default policy values */
2179 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2180 	update_turbo_state();
2181 	global.turbo_disabled_mf = global.turbo_disabled;
2182 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2183 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2184 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2185 
2186 	if (hwp_active) {
2187 		unsigned int max_freq;
2188 
2189 		max_freq = global.turbo_disabled ?
2190 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2191 		if (max_freq < policy->cpuinfo.max_freq)
2192 			policy->cpuinfo.max_freq = max_freq;
2193 	}
2194 
2195 	intel_pstate_init_acpi_perf_limits(policy);
2196 
2197 	policy->fast_switch_possible = true;
2198 
2199 	return 0;
2200 }
2201 
2202 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2203 {
2204 	int ret = __intel_pstate_cpu_init(policy);
2205 
2206 	if (ret)
2207 		return ret;
2208 
2209 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2210 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2211 	else
2212 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2213 
2214 	return 0;
2215 }
2216 
2217 static struct cpufreq_driver intel_pstate = {
2218 	.flags		= CPUFREQ_CONST_LOOPS,
2219 	.verify		= intel_pstate_verify_policy,
2220 	.setpolicy	= intel_pstate_set_policy,
2221 	.suspend	= intel_pstate_hwp_save_state,
2222 	.resume		= intel_pstate_resume,
2223 	.init		= intel_pstate_cpu_init,
2224 	.exit		= intel_pstate_cpu_exit,
2225 	.stop_cpu	= intel_pstate_stop_cpu,
2226 	.update_limits	= intel_pstate_update_limits,
2227 	.name		= "intel_pstate",
2228 };
2229 
2230 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2231 {
2232 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2233 
2234 	update_turbo_state();
2235 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2236 				     intel_pstate_get_max_freq(cpu));
2237 
2238 	intel_pstate_adjust_policy_max(policy, cpu);
2239 
2240 	intel_pstate_update_perf_limits(policy, cpu);
2241 
2242 	return 0;
2243 }
2244 
2245 /* Use of trace in passive mode:
2246  *
2247  * In passive mode the trace core_busy field (also known as the
2248  * performance field, and lablelled as such on the graphs; also known as
2249  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2250  * driver call was via the normal or fast switch path. Various graphs
2251  * output from the intel_pstate_tracer.py utility that include core_busy
2252  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2253  * so we use 10 to indicate the the normal path through the driver, and
2254  * 90 to indicate the fast switch path through the driver.
2255  * The scaled_busy field is not used, and is set to 0.
2256  */
2257 
2258 #define	INTEL_PSTATE_TRACE_TARGET 10
2259 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2260 
2261 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2262 {
2263 	struct sample *sample;
2264 
2265 	if (!trace_pstate_sample_enabled())
2266 		return;
2267 
2268 	if (!intel_pstate_sample(cpu, ktime_get()))
2269 		return;
2270 
2271 	sample = &cpu->sample;
2272 	trace_pstate_sample(trace_type,
2273 		0,
2274 		old_pstate,
2275 		cpu->pstate.current_pstate,
2276 		sample->mperf,
2277 		sample->aperf,
2278 		sample->tsc,
2279 		get_avg_frequency(cpu),
2280 		fp_toint(cpu->iowait_boost * 100));
2281 }
2282 
2283 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2284 				unsigned int target_freq,
2285 				unsigned int relation)
2286 {
2287 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2288 	struct cpufreq_freqs freqs;
2289 	int target_pstate, old_pstate;
2290 
2291 	update_turbo_state();
2292 
2293 	freqs.old = policy->cur;
2294 	freqs.new = target_freq;
2295 
2296 	cpufreq_freq_transition_begin(policy, &freqs);
2297 	switch (relation) {
2298 	case CPUFREQ_RELATION_L:
2299 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2300 		break;
2301 	case CPUFREQ_RELATION_H:
2302 		target_pstate = freqs.new / cpu->pstate.scaling;
2303 		break;
2304 	default:
2305 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2306 		break;
2307 	}
2308 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2309 	old_pstate = cpu->pstate.current_pstate;
2310 	if (target_pstate != cpu->pstate.current_pstate) {
2311 		cpu->pstate.current_pstate = target_pstate;
2312 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2313 			      pstate_funcs.get_val(cpu, target_pstate));
2314 	}
2315 	freqs.new = target_pstate * cpu->pstate.scaling;
2316 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2317 	cpufreq_freq_transition_end(policy, &freqs, false);
2318 
2319 	return 0;
2320 }
2321 
2322 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2323 					      unsigned int target_freq)
2324 {
2325 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2326 	int target_pstate, old_pstate;
2327 
2328 	update_turbo_state();
2329 
2330 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2331 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2332 	old_pstate = cpu->pstate.current_pstate;
2333 	intel_pstate_update_pstate(cpu, target_pstate);
2334 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2335 	return target_pstate * cpu->pstate.scaling;
2336 }
2337 
2338 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2339 {
2340 	int ret = __intel_pstate_cpu_init(policy);
2341 
2342 	if (ret)
2343 		return ret;
2344 
2345 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2346 	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2347 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2348 	policy->cur = policy->cpuinfo.min_freq;
2349 
2350 	return 0;
2351 }
2352 
2353 static struct cpufreq_driver intel_cpufreq = {
2354 	.flags		= CPUFREQ_CONST_LOOPS,
2355 	.verify		= intel_cpufreq_verify_policy,
2356 	.target		= intel_cpufreq_target,
2357 	.fast_switch	= intel_cpufreq_fast_switch,
2358 	.init		= intel_cpufreq_cpu_init,
2359 	.exit		= intel_pstate_cpu_exit,
2360 	.stop_cpu	= intel_cpufreq_stop_cpu,
2361 	.update_limits	= intel_pstate_update_limits,
2362 	.name		= "intel_cpufreq",
2363 };
2364 
2365 static struct cpufreq_driver *default_driver = &intel_pstate;
2366 
2367 static void intel_pstate_driver_cleanup(void)
2368 {
2369 	unsigned int cpu;
2370 
2371 	get_online_cpus();
2372 	for_each_online_cpu(cpu) {
2373 		if (all_cpu_data[cpu]) {
2374 			if (intel_pstate_driver == &intel_pstate)
2375 				intel_pstate_clear_update_util_hook(cpu);
2376 
2377 			kfree(all_cpu_data[cpu]);
2378 			all_cpu_data[cpu] = NULL;
2379 		}
2380 	}
2381 	put_online_cpus();
2382 	intel_pstate_driver = NULL;
2383 }
2384 
2385 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2386 {
2387 	int ret;
2388 
2389 	memset(&global, 0, sizeof(global));
2390 	global.max_perf_pct = 100;
2391 
2392 	intel_pstate_driver = driver;
2393 	ret = cpufreq_register_driver(intel_pstate_driver);
2394 	if (ret) {
2395 		intel_pstate_driver_cleanup();
2396 		return ret;
2397 	}
2398 
2399 	global.min_perf_pct = min_perf_pct_min();
2400 
2401 	return 0;
2402 }
2403 
2404 static int intel_pstate_unregister_driver(void)
2405 {
2406 	if (hwp_active)
2407 		return -EBUSY;
2408 
2409 	cpufreq_unregister_driver(intel_pstate_driver);
2410 	intel_pstate_driver_cleanup();
2411 
2412 	return 0;
2413 }
2414 
2415 static ssize_t intel_pstate_show_status(char *buf)
2416 {
2417 	if (!intel_pstate_driver)
2418 		return sprintf(buf, "off\n");
2419 
2420 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2421 					"active" : "passive");
2422 }
2423 
2424 static int intel_pstate_update_status(const char *buf, size_t size)
2425 {
2426 	int ret;
2427 
2428 	if (size == 3 && !strncmp(buf, "off", size))
2429 		return intel_pstate_driver ?
2430 			intel_pstate_unregister_driver() : -EINVAL;
2431 
2432 	if (size == 6 && !strncmp(buf, "active", size)) {
2433 		if (intel_pstate_driver) {
2434 			if (intel_pstate_driver == &intel_pstate)
2435 				return 0;
2436 
2437 			ret = intel_pstate_unregister_driver();
2438 			if (ret)
2439 				return ret;
2440 		}
2441 
2442 		return intel_pstate_register_driver(&intel_pstate);
2443 	}
2444 
2445 	if (size == 7 && !strncmp(buf, "passive", size)) {
2446 		if (intel_pstate_driver) {
2447 			if (intel_pstate_driver == &intel_cpufreq)
2448 				return 0;
2449 
2450 			ret = intel_pstate_unregister_driver();
2451 			if (ret)
2452 				return ret;
2453 		}
2454 
2455 		return intel_pstate_register_driver(&intel_cpufreq);
2456 	}
2457 
2458 	return -EINVAL;
2459 }
2460 
2461 static int no_load __initdata;
2462 static int no_hwp __initdata;
2463 static int hwp_only __initdata;
2464 static unsigned int force_load __initdata;
2465 
2466 static int __init intel_pstate_msrs_not_valid(void)
2467 {
2468 	if (!pstate_funcs.get_max() ||
2469 	    !pstate_funcs.get_min() ||
2470 	    !pstate_funcs.get_turbo())
2471 		return -ENODEV;
2472 
2473 	return 0;
2474 }
2475 
2476 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2477 {
2478 	pstate_funcs.get_max   = funcs->get_max;
2479 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2480 	pstate_funcs.get_min   = funcs->get_min;
2481 	pstate_funcs.get_turbo = funcs->get_turbo;
2482 	pstate_funcs.get_scaling = funcs->get_scaling;
2483 	pstate_funcs.get_val   = funcs->get_val;
2484 	pstate_funcs.get_vid   = funcs->get_vid;
2485 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2486 }
2487 
2488 #ifdef CONFIG_ACPI
2489 
2490 static bool __init intel_pstate_no_acpi_pss(void)
2491 {
2492 	int i;
2493 
2494 	for_each_possible_cpu(i) {
2495 		acpi_status status;
2496 		union acpi_object *pss;
2497 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2498 		struct acpi_processor *pr = per_cpu(processors, i);
2499 
2500 		if (!pr)
2501 			continue;
2502 
2503 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2504 		if (ACPI_FAILURE(status))
2505 			continue;
2506 
2507 		pss = buffer.pointer;
2508 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2509 			kfree(pss);
2510 			return false;
2511 		}
2512 
2513 		kfree(pss);
2514 	}
2515 
2516 	pr_debug("ACPI _PSS not found\n");
2517 	return true;
2518 }
2519 
2520 static bool __init intel_pstate_no_acpi_pcch(void)
2521 {
2522 	acpi_status status;
2523 	acpi_handle handle;
2524 
2525 	status = acpi_get_handle(NULL, "\\_SB", &handle);
2526 	if (ACPI_FAILURE(status))
2527 		goto not_found;
2528 
2529 	if (acpi_has_method(handle, "PCCH"))
2530 		return false;
2531 
2532 not_found:
2533 	pr_debug("ACPI PCCH not found\n");
2534 	return true;
2535 }
2536 
2537 static bool __init intel_pstate_has_acpi_ppc(void)
2538 {
2539 	int i;
2540 
2541 	for_each_possible_cpu(i) {
2542 		struct acpi_processor *pr = per_cpu(processors, i);
2543 
2544 		if (!pr)
2545 			continue;
2546 		if (acpi_has_method(pr->handle, "_PPC"))
2547 			return true;
2548 	}
2549 	pr_debug("ACPI _PPC not found\n");
2550 	return false;
2551 }
2552 
2553 enum {
2554 	PSS,
2555 	PPC,
2556 };
2557 
2558 /* Hardware vendor-specific info that has its own power management modes */
2559 static struct acpi_platform_list plat_info[] __initdata = {
2560 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS},
2561 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2562 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2563 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2564 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2565 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2566 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2567 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2568 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2569 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2570 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2571 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2572 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2573 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2574 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC},
2575 	{ } /* End */
2576 };
2577 
2578 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2579 {
2580 	const struct x86_cpu_id *id;
2581 	u64 misc_pwr;
2582 	int idx;
2583 
2584 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2585 	if (id) {
2586 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2587 		if (misc_pwr & (1 << 8)) {
2588 			pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2589 			return true;
2590 		}
2591 	}
2592 
2593 	idx = acpi_match_platform_list(plat_info);
2594 	if (idx < 0)
2595 		return false;
2596 
2597 	switch (plat_info[idx].data) {
2598 	case PSS:
2599 		if (!intel_pstate_no_acpi_pss())
2600 			return false;
2601 
2602 		return intel_pstate_no_acpi_pcch();
2603 	case PPC:
2604 		return intel_pstate_has_acpi_ppc() && !force_load;
2605 	}
2606 
2607 	return false;
2608 }
2609 
2610 static void intel_pstate_request_control_from_smm(void)
2611 {
2612 	/*
2613 	 * It may be unsafe to request P-states control from SMM if _PPC support
2614 	 * has not been enabled.
2615 	 */
2616 	if (acpi_ppc)
2617 		acpi_processor_pstate_control();
2618 }
2619 #else /* CONFIG_ACPI not enabled */
2620 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2621 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2622 static inline void intel_pstate_request_control_from_smm(void) {}
2623 #endif /* CONFIG_ACPI */
2624 
2625 #define INTEL_PSTATE_HWP_BROADWELL	0x01
2626 
2627 #define ICPU_HWP(model, hwp_mode) \
2628 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2629 
2630 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2631 	ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2632 	ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL),
2633 	ICPU_HWP(X86_MODEL_ANY, 0),
2634 	{}
2635 };
2636 
2637 static int __init intel_pstate_init(void)
2638 {
2639 	const struct x86_cpu_id *id;
2640 	int rc;
2641 
2642 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2643 		return -ENODEV;
2644 
2645 	if (no_load)
2646 		return -ENODEV;
2647 
2648 	id = x86_match_cpu(hwp_support_ids);
2649 	if (id) {
2650 		copy_cpu_funcs(&core_funcs);
2651 		if (!no_hwp) {
2652 			hwp_active++;
2653 			hwp_mode_bdw = id->driver_data;
2654 			intel_pstate.attr = hwp_cpufreq_attrs;
2655 			goto hwp_cpu_matched;
2656 		}
2657 	} else {
2658 		id = x86_match_cpu(intel_pstate_cpu_ids);
2659 		if (!id) {
2660 			pr_info("CPU model not supported\n");
2661 			return -ENODEV;
2662 		}
2663 
2664 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2665 	}
2666 
2667 	if (intel_pstate_msrs_not_valid()) {
2668 		pr_info("Invalid MSRs\n");
2669 		return -ENODEV;
2670 	}
2671 
2672 hwp_cpu_matched:
2673 	/*
2674 	 * The Intel pstate driver will be ignored if the platform
2675 	 * firmware has its own power management modes.
2676 	 */
2677 	if (intel_pstate_platform_pwr_mgmt_exists()) {
2678 		pr_info("P-states controlled by the platform\n");
2679 		return -ENODEV;
2680 	}
2681 
2682 	if (!hwp_active && hwp_only)
2683 		return -ENOTSUPP;
2684 
2685 	pr_info("Intel P-state driver initializing\n");
2686 
2687 	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2688 	if (!all_cpu_data)
2689 		return -ENOMEM;
2690 
2691 	intel_pstate_request_control_from_smm();
2692 
2693 	intel_pstate_sysfs_expose_params();
2694 
2695 	mutex_lock(&intel_pstate_driver_lock);
2696 	rc = intel_pstate_register_driver(default_driver);
2697 	mutex_unlock(&intel_pstate_driver_lock);
2698 	if (rc)
2699 		return rc;
2700 
2701 	if (hwp_active)
2702 		pr_info("HWP enabled\n");
2703 
2704 	return 0;
2705 }
2706 device_initcall(intel_pstate_init);
2707 
2708 static int __init intel_pstate_setup(char *str)
2709 {
2710 	if (!str)
2711 		return -EINVAL;
2712 
2713 	if (!strcmp(str, "disable")) {
2714 		no_load = 1;
2715 	} else if (!strcmp(str, "passive")) {
2716 		pr_info("Passive mode enabled\n");
2717 		default_driver = &intel_cpufreq;
2718 		no_hwp = 1;
2719 	}
2720 	if (!strcmp(str, "no_hwp")) {
2721 		pr_info("HWP disabled\n");
2722 		no_hwp = 1;
2723 	}
2724 	if (!strcmp(str, "force"))
2725 		force_load = 1;
2726 	if (!strcmp(str, "hwp_only"))
2727 		hwp_only = 1;
2728 	if (!strcmp(str, "per_cpu_perf_limits"))
2729 		per_cpu_limits = true;
2730 
2731 #ifdef CONFIG_ACPI
2732 	if (!strcmp(str, "support_acpi_ppc"))
2733 		acpi_ppc = true;
2734 #endif
2735 
2736 	return 0;
2737 }
2738 early_param("intel_pstate", intel_pstate_setup);
2739 
2740 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2741 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2742 MODULE_LICENSE("GPL");
2743