1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
41 
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46 
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50 
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55 
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60 
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 	return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65 
66 static inline int ceiling_fp(int32_t x)
67 {
68 	int mask, ret;
69 
70 	ret = fp_toint(x);
71 	mask = (1 << FRAC_BITS) - 1;
72 	if (x & mask)
73 		ret += 1;
74 	return ret;
75 }
76 
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 	return (x * y) >> EXT_FRAC_BITS;
80 }
81 
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 	return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86 
87 static inline int32_t percent_ext_fp(int percent)
88 {
89 	return div_ext_fp(percent, 100);
90 }
91 
92 /**
93  * struct sample -	Store performance sample
94  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
95  *			performance during last sample period
96  * @busy_scaled:	Scaled busy value which is used to calculate next
97  *			P state. This can be different than core_avg_perf
98  *			to account for cpu idle period
99  * @aperf:		Difference of actual performance frequency clock count
100  *			read from APERF MSR between last and current sample
101  * @mperf:		Difference of maximum performance frequency clock count
102  *			read from MPERF MSR between last and current sample
103  * @tsc:		Difference of time stamp counter between last and
104  *			current sample
105  * @time:		Current time from scheduler
106  *
107  * This structure is used in the cpudata structure to store performance sample
108  * data for choosing next P State.
109  */
110 struct sample {
111 	int32_t core_avg_perf;
112 	int32_t busy_scaled;
113 	u64 aperf;
114 	u64 mperf;
115 	u64 tsc;
116 	u64 time;
117 };
118 
119 /**
120  * struct pstate_data - Store P state data
121  * @current_pstate:	Current requested P state
122  * @min_pstate:		Min P state possible for this platform
123  * @max_pstate:		Max P state possible for this platform
124  * @max_pstate_physical:This is physical Max P state for a processor
125  *			This can be higher than the max_pstate which can
126  *			be limited by platform thermal design power limits
127  * @scaling:		Scaling factor to  convert frequency to cpufreq
128  *			frequency units
129  * @turbo_pstate:	Max Turbo P state possible for this platform
130  * @max_freq:		@max_pstate frequency in cpufreq units
131  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132  *
133  * Stores the per cpu model P state limits and current P state.
134  */
135 struct pstate_data {
136 	int	current_pstate;
137 	int	min_pstate;
138 	int	max_pstate;
139 	int	max_pstate_physical;
140 	int	scaling;
141 	int	turbo_pstate;
142 	unsigned int max_freq;
143 	unsigned int turbo_freq;
144 };
145 
146 /**
147  * struct vid_data -	Stores voltage information data
148  * @min:		VID data for this platform corresponding to
149  *			the lowest P state
150  * @max:		VID data corresponding to the highest P State.
151  * @turbo:		VID data for turbo P state
152  * @ratio:		Ratio of (vid max - vid min) /
153  *			(max P state - Min P State)
154  *
155  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156  * This data is used in Atom platforms, where in addition to target P state,
157  * the voltage data needs to be specified to select next P State.
158  */
159 struct vid_data {
160 	int min;
161 	int max;
162 	int turbo;
163 	int32_t ratio;
164 };
165 
166 /**
167  * struct _pid -	Stores PID data
168  * @setpoint:		Target set point for busyness or performance
169  * @integral:		Storage for accumulated error values
170  * @p_gain:		PID proportional gain
171  * @i_gain:		PID integral gain
172  * @d_gain:		PID derivative gain
173  * @deadband:		PID deadband
174  * @last_err:		Last error storage for integral part of PID calculation
175  *
176  * Stores PID coefficients and last error for PID controller.
177  */
178 struct _pid {
179 	int setpoint;
180 	int32_t integral;
181 	int32_t p_gain;
182 	int32_t i_gain;
183 	int32_t d_gain;
184 	int deadband;
185 	int32_t last_err;
186 };
187 
188 /**
189  * struct global_params - Global parameters, mostly tunable via sysfs.
190  * @no_turbo:		Whether or not to use turbo P-states.
191  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
192  *			based on the MSR_IA32_MISC_ENABLE value and whether or
193  *			not the maximum reported turbo P-state is different from
194  *			the maximum reported non-turbo one.
195  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
196  *			P-state capacity.
197  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
198  *			P-state capacity.
199  */
200 struct global_params {
201 	bool no_turbo;
202 	bool turbo_disabled;
203 	int max_perf_pct;
204 	int min_perf_pct;
205 };
206 
207 /**
208  * struct cpudata -	Per CPU instance data storage
209  * @cpu:		CPU number for this instance data
210  * @policy:		CPUFreq policy value
211  * @update_util:	CPUFreq utility callback information
212  * @update_util_set:	CPUFreq utility callback is set
213  * @iowait_boost:	iowait-related boost fraction
214  * @last_update:	Time of the last update.
215  * @pstate:		Stores P state limits for this CPU
216  * @vid:		Stores VID limits for this CPU
217  * @pid:		Stores PID parameters for this CPU
218  * @last_sample_time:	Last Sample time
219  * @prev_aperf:		Last APERF value read from APERF MSR
220  * @prev_mperf:		Last MPERF value read from MPERF MSR
221  * @prev_tsc:		Last timestamp counter (TSC) value
222  * @prev_cummulative_iowait: IO Wait time difference from last and
223  *			current sample
224  * @sample:		Storage for storing last Sample data
225  * @min_perf:		Minimum capacity limit as a fraction of the maximum
226  *			turbo P-state capacity.
227  * @max_perf:		Maximum capacity limit as a fraction of the maximum
228  *			turbo P-state capacity.
229  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
230  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
231  * @epp_powersave:	Last saved HWP energy performance preference
232  *			(EPP) or energy performance bias (EPB),
233  *			when policy switched to performance
234  * @epp_policy:		Last saved policy used to set EPP/EPB
235  * @epp_default:	Power on default HWP energy performance
236  *			preference/bias
237  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
238  *			operation
239  *
240  * This structure stores per CPU instance data for all CPUs.
241  */
242 struct cpudata {
243 	int cpu;
244 
245 	unsigned int policy;
246 	struct update_util_data update_util;
247 	bool   update_util_set;
248 
249 	struct pstate_data pstate;
250 	struct vid_data vid;
251 	struct _pid pid;
252 
253 	u64	last_update;
254 	u64	last_sample_time;
255 	u64	prev_aperf;
256 	u64	prev_mperf;
257 	u64	prev_tsc;
258 	u64	prev_cummulative_iowait;
259 	struct sample sample;
260 	int32_t	min_perf;
261 	int32_t	max_perf;
262 #ifdef CONFIG_ACPI
263 	struct acpi_processor_performance acpi_perf_data;
264 	bool valid_pss_table;
265 #endif
266 	unsigned int iowait_boost;
267 	s16 epp_powersave;
268 	s16 epp_policy;
269 	s16 epp_default;
270 	s16 epp_saved;
271 };
272 
273 static struct cpudata **all_cpu_data;
274 
275 /**
276  * struct pstate_adjust_policy - Stores static PID configuration data
277  * @sample_rate_ms:	PID calculation sample rate in ms
278  * @sample_rate_ns:	Sample rate calculation in ns
279  * @deadband:		PID deadband
280  * @setpoint:		PID Setpoint
281  * @p_gain_pct:		PID proportional gain
282  * @i_gain_pct:		PID integral gain
283  * @d_gain_pct:		PID derivative gain
284  *
285  * Stores per CPU model static PID configuration data.
286  */
287 struct pstate_adjust_policy {
288 	int sample_rate_ms;
289 	s64 sample_rate_ns;
290 	int deadband;
291 	int setpoint;
292 	int p_gain_pct;
293 	int d_gain_pct;
294 	int i_gain_pct;
295 };
296 
297 /**
298  * struct pstate_funcs - Per CPU model specific callbacks
299  * @get_max:		Callback to get maximum non turbo effective P state
300  * @get_max_physical:	Callback to get maximum non turbo physical P state
301  * @get_min:		Callback to get minimum P state
302  * @get_turbo:		Callback to get turbo P state
303  * @get_scaling:	Callback to get frequency scaling factor
304  * @get_val:		Callback to convert P state to actual MSR write value
305  * @get_vid:		Callback to get VID data for Atom platforms
306  * @get_target_pstate:	Callback to a function to calculate next P state to use
307  *
308  * Core and Atom CPU models have different way to get P State limits. This
309  * structure is used to store those callbacks.
310  */
311 struct pstate_funcs {
312 	int (*get_max)(void);
313 	int (*get_max_physical)(void);
314 	int (*get_min)(void);
315 	int (*get_turbo)(void);
316 	int (*get_scaling)(void);
317 	u64 (*get_val)(struct cpudata*, int pstate);
318 	void (*get_vid)(struct cpudata *);
319 	int32_t (*get_target_pstate)(struct cpudata *);
320 };
321 
322 /**
323  * struct cpu_defaults- Per CPU model default config data
324  * @funcs:		Callback function data
325  */
326 struct cpu_defaults {
327 	struct pstate_funcs funcs;
328 };
329 
330 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
331 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
332 
333 static struct pstate_funcs pstate_funcs __read_mostly;
334 static struct pstate_adjust_policy pid_params __read_mostly = {
335 	.sample_rate_ms = 10,
336 	.sample_rate_ns = 10 * NSEC_PER_MSEC,
337 	.deadband = 0,
338 	.setpoint = 97,
339 	.p_gain_pct = 20,
340 	.d_gain_pct = 0,
341 	.i_gain_pct = 0,
342 };
343 
344 static int hwp_active __read_mostly;
345 static bool per_cpu_limits __read_mostly;
346 
347 static bool driver_registered __read_mostly;
348 
349 #ifdef CONFIG_ACPI
350 static bool acpi_ppc;
351 #endif
352 
353 static struct global_params global;
354 
355 static DEFINE_MUTEX(intel_pstate_driver_lock);
356 static DEFINE_MUTEX(intel_pstate_limits_lock);
357 
358 #ifdef CONFIG_ACPI
359 
360 static bool intel_pstate_get_ppc_enable_status(void)
361 {
362 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
363 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
364 		return true;
365 
366 	return acpi_ppc;
367 }
368 
369 #ifdef CONFIG_ACPI_CPPC_LIB
370 
371 /* The work item is needed to avoid CPU hotplug locking issues */
372 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
373 {
374 	sched_set_itmt_support();
375 }
376 
377 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
378 
379 static void intel_pstate_set_itmt_prio(int cpu)
380 {
381 	struct cppc_perf_caps cppc_perf;
382 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
383 	int ret;
384 
385 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
386 	if (ret)
387 		return;
388 
389 	/*
390 	 * The priorities can be set regardless of whether or not
391 	 * sched_set_itmt_support(true) has been called and it is valid to
392 	 * update them at any time after it has been called.
393 	 */
394 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
395 
396 	if (max_highest_perf <= min_highest_perf) {
397 		if (cppc_perf.highest_perf > max_highest_perf)
398 			max_highest_perf = cppc_perf.highest_perf;
399 
400 		if (cppc_perf.highest_perf < min_highest_perf)
401 			min_highest_perf = cppc_perf.highest_perf;
402 
403 		if (max_highest_perf > min_highest_perf) {
404 			/*
405 			 * This code can be run during CPU online under the
406 			 * CPU hotplug locks, so sched_set_itmt_support()
407 			 * cannot be called from here.  Queue up a work item
408 			 * to invoke it.
409 			 */
410 			schedule_work(&sched_itmt_work);
411 		}
412 	}
413 }
414 #else
415 static void intel_pstate_set_itmt_prio(int cpu)
416 {
417 }
418 #endif
419 
420 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
421 {
422 	struct cpudata *cpu;
423 	int ret;
424 	int i;
425 
426 	if (hwp_active) {
427 		intel_pstate_set_itmt_prio(policy->cpu);
428 		return;
429 	}
430 
431 	if (!intel_pstate_get_ppc_enable_status())
432 		return;
433 
434 	cpu = all_cpu_data[policy->cpu];
435 
436 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
437 						  policy->cpu);
438 	if (ret)
439 		return;
440 
441 	/*
442 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
443 	 * guarantee that the states returned by it map to the states in our
444 	 * list directly.
445 	 */
446 	if (cpu->acpi_perf_data.control_register.space_id !=
447 						ACPI_ADR_SPACE_FIXED_HARDWARE)
448 		goto err;
449 
450 	/*
451 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
452 	 * usual without taking _PSS into account
453 	 */
454 	if (cpu->acpi_perf_data.state_count < 2)
455 		goto err;
456 
457 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
458 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
459 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
460 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
461 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
462 			 (u32) cpu->acpi_perf_data.states[i].power,
463 			 (u32) cpu->acpi_perf_data.states[i].control);
464 	}
465 
466 	/*
467 	 * The _PSS table doesn't contain whole turbo frequency range.
468 	 * This just contains +1 MHZ above the max non turbo frequency,
469 	 * with control value corresponding to max turbo ratio. But
470 	 * when cpufreq set policy is called, it will call with this
471 	 * max frequency, which will cause a reduced performance as
472 	 * this driver uses real max turbo frequency as the max
473 	 * frequency. So correct this frequency in _PSS table to
474 	 * correct max turbo frequency based on the turbo state.
475 	 * Also need to convert to MHz as _PSS freq is in MHz.
476 	 */
477 	if (!global.turbo_disabled)
478 		cpu->acpi_perf_data.states[0].core_frequency =
479 					policy->cpuinfo.max_freq / 1000;
480 	cpu->valid_pss_table = true;
481 	pr_debug("_PPC limits will be enforced\n");
482 
483 	return;
484 
485  err:
486 	cpu->valid_pss_table = false;
487 	acpi_processor_unregister_performance(policy->cpu);
488 }
489 
490 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
491 {
492 	struct cpudata *cpu;
493 
494 	cpu = all_cpu_data[policy->cpu];
495 	if (!cpu->valid_pss_table)
496 		return;
497 
498 	acpi_processor_unregister_performance(policy->cpu);
499 }
500 #else
501 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
502 {
503 }
504 
505 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
506 {
507 }
508 #endif
509 
510 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
511 			     int deadband, int integral) {
512 	pid->setpoint = int_tofp(setpoint);
513 	pid->deadband  = int_tofp(deadband);
514 	pid->integral  = int_tofp(integral);
515 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
516 }
517 
518 static inline void pid_p_gain_set(struct _pid *pid, int percent)
519 {
520 	pid->p_gain = div_fp(percent, 100);
521 }
522 
523 static inline void pid_i_gain_set(struct _pid *pid, int percent)
524 {
525 	pid->i_gain = div_fp(percent, 100);
526 }
527 
528 static inline void pid_d_gain_set(struct _pid *pid, int percent)
529 {
530 	pid->d_gain = div_fp(percent, 100);
531 }
532 
533 static signed int pid_calc(struct _pid *pid, int32_t busy)
534 {
535 	signed int result;
536 	int32_t pterm, dterm, fp_error;
537 	int32_t integral_limit;
538 
539 	fp_error = pid->setpoint - busy;
540 
541 	if (abs(fp_error) <= pid->deadband)
542 		return 0;
543 
544 	pterm = mul_fp(pid->p_gain, fp_error);
545 
546 	pid->integral += fp_error;
547 
548 	/*
549 	 * We limit the integral here so that it will never
550 	 * get higher than 30.  This prevents it from becoming
551 	 * too large an input over long periods of time and allows
552 	 * it to get factored out sooner.
553 	 *
554 	 * The value of 30 was chosen through experimentation.
555 	 */
556 	integral_limit = int_tofp(30);
557 	if (pid->integral > integral_limit)
558 		pid->integral = integral_limit;
559 	if (pid->integral < -integral_limit)
560 		pid->integral = -integral_limit;
561 
562 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
563 	pid->last_err = fp_error;
564 
565 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
566 	result = result + (1 << (FRAC_BITS-1));
567 	return (signed int)fp_toint(result);
568 }
569 
570 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
571 {
572 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
573 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
574 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
575 
576 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
577 }
578 
579 static inline void update_turbo_state(void)
580 {
581 	u64 misc_en;
582 	struct cpudata *cpu;
583 
584 	cpu = all_cpu_data[0];
585 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
586 	global.turbo_disabled =
587 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
588 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
589 }
590 
591 static int min_perf_pct_min(void)
592 {
593 	struct cpudata *cpu = all_cpu_data[0];
594 
595 	return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
596 			    cpu->pstate.turbo_pstate);
597 }
598 
599 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
600 {
601 	u64 epb;
602 	int ret;
603 
604 	if (!static_cpu_has(X86_FEATURE_EPB))
605 		return -ENXIO;
606 
607 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
608 	if (ret)
609 		return (s16)ret;
610 
611 	return (s16)(epb & 0x0f);
612 }
613 
614 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
615 {
616 	s16 epp;
617 
618 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
619 		/*
620 		 * When hwp_req_data is 0, means that caller didn't read
621 		 * MSR_HWP_REQUEST, so need to read and get EPP.
622 		 */
623 		if (!hwp_req_data) {
624 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
625 					    &hwp_req_data);
626 			if (epp)
627 				return epp;
628 		}
629 		epp = (hwp_req_data >> 24) & 0xff;
630 	} else {
631 		/* When there is no EPP present, HWP uses EPB settings */
632 		epp = intel_pstate_get_epb(cpu_data);
633 	}
634 
635 	return epp;
636 }
637 
638 static int intel_pstate_set_epb(int cpu, s16 pref)
639 {
640 	u64 epb;
641 	int ret;
642 
643 	if (!static_cpu_has(X86_FEATURE_EPB))
644 		return -ENXIO;
645 
646 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
647 	if (ret)
648 		return ret;
649 
650 	epb = (epb & ~0x0f) | pref;
651 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
652 
653 	return 0;
654 }
655 
656 /*
657  * EPP/EPB display strings corresponding to EPP index in the
658  * energy_perf_strings[]
659  *	index		String
660  *-------------------------------------
661  *	0		default
662  *	1		performance
663  *	2		balance_performance
664  *	3		balance_power
665  *	4		power
666  */
667 static const char * const energy_perf_strings[] = {
668 	"default",
669 	"performance",
670 	"balance_performance",
671 	"balance_power",
672 	"power",
673 	NULL
674 };
675 
676 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
677 {
678 	s16 epp;
679 	int index = -EINVAL;
680 
681 	epp = intel_pstate_get_epp(cpu_data, 0);
682 	if (epp < 0)
683 		return epp;
684 
685 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
686 		/*
687 		 * Range:
688 		 *	0x00-0x3F	:	Performance
689 		 *	0x40-0x7F	:	Balance performance
690 		 *	0x80-0xBF	:	Balance power
691 		 *	0xC0-0xFF	:	Power
692 		 * The EPP is a 8 bit value, but our ranges restrict the
693 		 * value which can be set. Here only using top two bits
694 		 * effectively.
695 		 */
696 		index = (epp >> 6) + 1;
697 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
698 		/*
699 		 * Range:
700 		 *	0x00-0x03	:	Performance
701 		 *	0x04-0x07	:	Balance performance
702 		 *	0x08-0x0B	:	Balance power
703 		 *	0x0C-0x0F	:	Power
704 		 * The EPB is a 4 bit value, but our ranges restrict the
705 		 * value which can be set. Here only using top two bits
706 		 * effectively.
707 		 */
708 		index = (epp >> 2) + 1;
709 	}
710 
711 	return index;
712 }
713 
714 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
715 					      int pref_index)
716 {
717 	int epp = -EINVAL;
718 	int ret;
719 
720 	if (!pref_index)
721 		epp = cpu_data->epp_default;
722 
723 	mutex_lock(&intel_pstate_limits_lock);
724 
725 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
726 		u64 value;
727 
728 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
729 		if (ret)
730 			goto return_pref;
731 
732 		value &= ~GENMASK_ULL(31, 24);
733 
734 		/*
735 		 * If epp is not default, convert from index into
736 		 * energy_perf_strings to epp value, by shifting 6
737 		 * bits left to use only top two bits in epp.
738 		 * The resultant epp need to shifted by 24 bits to
739 		 * epp position in MSR_HWP_REQUEST.
740 		 */
741 		if (epp == -EINVAL)
742 			epp = (pref_index - 1) << 6;
743 
744 		value |= (u64)epp << 24;
745 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
746 	} else {
747 		if (epp == -EINVAL)
748 			epp = (pref_index - 1) << 2;
749 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
750 	}
751 return_pref:
752 	mutex_unlock(&intel_pstate_limits_lock);
753 
754 	return ret;
755 }
756 
757 static ssize_t show_energy_performance_available_preferences(
758 				struct cpufreq_policy *policy, char *buf)
759 {
760 	int i = 0;
761 	int ret = 0;
762 
763 	while (energy_perf_strings[i] != NULL)
764 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
765 
766 	ret += sprintf(&buf[ret], "\n");
767 
768 	return ret;
769 }
770 
771 cpufreq_freq_attr_ro(energy_performance_available_preferences);
772 
773 static ssize_t store_energy_performance_preference(
774 		struct cpufreq_policy *policy, const char *buf, size_t count)
775 {
776 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
777 	char str_preference[21];
778 	int ret, i = 0;
779 
780 	ret = sscanf(buf, "%20s", str_preference);
781 	if (ret != 1)
782 		return -EINVAL;
783 
784 	while (energy_perf_strings[i] != NULL) {
785 		if (!strcmp(str_preference, energy_perf_strings[i])) {
786 			intel_pstate_set_energy_pref_index(cpu_data, i);
787 			return count;
788 		}
789 		++i;
790 	}
791 
792 	return -EINVAL;
793 }
794 
795 static ssize_t show_energy_performance_preference(
796 				struct cpufreq_policy *policy, char *buf)
797 {
798 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
799 	int preference;
800 
801 	preference = intel_pstate_get_energy_pref_index(cpu_data);
802 	if (preference < 0)
803 		return preference;
804 
805 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
806 }
807 
808 cpufreq_freq_attr_rw(energy_performance_preference);
809 
810 static struct freq_attr *hwp_cpufreq_attrs[] = {
811 	&energy_performance_preference,
812 	&energy_performance_available_preferences,
813 	NULL,
814 };
815 
816 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
817 {
818 	int min, hw_min, max, hw_max, cpu;
819 	u64 value, cap;
820 
821 	for_each_cpu(cpu, policy->cpus) {
822 		struct cpudata *cpu_data = all_cpu_data[cpu];
823 		s16 epp;
824 
825 		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
826 		hw_min = HWP_LOWEST_PERF(cap);
827 		if (global.no_turbo)
828 			hw_max = HWP_GUARANTEED_PERF(cap);
829 		else
830 			hw_max = HWP_HIGHEST_PERF(cap);
831 
832 		max = fp_ext_toint(hw_max * cpu_data->max_perf);
833 		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
834 			min = max;
835 		else
836 			min = fp_ext_toint(hw_max * cpu_data->min_perf);
837 
838 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
839 
840 		value &= ~HWP_MIN_PERF(~0L);
841 		value |= HWP_MIN_PERF(min);
842 
843 		value &= ~HWP_MAX_PERF(~0L);
844 		value |= HWP_MAX_PERF(max);
845 
846 		if (cpu_data->epp_policy == cpu_data->policy)
847 			goto skip_epp;
848 
849 		cpu_data->epp_policy = cpu_data->policy;
850 
851 		if (cpu_data->epp_saved >= 0) {
852 			epp = cpu_data->epp_saved;
853 			cpu_data->epp_saved = -EINVAL;
854 			goto update_epp;
855 		}
856 
857 		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
858 			epp = intel_pstate_get_epp(cpu_data, value);
859 			cpu_data->epp_powersave = epp;
860 			/* If EPP read was failed, then don't try to write */
861 			if (epp < 0)
862 				goto skip_epp;
863 
864 
865 			epp = 0;
866 		} else {
867 			/* skip setting EPP, when saved value is invalid */
868 			if (cpu_data->epp_powersave < 0)
869 				goto skip_epp;
870 
871 			/*
872 			 * No need to restore EPP when it is not zero. This
873 			 * means:
874 			 *  - Policy is not changed
875 			 *  - user has manually changed
876 			 *  - Error reading EPB
877 			 */
878 			epp = intel_pstate_get_epp(cpu_data, value);
879 			if (epp)
880 				goto skip_epp;
881 
882 			epp = cpu_data->epp_powersave;
883 		}
884 update_epp:
885 		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
886 			value &= ~GENMASK_ULL(31, 24);
887 			value |= (u64)epp << 24;
888 		} else {
889 			intel_pstate_set_epb(cpu, epp);
890 		}
891 skip_epp:
892 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
893 	}
894 }
895 
896 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
897 {
898 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
899 
900 	if (!hwp_active)
901 		return 0;
902 
903 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
904 
905 	return 0;
906 }
907 
908 static int intel_pstate_resume(struct cpufreq_policy *policy)
909 {
910 	if (!hwp_active)
911 		return 0;
912 
913 	mutex_lock(&intel_pstate_limits_lock);
914 
915 	all_cpu_data[policy->cpu]->epp_policy = 0;
916 	intel_pstate_hwp_set(policy);
917 
918 	mutex_unlock(&intel_pstate_limits_lock);
919 
920 	return 0;
921 }
922 
923 static void intel_pstate_update_policies(void)
924 {
925 	int cpu;
926 
927 	for_each_possible_cpu(cpu)
928 		cpufreq_update_policy(cpu);
929 }
930 
931 /************************** debugfs begin ************************/
932 static int pid_param_set(void *data, u64 val)
933 {
934 	unsigned int cpu;
935 
936 	*(u32 *)data = val;
937 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
938 	for_each_possible_cpu(cpu)
939 		if (all_cpu_data[cpu])
940 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
941 
942 	return 0;
943 }
944 
945 static int pid_param_get(void *data, u64 *val)
946 {
947 	*val = *(u32 *)data;
948 	return 0;
949 }
950 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
951 
952 static struct dentry *debugfs_parent;
953 
954 struct pid_param {
955 	char *name;
956 	void *value;
957 	struct dentry *dentry;
958 };
959 
960 static struct pid_param pid_files[] = {
961 	{"sample_rate_ms", &pid_params.sample_rate_ms, },
962 	{"d_gain_pct", &pid_params.d_gain_pct, },
963 	{"i_gain_pct", &pid_params.i_gain_pct, },
964 	{"deadband", &pid_params.deadband, },
965 	{"setpoint", &pid_params.setpoint, },
966 	{"p_gain_pct", &pid_params.p_gain_pct, },
967 	{NULL, NULL, }
968 };
969 
970 static void intel_pstate_debug_expose_params(void)
971 {
972 	int i;
973 
974 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
975 	if (IS_ERR_OR_NULL(debugfs_parent))
976 		return;
977 
978 	for (i = 0; pid_files[i].name; i++) {
979 		struct dentry *dentry;
980 
981 		dentry = debugfs_create_file(pid_files[i].name, 0660,
982 					     debugfs_parent, pid_files[i].value,
983 					     &fops_pid_param);
984 		if (!IS_ERR(dentry))
985 			pid_files[i].dentry = dentry;
986 	}
987 }
988 
989 static void intel_pstate_debug_hide_params(void)
990 {
991 	int i;
992 
993 	if (IS_ERR_OR_NULL(debugfs_parent))
994 		return;
995 
996 	for (i = 0; pid_files[i].name; i++) {
997 		debugfs_remove(pid_files[i].dentry);
998 		pid_files[i].dentry = NULL;
999 	}
1000 
1001 	debugfs_remove(debugfs_parent);
1002 	debugfs_parent = NULL;
1003 }
1004 
1005 /************************** debugfs end ************************/
1006 
1007 /************************** sysfs begin ************************/
1008 #define show_one(file_name, object)					\
1009 	static ssize_t show_##file_name					\
1010 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
1011 	{								\
1012 		return sprintf(buf, "%u\n", global.object);		\
1013 	}
1014 
1015 static ssize_t intel_pstate_show_status(char *buf);
1016 static int intel_pstate_update_status(const char *buf, size_t size);
1017 
1018 static ssize_t show_status(struct kobject *kobj,
1019 			   struct attribute *attr, char *buf)
1020 {
1021 	ssize_t ret;
1022 
1023 	mutex_lock(&intel_pstate_driver_lock);
1024 	ret = intel_pstate_show_status(buf);
1025 	mutex_unlock(&intel_pstate_driver_lock);
1026 
1027 	return ret;
1028 }
1029 
1030 static ssize_t store_status(struct kobject *a, struct attribute *b,
1031 			    const char *buf, size_t count)
1032 {
1033 	char *p = memchr(buf, '\n', count);
1034 	int ret;
1035 
1036 	mutex_lock(&intel_pstate_driver_lock);
1037 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1038 	mutex_unlock(&intel_pstate_driver_lock);
1039 
1040 	return ret < 0 ? ret : count;
1041 }
1042 
1043 static ssize_t show_turbo_pct(struct kobject *kobj,
1044 				struct attribute *attr, char *buf)
1045 {
1046 	struct cpudata *cpu;
1047 	int total, no_turbo, turbo_pct;
1048 	uint32_t turbo_fp;
1049 
1050 	mutex_lock(&intel_pstate_driver_lock);
1051 
1052 	if (!driver_registered) {
1053 		mutex_unlock(&intel_pstate_driver_lock);
1054 		return -EAGAIN;
1055 	}
1056 
1057 	cpu = all_cpu_data[0];
1058 
1059 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1060 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1061 	turbo_fp = div_fp(no_turbo, total);
1062 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1063 
1064 	mutex_unlock(&intel_pstate_driver_lock);
1065 
1066 	return sprintf(buf, "%u\n", turbo_pct);
1067 }
1068 
1069 static ssize_t show_num_pstates(struct kobject *kobj,
1070 				struct attribute *attr, char *buf)
1071 {
1072 	struct cpudata *cpu;
1073 	int total;
1074 
1075 	mutex_lock(&intel_pstate_driver_lock);
1076 
1077 	if (!driver_registered) {
1078 		mutex_unlock(&intel_pstate_driver_lock);
1079 		return -EAGAIN;
1080 	}
1081 
1082 	cpu = all_cpu_data[0];
1083 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1084 
1085 	mutex_unlock(&intel_pstate_driver_lock);
1086 
1087 	return sprintf(buf, "%u\n", total);
1088 }
1089 
1090 static ssize_t show_no_turbo(struct kobject *kobj,
1091 			     struct attribute *attr, char *buf)
1092 {
1093 	ssize_t ret;
1094 
1095 	mutex_lock(&intel_pstate_driver_lock);
1096 
1097 	if (!driver_registered) {
1098 		mutex_unlock(&intel_pstate_driver_lock);
1099 		return -EAGAIN;
1100 	}
1101 
1102 	update_turbo_state();
1103 	if (global.turbo_disabled)
1104 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1105 	else
1106 		ret = sprintf(buf, "%u\n", global.no_turbo);
1107 
1108 	mutex_unlock(&intel_pstate_driver_lock);
1109 
1110 	return ret;
1111 }
1112 
1113 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1114 			      const char *buf, size_t count)
1115 {
1116 	unsigned int input;
1117 	int ret;
1118 
1119 	ret = sscanf(buf, "%u", &input);
1120 	if (ret != 1)
1121 		return -EINVAL;
1122 
1123 	mutex_lock(&intel_pstate_driver_lock);
1124 
1125 	if (!driver_registered) {
1126 		mutex_unlock(&intel_pstate_driver_lock);
1127 		return -EAGAIN;
1128 	}
1129 
1130 	mutex_lock(&intel_pstate_limits_lock);
1131 
1132 	update_turbo_state();
1133 	if (global.turbo_disabled) {
1134 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1135 		mutex_unlock(&intel_pstate_limits_lock);
1136 		mutex_unlock(&intel_pstate_driver_lock);
1137 		return -EPERM;
1138 	}
1139 
1140 	global.no_turbo = clamp_t(int, input, 0, 1);
1141 
1142 	if (global.no_turbo) {
1143 		struct cpudata *cpu = all_cpu_data[0];
1144 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1145 
1146 		/* Squash the global minimum into the permitted range. */
1147 		if (global.min_perf_pct > pct)
1148 			global.min_perf_pct = pct;
1149 	}
1150 
1151 	mutex_unlock(&intel_pstate_limits_lock);
1152 
1153 	intel_pstate_update_policies();
1154 
1155 	mutex_unlock(&intel_pstate_driver_lock);
1156 
1157 	return count;
1158 }
1159 
1160 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1161 				  const char *buf, size_t count)
1162 {
1163 	unsigned int input;
1164 	int ret;
1165 
1166 	ret = sscanf(buf, "%u", &input);
1167 	if (ret != 1)
1168 		return -EINVAL;
1169 
1170 	mutex_lock(&intel_pstate_driver_lock);
1171 
1172 	if (!driver_registered) {
1173 		mutex_unlock(&intel_pstate_driver_lock);
1174 		return -EAGAIN;
1175 	}
1176 
1177 	mutex_lock(&intel_pstate_limits_lock);
1178 
1179 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1180 
1181 	mutex_unlock(&intel_pstate_limits_lock);
1182 
1183 	intel_pstate_update_policies();
1184 
1185 	mutex_unlock(&intel_pstate_driver_lock);
1186 
1187 	return count;
1188 }
1189 
1190 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1191 				  const char *buf, size_t count)
1192 {
1193 	unsigned int input;
1194 	int ret;
1195 
1196 	ret = sscanf(buf, "%u", &input);
1197 	if (ret != 1)
1198 		return -EINVAL;
1199 
1200 	mutex_lock(&intel_pstate_driver_lock);
1201 
1202 	if (!driver_registered) {
1203 		mutex_unlock(&intel_pstate_driver_lock);
1204 		return -EAGAIN;
1205 	}
1206 
1207 	mutex_lock(&intel_pstate_limits_lock);
1208 
1209 	global.min_perf_pct = clamp_t(int, input,
1210 				      min_perf_pct_min(), global.max_perf_pct);
1211 
1212 	mutex_unlock(&intel_pstate_limits_lock);
1213 
1214 	intel_pstate_update_policies();
1215 
1216 	mutex_unlock(&intel_pstate_driver_lock);
1217 
1218 	return count;
1219 }
1220 
1221 show_one(max_perf_pct, max_perf_pct);
1222 show_one(min_perf_pct, min_perf_pct);
1223 
1224 define_one_global_rw(status);
1225 define_one_global_rw(no_turbo);
1226 define_one_global_rw(max_perf_pct);
1227 define_one_global_rw(min_perf_pct);
1228 define_one_global_ro(turbo_pct);
1229 define_one_global_ro(num_pstates);
1230 
1231 static struct attribute *intel_pstate_attributes[] = {
1232 	&status.attr,
1233 	&no_turbo.attr,
1234 	&turbo_pct.attr,
1235 	&num_pstates.attr,
1236 	NULL
1237 };
1238 
1239 static struct attribute_group intel_pstate_attr_group = {
1240 	.attrs = intel_pstate_attributes,
1241 };
1242 
1243 static void __init intel_pstate_sysfs_expose_params(void)
1244 {
1245 	struct kobject *intel_pstate_kobject;
1246 	int rc;
1247 
1248 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1249 						&cpu_subsys.dev_root->kobj);
1250 	if (WARN_ON(!intel_pstate_kobject))
1251 		return;
1252 
1253 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1254 	if (WARN_ON(rc))
1255 		return;
1256 
1257 	/*
1258 	 * If per cpu limits are enforced there are no global limits, so
1259 	 * return without creating max/min_perf_pct attributes
1260 	 */
1261 	if (per_cpu_limits)
1262 		return;
1263 
1264 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1265 	WARN_ON(rc);
1266 
1267 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1268 	WARN_ON(rc);
1269 
1270 }
1271 /************************** sysfs end ************************/
1272 
1273 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1274 {
1275 	/* First disable HWP notification interrupt as we don't process them */
1276 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1277 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1278 
1279 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1280 	cpudata->epp_policy = 0;
1281 	if (cpudata->epp_default == -EINVAL)
1282 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1283 }
1284 
1285 #define MSR_IA32_POWER_CTL_BIT_EE	19
1286 
1287 /* Disable energy efficiency optimization */
1288 static void intel_pstate_disable_ee(int cpu)
1289 {
1290 	u64 power_ctl;
1291 	int ret;
1292 
1293 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1294 	if (ret)
1295 		return;
1296 
1297 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1298 		pr_info("Disabling energy efficiency optimization\n");
1299 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1300 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1301 	}
1302 }
1303 
1304 static int atom_get_min_pstate(void)
1305 {
1306 	u64 value;
1307 
1308 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1309 	return (value >> 8) & 0x7F;
1310 }
1311 
1312 static int atom_get_max_pstate(void)
1313 {
1314 	u64 value;
1315 
1316 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1317 	return (value >> 16) & 0x7F;
1318 }
1319 
1320 static int atom_get_turbo_pstate(void)
1321 {
1322 	u64 value;
1323 
1324 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1325 	return value & 0x7F;
1326 }
1327 
1328 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1329 {
1330 	u64 val;
1331 	int32_t vid_fp;
1332 	u32 vid;
1333 
1334 	val = (u64)pstate << 8;
1335 	if (global.no_turbo && !global.turbo_disabled)
1336 		val |= (u64)1 << 32;
1337 
1338 	vid_fp = cpudata->vid.min + mul_fp(
1339 		int_tofp(pstate - cpudata->pstate.min_pstate),
1340 		cpudata->vid.ratio);
1341 
1342 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1343 	vid = ceiling_fp(vid_fp);
1344 
1345 	if (pstate > cpudata->pstate.max_pstate)
1346 		vid = cpudata->vid.turbo;
1347 
1348 	return val | vid;
1349 }
1350 
1351 static int silvermont_get_scaling(void)
1352 {
1353 	u64 value;
1354 	int i;
1355 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1356 	static int silvermont_freq_table[] = {
1357 		83300, 100000, 133300, 116700, 80000};
1358 
1359 	rdmsrl(MSR_FSB_FREQ, value);
1360 	i = value & 0x7;
1361 	WARN_ON(i > 4);
1362 
1363 	return silvermont_freq_table[i];
1364 }
1365 
1366 static int airmont_get_scaling(void)
1367 {
1368 	u64 value;
1369 	int i;
1370 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1371 	static int airmont_freq_table[] = {
1372 		83300, 100000, 133300, 116700, 80000,
1373 		93300, 90000, 88900, 87500};
1374 
1375 	rdmsrl(MSR_FSB_FREQ, value);
1376 	i = value & 0xF;
1377 	WARN_ON(i > 8);
1378 
1379 	return airmont_freq_table[i];
1380 }
1381 
1382 static void atom_get_vid(struct cpudata *cpudata)
1383 {
1384 	u64 value;
1385 
1386 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1387 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1388 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1389 	cpudata->vid.ratio = div_fp(
1390 		cpudata->vid.max - cpudata->vid.min,
1391 		int_tofp(cpudata->pstate.max_pstate -
1392 			cpudata->pstate.min_pstate));
1393 
1394 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1395 	cpudata->vid.turbo = value & 0x7f;
1396 }
1397 
1398 static int core_get_min_pstate(void)
1399 {
1400 	u64 value;
1401 
1402 	rdmsrl(MSR_PLATFORM_INFO, value);
1403 	return (value >> 40) & 0xFF;
1404 }
1405 
1406 static int core_get_max_pstate_physical(void)
1407 {
1408 	u64 value;
1409 
1410 	rdmsrl(MSR_PLATFORM_INFO, value);
1411 	return (value >> 8) & 0xFF;
1412 }
1413 
1414 static int core_get_tdp_ratio(u64 plat_info)
1415 {
1416 	/* Check how many TDP levels present */
1417 	if (plat_info & 0x600000000) {
1418 		u64 tdp_ctrl;
1419 		u64 tdp_ratio;
1420 		int tdp_msr;
1421 		int err;
1422 
1423 		/* Get the TDP level (0, 1, 2) to get ratios */
1424 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1425 		if (err)
1426 			return err;
1427 
1428 		/* TDP MSR are continuous starting at 0x648 */
1429 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1430 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1431 		if (err)
1432 			return err;
1433 
1434 		/* For level 1 and 2, bits[23:16] contain the ratio */
1435 		if (tdp_ctrl & 0x03)
1436 			tdp_ratio >>= 16;
1437 
1438 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1439 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1440 
1441 		return (int)tdp_ratio;
1442 	}
1443 
1444 	return -ENXIO;
1445 }
1446 
1447 static int core_get_max_pstate(void)
1448 {
1449 	u64 tar;
1450 	u64 plat_info;
1451 	int max_pstate;
1452 	int tdp_ratio;
1453 	int err;
1454 
1455 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1456 	max_pstate = (plat_info >> 8) & 0xFF;
1457 
1458 	tdp_ratio = core_get_tdp_ratio(plat_info);
1459 	if (tdp_ratio <= 0)
1460 		return max_pstate;
1461 
1462 	if (hwp_active) {
1463 		/* Turbo activation ratio is not used on HWP platforms */
1464 		return tdp_ratio;
1465 	}
1466 
1467 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1468 	if (!err) {
1469 		int tar_levels;
1470 
1471 		/* Do some sanity checking for safety */
1472 		tar_levels = tar & 0xff;
1473 		if (tdp_ratio - 1 == tar_levels) {
1474 			max_pstate = tar_levels;
1475 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1476 		}
1477 	}
1478 
1479 	return max_pstate;
1480 }
1481 
1482 static int core_get_turbo_pstate(void)
1483 {
1484 	u64 value;
1485 	int nont, ret;
1486 
1487 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1488 	nont = core_get_max_pstate();
1489 	ret = (value) & 255;
1490 	if (ret <= nont)
1491 		ret = nont;
1492 	return ret;
1493 }
1494 
1495 static inline int core_get_scaling(void)
1496 {
1497 	return 100000;
1498 }
1499 
1500 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1501 {
1502 	u64 val;
1503 
1504 	val = (u64)pstate << 8;
1505 	if (global.no_turbo && !global.turbo_disabled)
1506 		val |= (u64)1 << 32;
1507 
1508 	return val;
1509 }
1510 
1511 static int knl_get_turbo_pstate(void)
1512 {
1513 	u64 value;
1514 	int nont, ret;
1515 
1516 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1517 	nont = core_get_max_pstate();
1518 	ret = (((value) >> 8) & 0xFF);
1519 	if (ret <= nont)
1520 		ret = nont;
1521 	return ret;
1522 }
1523 
1524 static struct cpu_defaults core_params = {
1525 	.funcs = {
1526 		.get_max = core_get_max_pstate,
1527 		.get_max_physical = core_get_max_pstate_physical,
1528 		.get_min = core_get_min_pstate,
1529 		.get_turbo = core_get_turbo_pstate,
1530 		.get_scaling = core_get_scaling,
1531 		.get_val = core_get_val,
1532 		.get_target_pstate = get_target_pstate_use_performance,
1533 	},
1534 };
1535 
1536 static const struct cpu_defaults silvermont_params = {
1537 	.funcs = {
1538 		.get_max = atom_get_max_pstate,
1539 		.get_max_physical = atom_get_max_pstate,
1540 		.get_min = atom_get_min_pstate,
1541 		.get_turbo = atom_get_turbo_pstate,
1542 		.get_val = atom_get_val,
1543 		.get_scaling = silvermont_get_scaling,
1544 		.get_vid = atom_get_vid,
1545 		.get_target_pstate = get_target_pstate_use_cpu_load,
1546 	},
1547 };
1548 
1549 static const struct cpu_defaults airmont_params = {
1550 	.funcs = {
1551 		.get_max = atom_get_max_pstate,
1552 		.get_max_physical = atom_get_max_pstate,
1553 		.get_min = atom_get_min_pstate,
1554 		.get_turbo = atom_get_turbo_pstate,
1555 		.get_val = atom_get_val,
1556 		.get_scaling = airmont_get_scaling,
1557 		.get_vid = atom_get_vid,
1558 		.get_target_pstate = get_target_pstate_use_cpu_load,
1559 	},
1560 };
1561 
1562 static const struct cpu_defaults knl_params = {
1563 	.funcs = {
1564 		.get_max = core_get_max_pstate,
1565 		.get_max_physical = core_get_max_pstate_physical,
1566 		.get_min = core_get_min_pstate,
1567 		.get_turbo = knl_get_turbo_pstate,
1568 		.get_scaling = core_get_scaling,
1569 		.get_val = core_get_val,
1570 		.get_target_pstate = get_target_pstate_use_performance,
1571 	},
1572 };
1573 
1574 static const struct cpu_defaults bxt_params = {
1575 	.funcs = {
1576 		.get_max = core_get_max_pstate,
1577 		.get_max_physical = core_get_max_pstate_physical,
1578 		.get_min = core_get_min_pstate,
1579 		.get_turbo = core_get_turbo_pstate,
1580 		.get_scaling = core_get_scaling,
1581 		.get_val = core_get_val,
1582 		.get_target_pstate = get_target_pstate_use_cpu_load,
1583 	},
1584 };
1585 
1586 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1587 {
1588 	int max_perf = cpu->pstate.turbo_pstate;
1589 	int max_perf_adj;
1590 	int min_perf;
1591 
1592 	if (global.no_turbo || global.turbo_disabled)
1593 		max_perf = cpu->pstate.max_pstate;
1594 
1595 	/*
1596 	 * performance can be limited by user through sysfs, by cpufreq
1597 	 * policy, or by cpu specific default values determined through
1598 	 * experimentation.
1599 	 */
1600 	max_perf_adj = fp_ext_toint(max_perf * cpu->max_perf);
1601 	*max = clamp_t(int, max_perf_adj,
1602 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1603 
1604 	min_perf = fp_ext_toint(max_perf * cpu->min_perf);
1605 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1606 }
1607 
1608 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1609 {
1610 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1611 	cpu->pstate.current_pstate = pstate;
1612 	/*
1613 	 * Generally, there is no guarantee that this code will always run on
1614 	 * the CPU being updated, so force the register update to run on the
1615 	 * right CPU.
1616 	 */
1617 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1618 		      pstate_funcs.get_val(cpu, pstate));
1619 }
1620 
1621 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1622 {
1623 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1624 }
1625 
1626 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1627 {
1628 	int min_pstate, max_pstate;
1629 
1630 	update_turbo_state();
1631 	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1632 	intel_pstate_set_pstate(cpu, max_pstate);
1633 }
1634 
1635 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1636 {
1637 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1638 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1639 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1640 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1641 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1642 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1643 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1644 
1645 	if (pstate_funcs.get_vid)
1646 		pstate_funcs.get_vid(cpu);
1647 
1648 	intel_pstate_set_min_pstate(cpu);
1649 }
1650 
1651 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1652 {
1653 	struct sample *sample = &cpu->sample;
1654 
1655 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1656 }
1657 
1658 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1659 {
1660 	u64 aperf, mperf;
1661 	unsigned long flags;
1662 	u64 tsc;
1663 
1664 	local_irq_save(flags);
1665 	rdmsrl(MSR_IA32_APERF, aperf);
1666 	rdmsrl(MSR_IA32_MPERF, mperf);
1667 	tsc = rdtsc();
1668 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1669 		local_irq_restore(flags);
1670 		return false;
1671 	}
1672 	local_irq_restore(flags);
1673 
1674 	cpu->last_sample_time = cpu->sample.time;
1675 	cpu->sample.time = time;
1676 	cpu->sample.aperf = aperf;
1677 	cpu->sample.mperf = mperf;
1678 	cpu->sample.tsc =  tsc;
1679 	cpu->sample.aperf -= cpu->prev_aperf;
1680 	cpu->sample.mperf -= cpu->prev_mperf;
1681 	cpu->sample.tsc -= cpu->prev_tsc;
1682 
1683 	cpu->prev_aperf = aperf;
1684 	cpu->prev_mperf = mperf;
1685 	cpu->prev_tsc = tsc;
1686 	/*
1687 	 * First time this function is invoked in a given cycle, all of the
1688 	 * previous sample data fields are equal to zero or stale and they must
1689 	 * be populated with meaningful numbers for things to work, so assume
1690 	 * that sample.time will always be reset before setting the utilization
1691 	 * update hook and make the caller skip the sample then.
1692 	 */
1693 	return !!cpu->last_sample_time;
1694 }
1695 
1696 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1697 {
1698 	return mul_ext_fp(cpu->sample.core_avg_perf,
1699 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1700 }
1701 
1702 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1703 {
1704 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1705 			  cpu->sample.core_avg_perf);
1706 }
1707 
1708 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1709 {
1710 	struct sample *sample = &cpu->sample;
1711 	int32_t busy_frac, boost;
1712 	int target, avg_pstate;
1713 
1714 	busy_frac = div_fp(sample->mperf, sample->tsc);
1715 
1716 	boost = cpu->iowait_boost;
1717 	cpu->iowait_boost >>= 1;
1718 
1719 	if (busy_frac < boost)
1720 		busy_frac = boost;
1721 
1722 	sample->busy_scaled = busy_frac * 100;
1723 
1724 	target = global.no_turbo || global.turbo_disabled ?
1725 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1726 	target += target >> 2;
1727 	target = mul_fp(target, busy_frac);
1728 	if (target < cpu->pstate.min_pstate)
1729 		target = cpu->pstate.min_pstate;
1730 
1731 	/*
1732 	 * If the average P-state during the previous cycle was higher than the
1733 	 * current target, add 50% of the difference to the target to reduce
1734 	 * possible performance oscillations and offset possible performance
1735 	 * loss related to moving the workload from one CPU to another within
1736 	 * a package/module.
1737 	 */
1738 	avg_pstate = get_avg_pstate(cpu);
1739 	if (avg_pstate > target)
1740 		target += (avg_pstate - target) >> 1;
1741 
1742 	return target;
1743 }
1744 
1745 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1746 {
1747 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1748 	u64 duration_ns;
1749 
1750 	/*
1751 	 * perf_scaled is the ratio of the average P-state during the last
1752 	 * sampling period to the P-state requested last time (in percent).
1753 	 *
1754 	 * That measures the system's response to the previous P-state
1755 	 * selection.
1756 	 */
1757 	max_pstate = cpu->pstate.max_pstate_physical;
1758 	current_pstate = cpu->pstate.current_pstate;
1759 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1760 			       div_fp(100 * max_pstate, current_pstate));
1761 
1762 	/*
1763 	 * Since our utilization update callback will not run unless we are
1764 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1765 	 * than our sample interval.  If it is, then we were idle for a long
1766 	 * enough period of time to adjust our performance metric.
1767 	 */
1768 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1769 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1770 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1771 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1772 	} else {
1773 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1774 		if (sample_ratio < int_tofp(1))
1775 			perf_scaled = 0;
1776 	}
1777 
1778 	cpu->sample.busy_scaled = perf_scaled;
1779 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1780 }
1781 
1782 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1783 {
1784 	int max_perf, min_perf;
1785 
1786 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1787 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1788 	return pstate;
1789 }
1790 
1791 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1792 {
1793 	if (pstate == cpu->pstate.current_pstate)
1794 		return;
1795 
1796 	cpu->pstate.current_pstate = pstate;
1797 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1798 }
1799 
1800 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1801 {
1802 	int from, target_pstate;
1803 	struct sample *sample;
1804 
1805 	from = cpu->pstate.current_pstate;
1806 
1807 	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1808 		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1809 
1810 	update_turbo_state();
1811 
1812 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1813 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1814 	intel_pstate_update_pstate(cpu, target_pstate);
1815 
1816 	sample = &cpu->sample;
1817 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1818 		fp_toint(sample->busy_scaled),
1819 		from,
1820 		cpu->pstate.current_pstate,
1821 		sample->mperf,
1822 		sample->aperf,
1823 		sample->tsc,
1824 		get_avg_frequency(cpu),
1825 		fp_toint(cpu->iowait_boost * 100));
1826 }
1827 
1828 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1829 				     unsigned int flags)
1830 {
1831 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1832 	u64 delta_ns;
1833 
1834 	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1835 		if (flags & SCHED_CPUFREQ_IOWAIT) {
1836 			cpu->iowait_boost = int_tofp(1);
1837 		} else if (cpu->iowait_boost) {
1838 			/* Clear iowait_boost if the CPU may have been idle. */
1839 			delta_ns = time - cpu->last_update;
1840 			if (delta_ns > TICK_NSEC)
1841 				cpu->iowait_boost = 0;
1842 		}
1843 		cpu->last_update = time;
1844 	}
1845 
1846 	delta_ns = time - cpu->sample.time;
1847 	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1848 		bool sample_taken = intel_pstate_sample(cpu, time);
1849 
1850 		if (sample_taken) {
1851 			intel_pstate_calc_avg_perf(cpu);
1852 			if (!hwp_active)
1853 				intel_pstate_adjust_busy_pstate(cpu);
1854 		}
1855 	}
1856 }
1857 
1858 #define ICPU(model, policy) \
1859 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1860 			(unsigned long)&policy }
1861 
1862 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1863 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
1864 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
1865 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
1866 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
1867 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
1868 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
1869 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
1870 	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
1871 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
1872 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
1873 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
1874 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
1875 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
1876 	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
1877 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
1878 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
1879 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1880 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1881 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1882 	{}
1883 };
1884 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1885 
1886 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1887 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1888 	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1889 	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1890 	{}
1891 };
1892 
1893 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1894 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1895 	{}
1896 };
1897 
1898 static int intel_pstate_init_cpu(unsigned int cpunum)
1899 {
1900 	struct cpudata *cpu;
1901 
1902 	cpu = all_cpu_data[cpunum];
1903 
1904 	if (!cpu) {
1905 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1906 		if (!cpu)
1907 			return -ENOMEM;
1908 
1909 		all_cpu_data[cpunum] = cpu;
1910 
1911 		cpu->epp_default = -EINVAL;
1912 		cpu->epp_powersave = -EINVAL;
1913 		cpu->epp_saved = -EINVAL;
1914 	}
1915 
1916 	cpu = all_cpu_data[cpunum];
1917 
1918 	cpu->cpu = cpunum;
1919 
1920 	if (hwp_active) {
1921 		const struct x86_cpu_id *id;
1922 
1923 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1924 		if (id)
1925 			intel_pstate_disable_ee(cpunum);
1926 
1927 		intel_pstate_hwp_enable(cpu);
1928 		pid_params.sample_rate_ms = 50;
1929 		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1930 	}
1931 
1932 	intel_pstate_get_cpu_pstates(cpu);
1933 
1934 	intel_pstate_busy_pid_reset(cpu);
1935 
1936 	pr_debug("controlling: cpu %d\n", cpunum);
1937 
1938 	return 0;
1939 }
1940 
1941 static unsigned int intel_pstate_get(unsigned int cpu_num)
1942 {
1943 	struct cpudata *cpu = all_cpu_data[cpu_num];
1944 
1945 	return cpu ? get_avg_frequency(cpu) : 0;
1946 }
1947 
1948 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1949 {
1950 	struct cpudata *cpu = all_cpu_data[cpu_num];
1951 
1952 	if (cpu->update_util_set)
1953 		return;
1954 
1955 	/* Prevent intel_pstate_update_util() from using stale data. */
1956 	cpu->sample.time = 0;
1957 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1958 				     intel_pstate_update_util);
1959 	cpu->update_util_set = true;
1960 }
1961 
1962 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1963 {
1964 	struct cpudata *cpu_data = all_cpu_data[cpu];
1965 
1966 	if (!cpu_data->update_util_set)
1967 		return;
1968 
1969 	cpufreq_remove_update_util_hook(cpu);
1970 	cpu_data->update_util_set = false;
1971 	synchronize_sched();
1972 }
1973 
1974 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1975 {
1976 	return global.turbo_disabled || global.no_turbo ?
1977 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1978 }
1979 
1980 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1981 					    struct cpudata *cpu)
1982 {
1983 	int max_freq = intel_pstate_get_max_freq(cpu);
1984 	int32_t max_policy_perf, min_policy_perf;
1985 
1986 	max_policy_perf = div_ext_fp(policy->max, max_freq);
1987 	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
1988 	if (policy->max == policy->min) {
1989 		min_policy_perf = max_policy_perf;
1990 	} else {
1991 		min_policy_perf = div_ext_fp(policy->min, max_freq);
1992 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1993 					  0, max_policy_perf);
1994 	}
1995 
1996 	/* Normalize user input to [min_perf, max_perf] */
1997 	if (per_cpu_limits) {
1998 		cpu->min_perf = min_policy_perf;
1999 		cpu->max_perf = max_policy_perf;
2000 	} else {
2001 		int32_t global_min, global_max;
2002 
2003 		/* Global limits are in percent of the maximum turbo P-state. */
2004 		global_max = percent_ext_fp(global.max_perf_pct);
2005 		global_min = percent_ext_fp(global.min_perf_pct);
2006 		if (max_freq != cpu->pstate.turbo_freq) {
2007 			int32_t turbo_factor;
2008 
2009 			turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
2010 						  cpu->pstate.max_pstate);
2011 			global_min = mul_ext_fp(global_min, turbo_factor);
2012 			global_max = mul_ext_fp(global_max, turbo_factor);
2013 		}
2014 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2015 
2016 		cpu->min_perf = max(min_policy_perf, global_min);
2017 		cpu->min_perf = min(cpu->min_perf, max_policy_perf);
2018 		cpu->max_perf = min(max_policy_perf, global_max);
2019 		cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2020 
2021 		/* Make sure min_perf <= max_perf */
2022 		cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2023 	}
2024 
2025 	cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
2026 	cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2027 
2028 	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2029 		 fp_ext_toint(cpu->max_perf * 100),
2030 		 fp_ext_toint(cpu->min_perf * 100));
2031 }
2032 
2033 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2034 {
2035 	struct cpudata *cpu;
2036 
2037 	if (!policy->cpuinfo.max_freq)
2038 		return -ENODEV;
2039 
2040 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2041 		 policy->cpuinfo.max_freq, policy->max);
2042 
2043 	cpu = all_cpu_data[policy->cpu];
2044 	cpu->policy = policy->policy;
2045 
2046 	mutex_lock(&intel_pstate_limits_lock);
2047 
2048 	intel_pstate_update_perf_limits(policy, cpu);
2049 
2050 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2051 		/*
2052 		 * NOHZ_FULL CPUs need this as the governor callback may not
2053 		 * be invoked on them.
2054 		 */
2055 		intel_pstate_clear_update_util_hook(policy->cpu);
2056 		intel_pstate_max_within_limits(cpu);
2057 	}
2058 
2059 	intel_pstate_set_update_util_hook(policy->cpu);
2060 
2061 	if (hwp_active)
2062 		intel_pstate_hwp_set(policy);
2063 
2064 	mutex_unlock(&intel_pstate_limits_lock);
2065 
2066 	return 0;
2067 }
2068 
2069 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2070 					 struct cpudata *cpu)
2071 {
2072 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2073 	    policy->max < policy->cpuinfo.max_freq &&
2074 	    policy->max > cpu->pstate.max_freq) {
2075 		pr_debug("policy->max > max non turbo frequency\n");
2076 		policy->max = policy->cpuinfo.max_freq;
2077 	}
2078 }
2079 
2080 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2081 {
2082 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2083 
2084 	update_turbo_state();
2085 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2086 				     intel_pstate_get_max_freq(cpu));
2087 
2088 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2089 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2090 		return -EINVAL;
2091 
2092 	intel_pstate_adjust_policy_max(policy, cpu);
2093 
2094 	return 0;
2095 }
2096 
2097 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2098 {
2099 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2100 }
2101 
2102 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2103 {
2104 	pr_debug("CPU %d exiting\n", policy->cpu);
2105 
2106 	intel_pstate_clear_update_util_hook(policy->cpu);
2107 	if (hwp_active)
2108 		intel_pstate_hwp_save_state(policy);
2109 	else
2110 		intel_cpufreq_stop_cpu(policy);
2111 }
2112 
2113 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2114 {
2115 	intel_pstate_exit_perf_limits(policy);
2116 
2117 	policy->fast_switch_possible = false;
2118 
2119 	return 0;
2120 }
2121 
2122 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2123 {
2124 	struct cpudata *cpu;
2125 	int rc;
2126 
2127 	rc = intel_pstate_init_cpu(policy->cpu);
2128 	if (rc)
2129 		return rc;
2130 
2131 	cpu = all_cpu_data[policy->cpu];
2132 
2133 	cpu->max_perf = int_ext_tofp(1);
2134 	cpu->min_perf = 0;
2135 
2136 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2137 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2138 
2139 	/* cpuinfo and default policy values */
2140 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2141 	update_turbo_state();
2142 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2143 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2144 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2145 
2146 	intel_pstate_init_acpi_perf_limits(policy);
2147 	cpumask_set_cpu(policy->cpu, policy->cpus);
2148 
2149 	policy->fast_switch_possible = true;
2150 
2151 	return 0;
2152 }
2153 
2154 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2155 {
2156 	int ret = __intel_pstate_cpu_init(policy);
2157 
2158 	if (ret)
2159 		return ret;
2160 
2161 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2162 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2163 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2164 	else
2165 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2166 
2167 	return 0;
2168 }
2169 
2170 static struct cpufreq_driver intel_pstate = {
2171 	.flags		= CPUFREQ_CONST_LOOPS,
2172 	.verify		= intel_pstate_verify_policy,
2173 	.setpolicy	= intel_pstate_set_policy,
2174 	.suspend	= intel_pstate_hwp_save_state,
2175 	.resume		= intel_pstate_resume,
2176 	.get		= intel_pstate_get,
2177 	.init		= intel_pstate_cpu_init,
2178 	.exit		= intel_pstate_cpu_exit,
2179 	.stop_cpu	= intel_pstate_stop_cpu,
2180 	.name		= "intel_pstate",
2181 };
2182 
2183 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2184 {
2185 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2186 
2187 	update_turbo_state();
2188 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2189 				     intel_pstate_get_max_freq(cpu));
2190 
2191 	intel_pstate_adjust_policy_max(policy, cpu);
2192 
2193 	intel_pstate_update_perf_limits(policy, cpu);
2194 
2195 	return 0;
2196 }
2197 
2198 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2199 				unsigned int target_freq,
2200 				unsigned int relation)
2201 {
2202 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2203 	struct cpufreq_freqs freqs;
2204 	int target_pstate;
2205 
2206 	update_turbo_state();
2207 
2208 	freqs.old = policy->cur;
2209 	freqs.new = target_freq;
2210 
2211 	cpufreq_freq_transition_begin(policy, &freqs);
2212 	switch (relation) {
2213 	case CPUFREQ_RELATION_L:
2214 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2215 		break;
2216 	case CPUFREQ_RELATION_H:
2217 		target_pstate = freqs.new / cpu->pstate.scaling;
2218 		break;
2219 	default:
2220 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2221 		break;
2222 	}
2223 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2224 	if (target_pstate != cpu->pstate.current_pstate) {
2225 		cpu->pstate.current_pstate = target_pstate;
2226 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2227 			      pstate_funcs.get_val(cpu, target_pstate));
2228 	}
2229 	freqs.new = target_pstate * cpu->pstate.scaling;
2230 	cpufreq_freq_transition_end(policy, &freqs, false);
2231 
2232 	return 0;
2233 }
2234 
2235 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2236 					      unsigned int target_freq)
2237 {
2238 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2239 	int target_pstate;
2240 
2241 	update_turbo_state();
2242 
2243 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2244 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2245 	intel_pstate_update_pstate(cpu, target_pstate);
2246 	return target_pstate * cpu->pstate.scaling;
2247 }
2248 
2249 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2250 {
2251 	int ret = __intel_pstate_cpu_init(policy);
2252 
2253 	if (ret)
2254 		return ret;
2255 
2256 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2257 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2258 	policy->cur = policy->cpuinfo.min_freq;
2259 
2260 	return 0;
2261 }
2262 
2263 static struct cpufreq_driver intel_cpufreq = {
2264 	.flags		= CPUFREQ_CONST_LOOPS,
2265 	.verify		= intel_cpufreq_verify_policy,
2266 	.target		= intel_cpufreq_target,
2267 	.fast_switch	= intel_cpufreq_fast_switch,
2268 	.init		= intel_cpufreq_cpu_init,
2269 	.exit		= intel_pstate_cpu_exit,
2270 	.stop_cpu	= intel_cpufreq_stop_cpu,
2271 	.name		= "intel_cpufreq",
2272 };
2273 
2274 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2275 
2276 static void intel_pstate_driver_cleanup(void)
2277 {
2278 	unsigned int cpu;
2279 
2280 	get_online_cpus();
2281 	for_each_online_cpu(cpu) {
2282 		if (all_cpu_data[cpu]) {
2283 			if (intel_pstate_driver == &intel_pstate)
2284 				intel_pstate_clear_update_util_hook(cpu);
2285 
2286 			kfree(all_cpu_data[cpu]);
2287 			all_cpu_data[cpu] = NULL;
2288 		}
2289 	}
2290 	put_online_cpus();
2291 }
2292 
2293 static int intel_pstate_register_driver(void)
2294 {
2295 	int ret;
2296 
2297 	memset(&global, 0, sizeof(global));
2298 	global.max_perf_pct = 100;
2299 
2300 	ret = cpufreq_register_driver(intel_pstate_driver);
2301 	if (ret) {
2302 		intel_pstate_driver_cleanup();
2303 		return ret;
2304 	}
2305 
2306 	global.min_perf_pct = min_perf_pct_min();
2307 
2308 	mutex_lock(&intel_pstate_limits_lock);
2309 	driver_registered = true;
2310 	mutex_unlock(&intel_pstate_limits_lock);
2311 
2312 	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2313 	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2314 		intel_pstate_debug_expose_params();
2315 
2316 	return 0;
2317 }
2318 
2319 static int intel_pstate_unregister_driver(void)
2320 {
2321 	if (hwp_active)
2322 		return -EBUSY;
2323 
2324 	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2325 	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2326 		intel_pstate_debug_hide_params();
2327 
2328 	mutex_lock(&intel_pstate_limits_lock);
2329 	driver_registered = false;
2330 	mutex_unlock(&intel_pstate_limits_lock);
2331 
2332 	cpufreq_unregister_driver(intel_pstate_driver);
2333 	intel_pstate_driver_cleanup();
2334 
2335 	return 0;
2336 }
2337 
2338 static ssize_t intel_pstate_show_status(char *buf)
2339 {
2340 	if (!driver_registered)
2341 		return sprintf(buf, "off\n");
2342 
2343 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2344 					"active" : "passive");
2345 }
2346 
2347 static int intel_pstate_update_status(const char *buf, size_t size)
2348 {
2349 	int ret;
2350 
2351 	if (size == 3 && !strncmp(buf, "off", size))
2352 		return driver_registered ?
2353 			intel_pstate_unregister_driver() : -EINVAL;
2354 
2355 	if (size == 6 && !strncmp(buf, "active", size)) {
2356 		if (driver_registered) {
2357 			if (intel_pstate_driver == &intel_pstate)
2358 				return 0;
2359 
2360 			ret = intel_pstate_unregister_driver();
2361 			if (ret)
2362 				return ret;
2363 		}
2364 
2365 		intel_pstate_driver = &intel_pstate;
2366 		return intel_pstate_register_driver();
2367 	}
2368 
2369 	if (size == 7 && !strncmp(buf, "passive", size)) {
2370 		if (driver_registered) {
2371 			if (intel_pstate_driver != &intel_pstate)
2372 				return 0;
2373 
2374 			ret = intel_pstate_unregister_driver();
2375 			if (ret)
2376 				return ret;
2377 		}
2378 
2379 		intel_pstate_driver = &intel_cpufreq;
2380 		return intel_pstate_register_driver();
2381 	}
2382 
2383 	return -EINVAL;
2384 }
2385 
2386 static int no_load __initdata;
2387 static int no_hwp __initdata;
2388 static int hwp_only __initdata;
2389 static unsigned int force_load __initdata;
2390 
2391 static int __init intel_pstate_msrs_not_valid(void)
2392 {
2393 	if (!pstate_funcs.get_max() ||
2394 	    !pstate_funcs.get_min() ||
2395 	    !pstate_funcs.get_turbo())
2396 		return -ENODEV;
2397 
2398 	return 0;
2399 }
2400 
2401 #ifdef CONFIG_ACPI
2402 static void intel_pstate_use_acpi_profile(void)
2403 {
2404 	switch (acpi_gbl_FADT.preferred_profile) {
2405 	case PM_MOBILE:
2406 	case PM_TABLET:
2407 	case PM_APPLIANCE_PC:
2408 	case PM_DESKTOP:
2409 	case PM_WORKSTATION:
2410 		pstate_funcs.get_target_pstate =
2411 				get_target_pstate_use_cpu_load;
2412 	}
2413 }
2414 #else
2415 static void intel_pstate_use_acpi_profile(void)
2416 {
2417 }
2418 #endif
2419 
2420 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2421 {
2422 	pstate_funcs.get_max   = funcs->get_max;
2423 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2424 	pstate_funcs.get_min   = funcs->get_min;
2425 	pstate_funcs.get_turbo = funcs->get_turbo;
2426 	pstate_funcs.get_scaling = funcs->get_scaling;
2427 	pstate_funcs.get_val   = funcs->get_val;
2428 	pstate_funcs.get_vid   = funcs->get_vid;
2429 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2430 
2431 	intel_pstate_use_acpi_profile();
2432 }
2433 
2434 #ifdef CONFIG_ACPI
2435 
2436 static bool __init intel_pstate_no_acpi_pss(void)
2437 {
2438 	int i;
2439 
2440 	for_each_possible_cpu(i) {
2441 		acpi_status status;
2442 		union acpi_object *pss;
2443 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2444 		struct acpi_processor *pr = per_cpu(processors, i);
2445 
2446 		if (!pr)
2447 			continue;
2448 
2449 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2450 		if (ACPI_FAILURE(status))
2451 			continue;
2452 
2453 		pss = buffer.pointer;
2454 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2455 			kfree(pss);
2456 			return false;
2457 		}
2458 
2459 		kfree(pss);
2460 	}
2461 
2462 	return true;
2463 }
2464 
2465 static bool __init intel_pstate_has_acpi_ppc(void)
2466 {
2467 	int i;
2468 
2469 	for_each_possible_cpu(i) {
2470 		struct acpi_processor *pr = per_cpu(processors, i);
2471 
2472 		if (!pr)
2473 			continue;
2474 		if (acpi_has_method(pr->handle, "_PPC"))
2475 			return true;
2476 	}
2477 	return false;
2478 }
2479 
2480 enum {
2481 	PSS,
2482 	PPC,
2483 };
2484 
2485 struct hw_vendor_info {
2486 	u16  valid;
2487 	char oem_id[ACPI_OEM_ID_SIZE];
2488 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2489 	int  oem_pwr_table;
2490 };
2491 
2492 /* Hardware vendor-specific info that has its own power management modes */
2493 static struct hw_vendor_info vendor_info[] __initdata = {
2494 	{1, "HP    ", "ProLiant", PSS},
2495 	{1, "ORACLE", "X4-2    ", PPC},
2496 	{1, "ORACLE", "X4-2L   ", PPC},
2497 	{1, "ORACLE", "X4-2B   ", PPC},
2498 	{1, "ORACLE", "X3-2    ", PPC},
2499 	{1, "ORACLE", "X3-2L   ", PPC},
2500 	{1, "ORACLE", "X3-2B   ", PPC},
2501 	{1, "ORACLE", "X4470M2 ", PPC},
2502 	{1, "ORACLE", "X4270M3 ", PPC},
2503 	{1, "ORACLE", "X4270M2 ", PPC},
2504 	{1, "ORACLE", "X4170M2 ", PPC},
2505 	{1, "ORACLE", "X4170 M3", PPC},
2506 	{1, "ORACLE", "X4275 M3", PPC},
2507 	{1, "ORACLE", "X6-2    ", PPC},
2508 	{1, "ORACLE", "Sudbury ", PPC},
2509 	{0, "", ""},
2510 };
2511 
2512 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2513 {
2514 	struct acpi_table_header hdr;
2515 	struct hw_vendor_info *v_info;
2516 	const struct x86_cpu_id *id;
2517 	u64 misc_pwr;
2518 
2519 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2520 	if (id) {
2521 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2522 		if ( misc_pwr & (1 << 8))
2523 			return true;
2524 	}
2525 
2526 	if (acpi_disabled ||
2527 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2528 		return false;
2529 
2530 	for (v_info = vendor_info; v_info->valid; v_info++) {
2531 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2532 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
2533 						ACPI_OEM_TABLE_ID_SIZE))
2534 			switch (v_info->oem_pwr_table) {
2535 			case PSS:
2536 				return intel_pstate_no_acpi_pss();
2537 			case PPC:
2538 				return intel_pstate_has_acpi_ppc() &&
2539 					(!force_load);
2540 			}
2541 	}
2542 
2543 	return false;
2544 }
2545 
2546 static void intel_pstate_request_control_from_smm(void)
2547 {
2548 	/*
2549 	 * It may be unsafe to request P-states control from SMM if _PPC support
2550 	 * has not been enabled.
2551 	 */
2552 	if (acpi_ppc)
2553 		acpi_processor_pstate_control();
2554 }
2555 #else /* CONFIG_ACPI not enabled */
2556 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2557 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2558 static inline void intel_pstate_request_control_from_smm(void) {}
2559 #endif /* CONFIG_ACPI */
2560 
2561 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2562 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2563 	{}
2564 };
2565 
2566 static int __init intel_pstate_init(void)
2567 {
2568 	int rc;
2569 
2570 	if (no_load)
2571 		return -ENODEV;
2572 
2573 	if (x86_match_cpu(hwp_support_ids)) {
2574 		copy_cpu_funcs(&core_params.funcs);
2575 		if (no_hwp) {
2576 			pstate_funcs.get_target_pstate = get_target_pstate_use_cpu_load;
2577 		} else {
2578 			hwp_active++;
2579 			intel_pstate.attr = hwp_cpufreq_attrs;
2580 			goto hwp_cpu_matched;
2581 		}
2582 	} else {
2583 		const struct x86_cpu_id *id;
2584 		struct cpu_defaults *cpu_def;
2585 
2586 		id = x86_match_cpu(intel_pstate_cpu_ids);
2587 		if (!id)
2588 			return -ENODEV;
2589 
2590 		cpu_def = (struct cpu_defaults *)id->driver_data;
2591 		copy_cpu_funcs(&cpu_def->funcs);
2592 	}
2593 
2594 	if (intel_pstate_msrs_not_valid())
2595 		return -ENODEV;
2596 
2597 hwp_cpu_matched:
2598 	/*
2599 	 * The Intel pstate driver will be ignored if the platform
2600 	 * firmware has its own power management modes.
2601 	 */
2602 	if (intel_pstate_platform_pwr_mgmt_exists())
2603 		return -ENODEV;
2604 
2605 	if (!hwp_active && hwp_only)
2606 		return -ENOTSUPP;
2607 
2608 	pr_info("Intel P-state driver initializing\n");
2609 
2610 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2611 	if (!all_cpu_data)
2612 		return -ENOMEM;
2613 
2614 	intel_pstate_request_control_from_smm();
2615 
2616 	intel_pstate_sysfs_expose_params();
2617 
2618 	mutex_lock(&intel_pstate_driver_lock);
2619 	rc = intel_pstate_register_driver();
2620 	mutex_unlock(&intel_pstate_driver_lock);
2621 	if (rc)
2622 		return rc;
2623 
2624 	if (hwp_active)
2625 		pr_info("HWP enabled\n");
2626 
2627 	return 0;
2628 }
2629 device_initcall(intel_pstate_init);
2630 
2631 static int __init intel_pstate_setup(char *str)
2632 {
2633 	if (!str)
2634 		return -EINVAL;
2635 
2636 	if (!strcmp(str, "disable")) {
2637 		no_load = 1;
2638 	} else if (!strcmp(str, "passive")) {
2639 		pr_info("Passive mode enabled\n");
2640 		intel_pstate_driver = &intel_cpufreq;
2641 		no_hwp = 1;
2642 	}
2643 	if (!strcmp(str, "no_hwp")) {
2644 		pr_info("HWP disabled\n");
2645 		no_hwp = 1;
2646 	}
2647 	if (!strcmp(str, "force"))
2648 		force_load = 1;
2649 	if (!strcmp(str, "hwp_only"))
2650 		hwp_only = 1;
2651 	if (!strcmp(str, "per_cpu_perf_limits"))
2652 		per_cpu_limits = true;
2653 
2654 #ifdef CONFIG_ACPI
2655 	if (!strcmp(str, "support_acpi_ppc"))
2656 		acpi_ppc = true;
2657 #endif
2658 
2659 	return 0;
2660 }
2661 early_param("intel_pstate", intel_pstate_setup);
2662 
2663 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2664 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2665 MODULE_LICENSE("GPL");
2666