1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29 
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35 
36 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
37 
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
40 
41 #ifdef CONFIG_ACPI
42 #include <acpi/processor.h>
43 #include <acpi/cppc_acpi.h>
44 #endif
45 
46 #define FRAC_BITS 8
47 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
48 #define fp_toint(X) ((X) >> FRAC_BITS)
49 
50 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
51 
52 #define EXT_BITS 6
53 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
55 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
56 
57 static inline int32_t mul_fp(int32_t x, int32_t y)
58 {
59 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
60 }
61 
62 static inline int32_t div_fp(s64 x, s64 y)
63 {
64 	return div64_s64((int64_t)x << FRAC_BITS, y);
65 }
66 
67 static inline int ceiling_fp(int32_t x)
68 {
69 	int mask, ret;
70 
71 	ret = fp_toint(x);
72 	mask = (1 << FRAC_BITS) - 1;
73 	if (x & mask)
74 		ret += 1;
75 	return ret;
76 }
77 
78 static inline int32_t percent_fp(int percent)
79 {
80 	return div_fp(percent, 100);
81 }
82 
83 static inline u64 mul_ext_fp(u64 x, u64 y)
84 {
85 	return (x * y) >> EXT_FRAC_BITS;
86 }
87 
88 static inline u64 div_ext_fp(u64 x, u64 y)
89 {
90 	return div64_u64(x << EXT_FRAC_BITS, y);
91 }
92 
93 static inline int32_t percent_ext_fp(int percent)
94 {
95 	return div_ext_fp(percent, 100);
96 }
97 
98 /**
99  * struct sample -	Store performance sample
100  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
101  *			performance during last sample period
102  * @busy_scaled:	Scaled busy value which is used to calculate next
103  *			P state. This can be different than core_avg_perf
104  *			to account for cpu idle period
105  * @aperf:		Difference of actual performance frequency clock count
106  *			read from APERF MSR between last and current sample
107  * @mperf:		Difference of maximum performance frequency clock count
108  *			read from MPERF MSR between last and current sample
109  * @tsc:		Difference of time stamp counter between last and
110  *			current sample
111  * @time:		Current time from scheduler
112  *
113  * This structure is used in the cpudata structure to store performance sample
114  * data for choosing next P State.
115  */
116 struct sample {
117 	int32_t core_avg_perf;
118 	int32_t busy_scaled;
119 	u64 aperf;
120 	u64 mperf;
121 	u64 tsc;
122 	u64 time;
123 };
124 
125 /**
126  * struct pstate_data - Store P state data
127  * @current_pstate:	Current requested P state
128  * @min_pstate:		Min P state possible for this platform
129  * @max_pstate:		Max P state possible for this platform
130  * @max_pstate_physical:This is physical Max P state for a processor
131  *			This can be higher than the max_pstate which can
132  *			be limited by platform thermal design power limits
133  * @scaling:		Scaling factor to  convert frequency to cpufreq
134  *			frequency units
135  * @turbo_pstate:	Max Turbo P state possible for this platform
136  * @max_freq:		@max_pstate frequency in cpufreq units
137  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
138  *
139  * Stores the per cpu model P state limits and current P state.
140  */
141 struct pstate_data {
142 	int	current_pstate;
143 	int	min_pstate;
144 	int	max_pstate;
145 	int	max_pstate_physical;
146 	int	scaling;
147 	int	turbo_pstate;
148 	unsigned int max_freq;
149 	unsigned int turbo_freq;
150 };
151 
152 /**
153  * struct vid_data -	Stores voltage information data
154  * @min:		VID data for this platform corresponding to
155  *			the lowest P state
156  * @max:		VID data corresponding to the highest P State.
157  * @turbo:		VID data for turbo P state
158  * @ratio:		Ratio of (vid max - vid min) /
159  *			(max P state - Min P State)
160  *
161  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
162  * This data is used in Atom platforms, where in addition to target P state,
163  * the voltage data needs to be specified to select next P State.
164  */
165 struct vid_data {
166 	int min;
167 	int max;
168 	int turbo;
169 	int32_t ratio;
170 };
171 
172 /**
173  * struct global_params - Global parameters, mostly tunable via sysfs.
174  * @no_turbo:		Whether or not to use turbo P-states.
175  * @turbo_disabled:	Whether or not turbo P-states are available at all,
176  *			based on the MSR_IA32_MISC_ENABLE value and whether or
177  *			not the maximum reported turbo P-state is different from
178  *			the maximum reported non-turbo one.
179  * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
180  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
181  *			P-state capacity.
182  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
183  *			P-state capacity.
184  */
185 struct global_params {
186 	bool no_turbo;
187 	bool turbo_disabled;
188 	bool turbo_disabled_mf;
189 	int max_perf_pct;
190 	int min_perf_pct;
191 };
192 
193 /**
194  * struct cpudata -	Per CPU instance data storage
195  * @cpu:		CPU number for this instance data
196  * @policy:		CPUFreq policy value
197  * @update_util:	CPUFreq utility callback information
198  * @update_util_set:	CPUFreq utility callback is set
199  * @iowait_boost:	iowait-related boost fraction
200  * @last_update:	Time of the last update.
201  * @pstate:		Stores P state limits for this CPU
202  * @vid:		Stores VID limits for this CPU
203  * @last_sample_time:	Last Sample time
204  * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
205  * @prev_aperf:		Last APERF value read from APERF MSR
206  * @prev_mperf:		Last MPERF value read from MPERF MSR
207  * @prev_tsc:		Last timestamp counter (TSC) value
208  * @prev_cummulative_iowait: IO Wait time difference from last and
209  *			current sample
210  * @sample:		Storage for storing last Sample data
211  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
212  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
213  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
214  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
215  * @epp_powersave:	Last saved HWP energy performance preference
216  *			(EPP) or energy performance bias (EPB),
217  *			when policy switched to performance
218  * @epp_policy:		Last saved policy used to set EPP/EPB
219  * @epp_default:	Power on default HWP energy performance
220  *			preference/bias
221  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
222  *			operation
223  * @hwp_req_cached:	Cached value of the last HWP Request MSR
224  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
225  * @last_io_update:	Last time when IO wake flag was set
226  * @sched_flags:	Store scheduler flags for possible cross CPU update
227  * @hwp_boost_min:	Last HWP boosted min performance
228  *
229  * This structure stores per CPU instance data for all CPUs.
230  */
231 struct cpudata {
232 	int cpu;
233 
234 	unsigned int policy;
235 	struct update_util_data update_util;
236 	bool   update_util_set;
237 
238 	struct pstate_data pstate;
239 	struct vid_data vid;
240 
241 	u64	last_update;
242 	u64	last_sample_time;
243 	u64	aperf_mperf_shift;
244 	u64	prev_aperf;
245 	u64	prev_mperf;
246 	u64	prev_tsc;
247 	u64	prev_cummulative_iowait;
248 	struct sample sample;
249 	int32_t	min_perf_ratio;
250 	int32_t	max_perf_ratio;
251 #ifdef CONFIG_ACPI
252 	struct acpi_processor_performance acpi_perf_data;
253 	bool valid_pss_table;
254 #endif
255 	unsigned int iowait_boost;
256 	s16 epp_powersave;
257 	s16 epp_policy;
258 	s16 epp_default;
259 	s16 epp_saved;
260 	u64 hwp_req_cached;
261 	u64 hwp_cap_cached;
262 	u64 last_io_update;
263 	unsigned int sched_flags;
264 	u32 hwp_boost_min;
265 };
266 
267 static struct cpudata **all_cpu_data;
268 
269 /**
270  * struct pstate_funcs - Per CPU model specific callbacks
271  * @get_max:		Callback to get maximum non turbo effective P state
272  * @get_max_physical:	Callback to get maximum non turbo physical P state
273  * @get_min:		Callback to get minimum P state
274  * @get_turbo:		Callback to get turbo P state
275  * @get_scaling:	Callback to get frequency scaling factor
276  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
277  * @get_val:		Callback to convert P state to actual MSR write value
278  * @get_vid:		Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284 	int (*get_max)(void);
285 	int (*get_max_physical)(void);
286 	int (*get_min)(void);
287 	int (*get_turbo)(void);
288 	int (*get_scaling)(void);
289 	int (*get_aperf_mperf_shift)(void);
290 	u64 (*get_val)(struct cpudata*, int pstate);
291 	void (*get_vid)(struct cpudata *);
292 };
293 
294 static struct pstate_funcs pstate_funcs __read_mostly;
295 
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300 
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302 
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306 
307 static struct global_params global;
308 
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311 
312 #ifdef CONFIG_ACPI
313 
314 static bool intel_pstate_acpi_pm_profile_server(void)
315 {
316 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318 		return true;
319 
320 	return false;
321 }
322 
323 static bool intel_pstate_get_ppc_enable_status(void)
324 {
325 	if (intel_pstate_acpi_pm_profile_server())
326 		return true;
327 
328 	return acpi_ppc;
329 }
330 
331 #ifdef CONFIG_ACPI_CPPC_LIB
332 
333 /* The work item is needed to avoid CPU hotplug locking issues */
334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335 {
336 	sched_set_itmt_support();
337 }
338 
339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340 
341 static void intel_pstate_set_itmt_prio(int cpu)
342 {
343 	struct cppc_perf_caps cppc_perf;
344 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
345 	int ret;
346 
347 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
348 	if (ret)
349 		return;
350 
351 	/*
352 	 * The priorities can be set regardless of whether or not
353 	 * sched_set_itmt_support(true) has been called and it is valid to
354 	 * update them at any time after it has been called.
355 	 */
356 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
357 
358 	if (max_highest_perf <= min_highest_perf) {
359 		if (cppc_perf.highest_perf > max_highest_perf)
360 			max_highest_perf = cppc_perf.highest_perf;
361 
362 		if (cppc_perf.highest_perf < min_highest_perf)
363 			min_highest_perf = cppc_perf.highest_perf;
364 
365 		if (max_highest_perf > min_highest_perf) {
366 			/*
367 			 * This code can be run during CPU online under the
368 			 * CPU hotplug locks, so sched_set_itmt_support()
369 			 * cannot be called from here.  Queue up a work item
370 			 * to invoke it.
371 			 */
372 			schedule_work(&sched_itmt_work);
373 		}
374 	}
375 }
376 
377 static int intel_pstate_get_cppc_guranteed(int cpu)
378 {
379 	struct cppc_perf_caps cppc_perf;
380 	int ret;
381 
382 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
383 	if (ret)
384 		return ret;
385 
386 	if (cppc_perf.guaranteed_perf)
387 		return cppc_perf.guaranteed_perf;
388 
389 	return cppc_perf.nominal_perf;
390 }
391 
392 #else /* CONFIG_ACPI_CPPC_LIB */
393 static void intel_pstate_set_itmt_prio(int cpu)
394 {
395 }
396 #endif /* CONFIG_ACPI_CPPC_LIB */
397 
398 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
399 {
400 	struct cpudata *cpu;
401 	int ret;
402 	int i;
403 
404 	if (hwp_active) {
405 		intel_pstate_set_itmt_prio(policy->cpu);
406 		return;
407 	}
408 
409 	if (!intel_pstate_get_ppc_enable_status())
410 		return;
411 
412 	cpu = all_cpu_data[policy->cpu];
413 
414 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
415 						  policy->cpu);
416 	if (ret)
417 		return;
418 
419 	/*
420 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
421 	 * guarantee that the states returned by it map to the states in our
422 	 * list directly.
423 	 */
424 	if (cpu->acpi_perf_data.control_register.space_id !=
425 						ACPI_ADR_SPACE_FIXED_HARDWARE)
426 		goto err;
427 
428 	/*
429 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
430 	 * usual without taking _PSS into account
431 	 */
432 	if (cpu->acpi_perf_data.state_count < 2)
433 		goto err;
434 
435 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
436 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
437 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
438 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
439 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
440 			 (u32) cpu->acpi_perf_data.states[i].power,
441 			 (u32) cpu->acpi_perf_data.states[i].control);
442 	}
443 
444 	/*
445 	 * The _PSS table doesn't contain whole turbo frequency range.
446 	 * This just contains +1 MHZ above the max non turbo frequency,
447 	 * with control value corresponding to max turbo ratio. But
448 	 * when cpufreq set policy is called, it will call with this
449 	 * max frequency, which will cause a reduced performance as
450 	 * this driver uses real max turbo frequency as the max
451 	 * frequency. So correct this frequency in _PSS table to
452 	 * correct max turbo frequency based on the turbo state.
453 	 * Also need to convert to MHz as _PSS freq is in MHz.
454 	 */
455 	if (!global.turbo_disabled)
456 		cpu->acpi_perf_data.states[0].core_frequency =
457 					policy->cpuinfo.max_freq / 1000;
458 	cpu->valid_pss_table = true;
459 	pr_debug("_PPC limits will be enforced\n");
460 
461 	return;
462 
463  err:
464 	cpu->valid_pss_table = false;
465 	acpi_processor_unregister_performance(policy->cpu);
466 }
467 
468 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
469 {
470 	struct cpudata *cpu;
471 
472 	cpu = all_cpu_data[policy->cpu];
473 	if (!cpu->valid_pss_table)
474 		return;
475 
476 	acpi_processor_unregister_performance(policy->cpu);
477 }
478 #else /* CONFIG_ACPI */
479 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
480 {
481 }
482 
483 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
484 {
485 }
486 
487 static inline bool intel_pstate_acpi_pm_profile_server(void)
488 {
489 	return false;
490 }
491 #endif /* CONFIG_ACPI */
492 
493 #ifndef CONFIG_ACPI_CPPC_LIB
494 static int intel_pstate_get_cppc_guranteed(int cpu)
495 {
496 	return -ENOTSUPP;
497 }
498 #endif /* CONFIG_ACPI_CPPC_LIB */
499 
500 static inline void update_turbo_state(void)
501 {
502 	u64 misc_en;
503 	struct cpudata *cpu;
504 
505 	cpu = all_cpu_data[0];
506 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
507 	global.turbo_disabled =
508 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
509 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
510 }
511 
512 static int min_perf_pct_min(void)
513 {
514 	struct cpudata *cpu = all_cpu_data[0];
515 	int turbo_pstate = cpu->pstate.turbo_pstate;
516 
517 	return turbo_pstate ?
518 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
519 }
520 
521 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
522 {
523 	u64 epb;
524 	int ret;
525 
526 	if (!boot_cpu_has(X86_FEATURE_EPB))
527 		return -ENXIO;
528 
529 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
530 	if (ret)
531 		return (s16)ret;
532 
533 	return (s16)(epb & 0x0f);
534 }
535 
536 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
537 {
538 	s16 epp;
539 
540 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
541 		/*
542 		 * When hwp_req_data is 0, means that caller didn't read
543 		 * MSR_HWP_REQUEST, so need to read and get EPP.
544 		 */
545 		if (!hwp_req_data) {
546 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
547 					    &hwp_req_data);
548 			if (epp)
549 				return epp;
550 		}
551 		epp = (hwp_req_data >> 24) & 0xff;
552 	} else {
553 		/* When there is no EPP present, HWP uses EPB settings */
554 		epp = intel_pstate_get_epb(cpu_data);
555 	}
556 
557 	return epp;
558 }
559 
560 static int intel_pstate_set_epb(int cpu, s16 pref)
561 {
562 	u64 epb;
563 	int ret;
564 
565 	if (!boot_cpu_has(X86_FEATURE_EPB))
566 		return -ENXIO;
567 
568 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
569 	if (ret)
570 		return ret;
571 
572 	epb = (epb & ~0x0f) | pref;
573 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
574 
575 	return 0;
576 }
577 
578 /*
579  * EPP/EPB display strings corresponding to EPP index in the
580  * energy_perf_strings[]
581  *	index		String
582  *-------------------------------------
583  *	0		default
584  *	1		performance
585  *	2		balance_performance
586  *	3		balance_power
587  *	4		power
588  */
589 static const char * const energy_perf_strings[] = {
590 	"default",
591 	"performance",
592 	"balance_performance",
593 	"balance_power",
594 	"power",
595 	NULL
596 };
597 static const unsigned int epp_values[] = {
598 	HWP_EPP_PERFORMANCE,
599 	HWP_EPP_BALANCE_PERFORMANCE,
600 	HWP_EPP_BALANCE_POWERSAVE,
601 	HWP_EPP_POWERSAVE
602 };
603 
604 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
605 {
606 	s16 epp;
607 	int index = -EINVAL;
608 
609 	*raw_epp = 0;
610 	epp = intel_pstate_get_epp(cpu_data, 0);
611 	if (epp < 0)
612 		return epp;
613 
614 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
615 		if (epp == HWP_EPP_PERFORMANCE)
616 			return 1;
617 		if (epp == HWP_EPP_BALANCE_PERFORMANCE)
618 			return 2;
619 		if (epp == HWP_EPP_BALANCE_POWERSAVE)
620 			return 3;
621 		if (epp == HWP_EPP_POWERSAVE)
622 			return 4;
623 		*raw_epp = epp;
624 		return 0;
625 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
626 		/*
627 		 * Range:
628 		 *	0x00-0x03	:	Performance
629 		 *	0x04-0x07	:	Balance performance
630 		 *	0x08-0x0B	:	Balance power
631 		 *	0x0C-0x0F	:	Power
632 		 * The EPB is a 4 bit value, but our ranges restrict the
633 		 * value which can be set. Here only using top two bits
634 		 * effectively.
635 		 */
636 		index = (epp >> 2) + 1;
637 	}
638 
639 	return index;
640 }
641 
642 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
643 					      int pref_index, bool use_raw,
644 					      u32 raw_epp)
645 {
646 	int epp = -EINVAL;
647 	int ret;
648 
649 	if (!pref_index)
650 		epp = cpu_data->epp_default;
651 
652 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
653 		/*
654 		 * Use the cached HWP Request MSR value, because the register
655 		 * itself may be updated by intel_pstate_hwp_boost_up() or
656 		 * intel_pstate_hwp_boost_down() at any time.
657 		 */
658 		u64 value = READ_ONCE(cpu_data->hwp_req_cached);
659 
660 		value &= ~GENMASK_ULL(31, 24);
661 
662 		if (use_raw)
663 			epp = raw_epp;
664 		else if (epp == -EINVAL)
665 			epp = epp_values[pref_index - 1];
666 
667 		value |= (u64)epp << 24;
668 		/*
669 		 * The only other updater of hwp_req_cached in the active mode,
670 		 * intel_pstate_hwp_set(), is called under the same lock as this
671 		 * function, so it cannot run in parallel with the update below.
672 		 */
673 		WRITE_ONCE(cpu_data->hwp_req_cached, value);
674 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
675 	} else {
676 		if (epp == -EINVAL)
677 			epp = (pref_index - 1) << 2;
678 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
679 	}
680 
681 	return ret;
682 }
683 
684 static ssize_t show_energy_performance_available_preferences(
685 				struct cpufreq_policy *policy, char *buf)
686 {
687 	int i = 0;
688 	int ret = 0;
689 
690 	while (energy_perf_strings[i] != NULL)
691 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
692 
693 	ret += sprintf(&buf[ret], "\n");
694 
695 	return ret;
696 }
697 
698 cpufreq_freq_attr_ro(energy_performance_available_preferences);
699 
700 static ssize_t store_energy_performance_preference(
701 		struct cpufreq_policy *policy, const char *buf, size_t count)
702 {
703 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
704 	char str_preference[21];
705 	bool raw = false;
706 	ssize_t ret;
707 	u32 epp = 0;
708 
709 	ret = sscanf(buf, "%20s", str_preference);
710 	if (ret != 1)
711 		return -EINVAL;
712 
713 	ret = match_string(energy_perf_strings, -1, str_preference);
714 	if (ret < 0) {
715 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
716 			return ret;
717 
718 		ret = kstrtouint(buf, 10, &epp);
719 		if (ret)
720 			return ret;
721 
722 		if (epp > 255)
723 			return -EINVAL;
724 
725 		raw = true;
726 	}
727 
728 	mutex_lock(&intel_pstate_limits_lock);
729 
730 	ret = intel_pstate_set_energy_pref_index(cpu_data, ret, raw, epp);
731 	if (!ret)
732 		ret = count;
733 
734 	mutex_unlock(&intel_pstate_limits_lock);
735 
736 	return ret;
737 }
738 
739 static ssize_t show_energy_performance_preference(
740 				struct cpufreq_policy *policy, char *buf)
741 {
742 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
743 	int preference, raw_epp;
744 
745 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
746 	if (preference < 0)
747 		return preference;
748 
749 	if (raw_epp)
750 		return  sprintf(buf, "%d\n", raw_epp);
751 	else
752 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
753 }
754 
755 cpufreq_freq_attr_rw(energy_performance_preference);
756 
757 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
758 {
759 	struct cpudata *cpu;
760 	u64 cap;
761 	int ratio;
762 
763 	ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
764 	if (ratio <= 0) {
765 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
766 		ratio = HWP_GUARANTEED_PERF(cap);
767 	}
768 
769 	cpu = all_cpu_data[policy->cpu];
770 
771 	return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
772 }
773 
774 cpufreq_freq_attr_ro(base_frequency);
775 
776 static struct freq_attr *hwp_cpufreq_attrs[] = {
777 	&energy_performance_preference,
778 	&energy_performance_available_preferences,
779 	&base_frequency,
780 	NULL,
781 };
782 
783 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
784 				     int *current_max)
785 {
786 	u64 cap;
787 
788 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
789 	WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
790 	if (global.no_turbo)
791 		*current_max = HWP_GUARANTEED_PERF(cap);
792 	else
793 		*current_max = HWP_HIGHEST_PERF(cap);
794 
795 	*phy_max = HWP_HIGHEST_PERF(cap);
796 }
797 
798 static void intel_pstate_hwp_set(unsigned int cpu)
799 {
800 	struct cpudata *cpu_data = all_cpu_data[cpu];
801 	int max, min;
802 	u64 value;
803 	s16 epp;
804 
805 	max = cpu_data->max_perf_ratio;
806 	min = cpu_data->min_perf_ratio;
807 
808 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
809 		min = max;
810 
811 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
812 
813 	value &= ~HWP_MIN_PERF(~0L);
814 	value |= HWP_MIN_PERF(min);
815 
816 	value &= ~HWP_MAX_PERF(~0L);
817 	value |= HWP_MAX_PERF(max);
818 
819 	if (cpu_data->epp_policy == cpu_data->policy)
820 		goto skip_epp;
821 
822 	cpu_data->epp_policy = cpu_data->policy;
823 
824 	if (cpu_data->epp_saved >= 0) {
825 		epp = cpu_data->epp_saved;
826 		cpu_data->epp_saved = -EINVAL;
827 		goto update_epp;
828 	}
829 
830 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
831 		epp = intel_pstate_get_epp(cpu_data, value);
832 		cpu_data->epp_powersave = epp;
833 		/* If EPP read was failed, then don't try to write */
834 		if (epp < 0)
835 			goto skip_epp;
836 
837 		epp = 0;
838 	} else {
839 		/* skip setting EPP, when saved value is invalid */
840 		if (cpu_data->epp_powersave < 0)
841 			goto skip_epp;
842 
843 		/*
844 		 * No need to restore EPP when it is not zero. This
845 		 * means:
846 		 *  - Policy is not changed
847 		 *  - user has manually changed
848 		 *  - Error reading EPB
849 		 */
850 		epp = intel_pstate_get_epp(cpu_data, value);
851 		if (epp)
852 			goto skip_epp;
853 
854 		epp = cpu_data->epp_powersave;
855 	}
856 update_epp:
857 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
858 		value &= ~GENMASK_ULL(31, 24);
859 		value |= (u64)epp << 24;
860 	} else {
861 		intel_pstate_set_epb(cpu, epp);
862 	}
863 skip_epp:
864 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
865 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
866 }
867 
868 static void intel_pstate_hwp_force_min_perf(int cpu)
869 {
870 	u64 value;
871 	int min_perf;
872 
873 	value = all_cpu_data[cpu]->hwp_req_cached;
874 	value &= ~GENMASK_ULL(31, 0);
875 	min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
876 
877 	/* Set hwp_max = hwp_min */
878 	value |= HWP_MAX_PERF(min_perf);
879 	value |= HWP_MIN_PERF(min_perf);
880 
881 	/* Set EPP to min */
882 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
883 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
884 
885 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
886 }
887 
888 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
889 {
890 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
891 
892 	if (!hwp_active)
893 		return 0;
894 
895 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
896 
897 	return 0;
898 }
899 
900 #define POWER_CTL_EE_ENABLE	1
901 #define POWER_CTL_EE_DISABLE	2
902 
903 static int power_ctl_ee_state;
904 
905 static void set_power_ctl_ee_state(bool input)
906 {
907 	u64 power_ctl;
908 
909 	mutex_lock(&intel_pstate_driver_lock);
910 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
911 	if (input) {
912 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
913 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
914 	} else {
915 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
916 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
917 	}
918 	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
919 	mutex_unlock(&intel_pstate_driver_lock);
920 }
921 
922 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
923 
924 static int intel_pstate_resume(struct cpufreq_policy *policy)
925 {
926 
927 	/* Only restore if the system default is changed */
928 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
929 		set_power_ctl_ee_state(true);
930 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
931 		set_power_ctl_ee_state(false);
932 
933 	if (!hwp_active)
934 		return 0;
935 
936 	mutex_lock(&intel_pstate_limits_lock);
937 
938 	if (policy->cpu == 0)
939 		intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
940 
941 	all_cpu_data[policy->cpu]->epp_policy = 0;
942 	intel_pstate_hwp_set(policy->cpu);
943 
944 	mutex_unlock(&intel_pstate_limits_lock);
945 
946 	return 0;
947 }
948 
949 static void intel_pstate_update_policies(void)
950 {
951 	int cpu;
952 
953 	for_each_possible_cpu(cpu)
954 		cpufreq_update_policy(cpu);
955 }
956 
957 static void intel_pstate_update_max_freq(unsigned int cpu)
958 {
959 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
960 	struct cpudata *cpudata;
961 
962 	if (!policy)
963 		return;
964 
965 	cpudata = all_cpu_data[cpu];
966 	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
967 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
968 
969 	refresh_frequency_limits(policy);
970 
971 	cpufreq_cpu_release(policy);
972 }
973 
974 static void intel_pstate_update_limits(unsigned int cpu)
975 {
976 	mutex_lock(&intel_pstate_driver_lock);
977 
978 	update_turbo_state();
979 	/*
980 	 * If turbo has been turned on or off globally, policy limits for
981 	 * all CPUs need to be updated to reflect that.
982 	 */
983 	if (global.turbo_disabled_mf != global.turbo_disabled) {
984 		global.turbo_disabled_mf = global.turbo_disabled;
985 		arch_set_max_freq_ratio(global.turbo_disabled);
986 		for_each_possible_cpu(cpu)
987 			intel_pstate_update_max_freq(cpu);
988 	} else {
989 		cpufreq_update_policy(cpu);
990 	}
991 
992 	mutex_unlock(&intel_pstate_driver_lock);
993 }
994 
995 /************************** sysfs begin ************************/
996 #define show_one(file_name, object)					\
997 	static ssize_t show_##file_name					\
998 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
999 	{								\
1000 		return sprintf(buf, "%u\n", global.object);		\
1001 	}
1002 
1003 static ssize_t intel_pstate_show_status(char *buf);
1004 static int intel_pstate_update_status(const char *buf, size_t size);
1005 
1006 static ssize_t show_status(struct kobject *kobj,
1007 			   struct kobj_attribute *attr, char *buf)
1008 {
1009 	ssize_t ret;
1010 
1011 	mutex_lock(&intel_pstate_driver_lock);
1012 	ret = intel_pstate_show_status(buf);
1013 	mutex_unlock(&intel_pstate_driver_lock);
1014 
1015 	return ret;
1016 }
1017 
1018 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1019 			    const char *buf, size_t count)
1020 {
1021 	char *p = memchr(buf, '\n', count);
1022 	int ret;
1023 
1024 	mutex_lock(&intel_pstate_driver_lock);
1025 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1026 	mutex_unlock(&intel_pstate_driver_lock);
1027 
1028 	return ret < 0 ? ret : count;
1029 }
1030 
1031 static ssize_t show_turbo_pct(struct kobject *kobj,
1032 				struct kobj_attribute *attr, char *buf)
1033 {
1034 	struct cpudata *cpu;
1035 	int total, no_turbo, turbo_pct;
1036 	uint32_t turbo_fp;
1037 
1038 	mutex_lock(&intel_pstate_driver_lock);
1039 
1040 	if (!intel_pstate_driver) {
1041 		mutex_unlock(&intel_pstate_driver_lock);
1042 		return -EAGAIN;
1043 	}
1044 
1045 	cpu = all_cpu_data[0];
1046 
1047 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1048 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1049 	turbo_fp = div_fp(no_turbo, total);
1050 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1051 
1052 	mutex_unlock(&intel_pstate_driver_lock);
1053 
1054 	return sprintf(buf, "%u\n", turbo_pct);
1055 }
1056 
1057 static ssize_t show_num_pstates(struct kobject *kobj,
1058 				struct kobj_attribute *attr, char *buf)
1059 {
1060 	struct cpudata *cpu;
1061 	int total;
1062 
1063 	mutex_lock(&intel_pstate_driver_lock);
1064 
1065 	if (!intel_pstate_driver) {
1066 		mutex_unlock(&intel_pstate_driver_lock);
1067 		return -EAGAIN;
1068 	}
1069 
1070 	cpu = all_cpu_data[0];
1071 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1072 
1073 	mutex_unlock(&intel_pstate_driver_lock);
1074 
1075 	return sprintf(buf, "%u\n", total);
1076 }
1077 
1078 static ssize_t show_no_turbo(struct kobject *kobj,
1079 			     struct kobj_attribute *attr, char *buf)
1080 {
1081 	ssize_t ret;
1082 
1083 	mutex_lock(&intel_pstate_driver_lock);
1084 
1085 	if (!intel_pstate_driver) {
1086 		mutex_unlock(&intel_pstate_driver_lock);
1087 		return -EAGAIN;
1088 	}
1089 
1090 	update_turbo_state();
1091 	if (global.turbo_disabled)
1092 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1093 	else
1094 		ret = sprintf(buf, "%u\n", global.no_turbo);
1095 
1096 	mutex_unlock(&intel_pstate_driver_lock);
1097 
1098 	return ret;
1099 }
1100 
1101 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1102 			      const char *buf, size_t count)
1103 {
1104 	unsigned int input;
1105 	int ret;
1106 
1107 	ret = sscanf(buf, "%u", &input);
1108 	if (ret != 1)
1109 		return -EINVAL;
1110 
1111 	mutex_lock(&intel_pstate_driver_lock);
1112 
1113 	if (!intel_pstate_driver) {
1114 		mutex_unlock(&intel_pstate_driver_lock);
1115 		return -EAGAIN;
1116 	}
1117 
1118 	mutex_lock(&intel_pstate_limits_lock);
1119 
1120 	update_turbo_state();
1121 	if (global.turbo_disabled) {
1122 		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1123 		mutex_unlock(&intel_pstate_limits_lock);
1124 		mutex_unlock(&intel_pstate_driver_lock);
1125 		return -EPERM;
1126 	}
1127 
1128 	global.no_turbo = clamp_t(int, input, 0, 1);
1129 
1130 	if (global.no_turbo) {
1131 		struct cpudata *cpu = all_cpu_data[0];
1132 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1133 
1134 		/* Squash the global minimum into the permitted range. */
1135 		if (global.min_perf_pct > pct)
1136 			global.min_perf_pct = pct;
1137 	}
1138 
1139 	mutex_unlock(&intel_pstate_limits_lock);
1140 
1141 	intel_pstate_update_policies();
1142 
1143 	mutex_unlock(&intel_pstate_driver_lock);
1144 
1145 	return count;
1146 }
1147 
1148 static struct cpufreq_driver intel_pstate;
1149 
1150 static void update_qos_request(enum freq_qos_req_type type)
1151 {
1152 	int max_state, turbo_max, freq, i, perf_pct;
1153 	struct freq_qos_request *req;
1154 	struct cpufreq_policy *policy;
1155 
1156 	for_each_possible_cpu(i) {
1157 		struct cpudata *cpu = all_cpu_data[i];
1158 
1159 		policy = cpufreq_cpu_get(i);
1160 		if (!policy)
1161 			continue;
1162 
1163 		req = policy->driver_data;
1164 		cpufreq_cpu_put(policy);
1165 
1166 		if (!req)
1167 			continue;
1168 
1169 		if (hwp_active)
1170 			intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
1171 		else
1172 			turbo_max = cpu->pstate.turbo_pstate;
1173 
1174 		if (type == FREQ_QOS_MIN) {
1175 			perf_pct = global.min_perf_pct;
1176 		} else {
1177 			req++;
1178 			perf_pct = global.max_perf_pct;
1179 		}
1180 
1181 		freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1182 		freq *= cpu->pstate.scaling;
1183 
1184 		if (freq_qos_update_request(req, freq) < 0)
1185 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1186 	}
1187 }
1188 
1189 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1190 				  const char *buf, size_t count)
1191 {
1192 	unsigned int input;
1193 	int ret;
1194 
1195 	ret = sscanf(buf, "%u", &input);
1196 	if (ret != 1)
1197 		return -EINVAL;
1198 
1199 	mutex_lock(&intel_pstate_driver_lock);
1200 
1201 	if (!intel_pstate_driver) {
1202 		mutex_unlock(&intel_pstate_driver_lock);
1203 		return -EAGAIN;
1204 	}
1205 
1206 	mutex_lock(&intel_pstate_limits_lock);
1207 
1208 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1209 
1210 	mutex_unlock(&intel_pstate_limits_lock);
1211 
1212 	if (intel_pstate_driver == &intel_pstate)
1213 		intel_pstate_update_policies();
1214 	else
1215 		update_qos_request(FREQ_QOS_MAX);
1216 
1217 	mutex_unlock(&intel_pstate_driver_lock);
1218 
1219 	return count;
1220 }
1221 
1222 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1223 				  const char *buf, size_t count)
1224 {
1225 	unsigned int input;
1226 	int ret;
1227 
1228 	ret = sscanf(buf, "%u", &input);
1229 	if (ret != 1)
1230 		return -EINVAL;
1231 
1232 	mutex_lock(&intel_pstate_driver_lock);
1233 
1234 	if (!intel_pstate_driver) {
1235 		mutex_unlock(&intel_pstate_driver_lock);
1236 		return -EAGAIN;
1237 	}
1238 
1239 	mutex_lock(&intel_pstate_limits_lock);
1240 
1241 	global.min_perf_pct = clamp_t(int, input,
1242 				      min_perf_pct_min(), global.max_perf_pct);
1243 
1244 	mutex_unlock(&intel_pstate_limits_lock);
1245 
1246 	if (intel_pstate_driver == &intel_pstate)
1247 		intel_pstate_update_policies();
1248 	else
1249 		update_qos_request(FREQ_QOS_MIN);
1250 
1251 	mutex_unlock(&intel_pstate_driver_lock);
1252 
1253 	return count;
1254 }
1255 
1256 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1257 				struct kobj_attribute *attr, char *buf)
1258 {
1259 	return sprintf(buf, "%u\n", hwp_boost);
1260 }
1261 
1262 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1263 				       struct kobj_attribute *b,
1264 				       const char *buf, size_t count)
1265 {
1266 	unsigned int input;
1267 	int ret;
1268 
1269 	ret = kstrtouint(buf, 10, &input);
1270 	if (ret)
1271 		return ret;
1272 
1273 	mutex_lock(&intel_pstate_driver_lock);
1274 	hwp_boost = !!input;
1275 	intel_pstate_update_policies();
1276 	mutex_unlock(&intel_pstate_driver_lock);
1277 
1278 	return count;
1279 }
1280 
1281 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1282 				      char *buf)
1283 {
1284 	u64 power_ctl;
1285 	int enable;
1286 
1287 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1288 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1289 	return sprintf(buf, "%d\n", !enable);
1290 }
1291 
1292 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1293 				       const char *buf, size_t count)
1294 {
1295 	bool input;
1296 	int ret;
1297 
1298 	ret = kstrtobool(buf, &input);
1299 	if (ret)
1300 		return ret;
1301 
1302 	set_power_ctl_ee_state(input);
1303 
1304 	return count;
1305 }
1306 
1307 show_one(max_perf_pct, max_perf_pct);
1308 show_one(min_perf_pct, min_perf_pct);
1309 
1310 define_one_global_rw(status);
1311 define_one_global_rw(no_turbo);
1312 define_one_global_rw(max_perf_pct);
1313 define_one_global_rw(min_perf_pct);
1314 define_one_global_ro(turbo_pct);
1315 define_one_global_ro(num_pstates);
1316 define_one_global_rw(hwp_dynamic_boost);
1317 define_one_global_rw(energy_efficiency);
1318 
1319 static struct attribute *intel_pstate_attributes[] = {
1320 	&status.attr,
1321 	&no_turbo.attr,
1322 	&turbo_pct.attr,
1323 	&num_pstates.attr,
1324 	NULL
1325 };
1326 
1327 static const struct attribute_group intel_pstate_attr_group = {
1328 	.attrs = intel_pstate_attributes,
1329 };
1330 
1331 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1332 
1333 static void __init intel_pstate_sysfs_expose_params(void)
1334 {
1335 	struct kobject *intel_pstate_kobject;
1336 	int rc;
1337 
1338 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1339 						&cpu_subsys.dev_root->kobj);
1340 	if (WARN_ON(!intel_pstate_kobject))
1341 		return;
1342 
1343 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1344 	if (WARN_ON(rc))
1345 		return;
1346 
1347 	/*
1348 	 * If per cpu limits are enforced there are no global limits, so
1349 	 * return without creating max/min_perf_pct attributes
1350 	 */
1351 	if (per_cpu_limits)
1352 		return;
1353 
1354 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1355 	WARN_ON(rc);
1356 
1357 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1358 	WARN_ON(rc);
1359 
1360 	if (hwp_active) {
1361 		rc = sysfs_create_file(intel_pstate_kobject,
1362 				       &hwp_dynamic_boost.attr);
1363 		WARN_ON(rc);
1364 	}
1365 
1366 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1367 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1368 		WARN_ON(rc);
1369 	}
1370 }
1371 /************************** sysfs end ************************/
1372 
1373 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1374 {
1375 	/* First disable HWP notification interrupt as we don't process them */
1376 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1377 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1378 
1379 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1380 	cpudata->epp_policy = 0;
1381 	if (cpudata->epp_default == -EINVAL)
1382 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1383 }
1384 
1385 static int atom_get_min_pstate(void)
1386 {
1387 	u64 value;
1388 
1389 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1390 	return (value >> 8) & 0x7F;
1391 }
1392 
1393 static int atom_get_max_pstate(void)
1394 {
1395 	u64 value;
1396 
1397 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1398 	return (value >> 16) & 0x7F;
1399 }
1400 
1401 static int atom_get_turbo_pstate(void)
1402 {
1403 	u64 value;
1404 
1405 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1406 	return value & 0x7F;
1407 }
1408 
1409 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1410 {
1411 	u64 val;
1412 	int32_t vid_fp;
1413 	u32 vid;
1414 
1415 	val = (u64)pstate << 8;
1416 	if (global.no_turbo && !global.turbo_disabled)
1417 		val |= (u64)1 << 32;
1418 
1419 	vid_fp = cpudata->vid.min + mul_fp(
1420 		int_tofp(pstate - cpudata->pstate.min_pstate),
1421 		cpudata->vid.ratio);
1422 
1423 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1424 	vid = ceiling_fp(vid_fp);
1425 
1426 	if (pstate > cpudata->pstate.max_pstate)
1427 		vid = cpudata->vid.turbo;
1428 
1429 	return val | vid;
1430 }
1431 
1432 static int silvermont_get_scaling(void)
1433 {
1434 	u64 value;
1435 	int i;
1436 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1437 	static int silvermont_freq_table[] = {
1438 		83300, 100000, 133300, 116700, 80000};
1439 
1440 	rdmsrl(MSR_FSB_FREQ, value);
1441 	i = value & 0x7;
1442 	WARN_ON(i > 4);
1443 
1444 	return silvermont_freq_table[i];
1445 }
1446 
1447 static int airmont_get_scaling(void)
1448 {
1449 	u64 value;
1450 	int i;
1451 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1452 	static int airmont_freq_table[] = {
1453 		83300, 100000, 133300, 116700, 80000,
1454 		93300, 90000, 88900, 87500};
1455 
1456 	rdmsrl(MSR_FSB_FREQ, value);
1457 	i = value & 0xF;
1458 	WARN_ON(i > 8);
1459 
1460 	return airmont_freq_table[i];
1461 }
1462 
1463 static void atom_get_vid(struct cpudata *cpudata)
1464 {
1465 	u64 value;
1466 
1467 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1468 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1469 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1470 	cpudata->vid.ratio = div_fp(
1471 		cpudata->vid.max - cpudata->vid.min,
1472 		int_tofp(cpudata->pstate.max_pstate -
1473 			cpudata->pstate.min_pstate));
1474 
1475 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1476 	cpudata->vid.turbo = value & 0x7f;
1477 }
1478 
1479 static int core_get_min_pstate(void)
1480 {
1481 	u64 value;
1482 
1483 	rdmsrl(MSR_PLATFORM_INFO, value);
1484 	return (value >> 40) & 0xFF;
1485 }
1486 
1487 static int core_get_max_pstate_physical(void)
1488 {
1489 	u64 value;
1490 
1491 	rdmsrl(MSR_PLATFORM_INFO, value);
1492 	return (value >> 8) & 0xFF;
1493 }
1494 
1495 static int core_get_tdp_ratio(u64 plat_info)
1496 {
1497 	/* Check how many TDP levels present */
1498 	if (plat_info & 0x600000000) {
1499 		u64 tdp_ctrl;
1500 		u64 tdp_ratio;
1501 		int tdp_msr;
1502 		int err;
1503 
1504 		/* Get the TDP level (0, 1, 2) to get ratios */
1505 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1506 		if (err)
1507 			return err;
1508 
1509 		/* TDP MSR are continuous starting at 0x648 */
1510 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1511 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1512 		if (err)
1513 			return err;
1514 
1515 		/* For level 1 and 2, bits[23:16] contain the ratio */
1516 		if (tdp_ctrl & 0x03)
1517 			tdp_ratio >>= 16;
1518 
1519 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1520 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1521 
1522 		return (int)tdp_ratio;
1523 	}
1524 
1525 	return -ENXIO;
1526 }
1527 
1528 static int core_get_max_pstate(void)
1529 {
1530 	u64 tar;
1531 	u64 plat_info;
1532 	int max_pstate;
1533 	int tdp_ratio;
1534 	int err;
1535 
1536 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1537 	max_pstate = (plat_info >> 8) & 0xFF;
1538 
1539 	tdp_ratio = core_get_tdp_ratio(plat_info);
1540 	if (tdp_ratio <= 0)
1541 		return max_pstate;
1542 
1543 	if (hwp_active) {
1544 		/* Turbo activation ratio is not used on HWP platforms */
1545 		return tdp_ratio;
1546 	}
1547 
1548 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1549 	if (!err) {
1550 		int tar_levels;
1551 
1552 		/* Do some sanity checking for safety */
1553 		tar_levels = tar & 0xff;
1554 		if (tdp_ratio - 1 == tar_levels) {
1555 			max_pstate = tar_levels;
1556 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1557 		}
1558 	}
1559 
1560 	return max_pstate;
1561 }
1562 
1563 static int core_get_turbo_pstate(void)
1564 {
1565 	u64 value;
1566 	int nont, ret;
1567 
1568 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1569 	nont = core_get_max_pstate();
1570 	ret = (value) & 255;
1571 	if (ret <= nont)
1572 		ret = nont;
1573 	return ret;
1574 }
1575 
1576 static inline int core_get_scaling(void)
1577 {
1578 	return 100000;
1579 }
1580 
1581 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1582 {
1583 	u64 val;
1584 
1585 	val = (u64)pstate << 8;
1586 	if (global.no_turbo && !global.turbo_disabled)
1587 		val |= (u64)1 << 32;
1588 
1589 	return val;
1590 }
1591 
1592 static int knl_get_aperf_mperf_shift(void)
1593 {
1594 	return 10;
1595 }
1596 
1597 static int knl_get_turbo_pstate(void)
1598 {
1599 	u64 value;
1600 	int nont, ret;
1601 
1602 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1603 	nont = core_get_max_pstate();
1604 	ret = (((value) >> 8) & 0xFF);
1605 	if (ret <= nont)
1606 		ret = nont;
1607 	return ret;
1608 }
1609 
1610 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1611 {
1612 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1613 	cpu->pstate.current_pstate = pstate;
1614 	/*
1615 	 * Generally, there is no guarantee that this code will always run on
1616 	 * the CPU being updated, so force the register update to run on the
1617 	 * right CPU.
1618 	 */
1619 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1620 		      pstate_funcs.get_val(cpu, pstate));
1621 }
1622 
1623 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1624 {
1625 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1626 }
1627 
1628 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1629 {
1630 	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1631 
1632 	update_turbo_state();
1633 	intel_pstate_set_pstate(cpu, pstate);
1634 }
1635 
1636 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1637 {
1638 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1639 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1640 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1641 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1642 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1643 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1644 
1645 	if (hwp_active && !hwp_mode_bdw) {
1646 		unsigned int phy_max, current_max;
1647 
1648 		intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1649 		cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1650 		cpu->pstate.turbo_pstate = phy_max;
1651 	} else {
1652 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1653 	}
1654 
1655 	if (pstate_funcs.get_aperf_mperf_shift)
1656 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1657 
1658 	if (pstate_funcs.get_vid)
1659 		pstate_funcs.get_vid(cpu);
1660 
1661 	intel_pstate_set_min_pstate(cpu);
1662 }
1663 
1664 /*
1665  * Long hold time will keep high perf limits for long time,
1666  * which negatively impacts perf/watt for some workloads,
1667  * like specpower. 3ms is based on experiements on some
1668  * workoads.
1669  */
1670 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1671 
1672 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1673 {
1674 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1675 	u32 max_limit = (hwp_req & 0xff00) >> 8;
1676 	u32 min_limit = (hwp_req & 0xff);
1677 	u32 boost_level1;
1678 
1679 	/*
1680 	 * Cases to consider (User changes via sysfs or boot time):
1681 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1682 	 *	No boost, return.
1683 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1684 	 *     Should result in one level boost only for P0.
1685 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1686 	 *     Should result in two level boost:
1687 	 *         (min + p1)/2 and P1.
1688 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1689 	 *     Should result in three level boost:
1690 	 *        (min + p1)/2, P1 and P0.
1691 	 */
1692 
1693 	/* If max and min are equal or already at max, nothing to boost */
1694 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1695 		return;
1696 
1697 	if (!cpu->hwp_boost_min)
1698 		cpu->hwp_boost_min = min_limit;
1699 
1700 	/* level at half way mark between min and guranteed */
1701 	boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1702 
1703 	if (cpu->hwp_boost_min < boost_level1)
1704 		cpu->hwp_boost_min = boost_level1;
1705 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1706 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1707 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1708 		 max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1709 		cpu->hwp_boost_min = max_limit;
1710 	else
1711 		return;
1712 
1713 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1714 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
1715 	cpu->last_update = cpu->sample.time;
1716 }
1717 
1718 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1719 {
1720 	if (cpu->hwp_boost_min) {
1721 		bool expired;
1722 
1723 		/* Check if we are idle for hold time to boost down */
1724 		expired = time_after64(cpu->sample.time, cpu->last_update +
1725 				       hwp_boost_hold_time_ns);
1726 		if (expired) {
1727 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1728 			cpu->hwp_boost_min = 0;
1729 		}
1730 	}
1731 	cpu->last_update = cpu->sample.time;
1732 }
1733 
1734 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1735 						      u64 time)
1736 {
1737 	cpu->sample.time = time;
1738 
1739 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1740 		bool do_io = false;
1741 
1742 		cpu->sched_flags = 0;
1743 		/*
1744 		 * Set iowait_boost flag and update time. Since IO WAIT flag
1745 		 * is set all the time, we can't just conclude that there is
1746 		 * some IO bound activity is scheduled on this CPU with just
1747 		 * one occurrence. If we receive at least two in two
1748 		 * consecutive ticks, then we treat as boost candidate.
1749 		 */
1750 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1751 			do_io = true;
1752 
1753 		cpu->last_io_update = time;
1754 
1755 		if (do_io)
1756 			intel_pstate_hwp_boost_up(cpu);
1757 
1758 	} else {
1759 		intel_pstate_hwp_boost_down(cpu);
1760 	}
1761 }
1762 
1763 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1764 						u64 time, unsigned int flags)
1765 {
1766 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1767 
1768 	cpu->sched_flags |= flags;
1769 
1770 	if (smp_processor_id() == cpu->cpu)
1771 		intel_pstate_update_util_hwp_local(cpu, time);
1772 }
1773 
1774 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1775 {
1776 	struct sample *sample = &cpu->sample;
1777 
1778 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1779 }
1780 
1781 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1782 {
1783 	u64 aperf, mperf;
1784 	unsigned long flags;
1785 	u64 tsc;
1786 
1787 	local_irq_save(flags);
1788 	rdmsrl(MSR_IA32_APERF, aperf);
1789 	rdmsrl(MSR_IA32_MPERF, mperf);
1790 	tsc = rdtsc();
1791 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1792 		local_irq_restore(flags);
1793 		return false;
1794 	}
1795 	local_irq_restore(flags);
1796 
1797 	cpu->last_sample_time = cpu->sample.time;
1798 	cpu->sample.time = time;
1799 	cpu->sample.aperf = aperf;
1800 	cpu->sample.mperf = mperf;
1801 	cpu->sample.tsc =  tsc;
1802 	cpu->sample.aperf -= cpu->prev_aperf;
1803 	cpu->sample.mperf -= cpu->prev_mperf;
1804 	cpu->sample.tsc -= cpu->prev_tsc;
1805 
1806 	cpu->prev_aperf = aperf;
1807 	cpu->prev_mperf = mperf;
1808 	cpu->prev_tsc = tsc;
1809 	/*
1810 	 * First time this function is invoked in a given cycle, all of the
1811 	 * previous sample data fields are equal to zero or stale and they must
1812 	 * be populated with meaningful numbers for things to work, so assume
1813 	 * that sample.time will always be reset before setting the utilization
1814 	 * update hook and make the caller skip the sample then.
1815 	 */
1816 	if (cpu->last_sample_time) {
1817 		intel_pstate_calc_avg_perf(cpu);
1818 		return true;
1819 	}
1820 	return false;
1821 }
1822 
1823 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1824 {
1825 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1826 }
1827 
1828 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1829 {
1830 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1831 			  cpu->sample.core_avg_perf);
1832 }
1833 
1834 static inline int32_t get_target_pstate(struct cpudata *cpu)
1835 {
1836 	struct sample *sample = &cpu->sample;
1837 	int32_t busy_frac;
1838 	int target, avg_pstate;
1839 
1840 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1841 			   sample->tsc);
1842 
1843 	if (busy_frac < cpu->iowait_boost)
1844 		busy_frac = cpu->iowait_boost;
1845 
1846 	sample->busy_scaled = busy_frac * 100;
1847 
1848 	target = global.no_turbo || global.turbo_disabled ?
1849 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1850 	target += target >> 2;
1851 	target = mul_fp(target, busy_frac);
1852 	if (target < cpu->pstate.min_pstate)
1853 		target = cpu->pstate.min_pstate;
1854 
1855 	/*
1856 	 * If the average P-state during the previous cycle was higher than the
1857 	 * current target, add 50% of the difference to the target to reduce
1858 	 * possible performance oscillations and offset possible performance
1859 	 * loss related to moving the workload from one CPU to another within
1860 	 * a package/module.
1861 	 */
1862 	avg_pstate = get_avg_pstate(cpu);
1863 	if (avg_pstate > target)
1864 		target += (avg_pstate - target) >> 1;
1865 
1866 	return target;
1867 }
1868 
1869 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1870 {
1871 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1872 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1873 
1874 	return clamp_t(int, pstate, min_pstate, max_pstate);
1875 }
1876 
1877 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1878 {
1879 	if (pstate == cpu->pstate.current_pstate)
1880 		return;
1881 
1882 	cpu->pstate.current_pstate = pstate;
1883 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1884 }
1885 
1886 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1887 {
1888 	int from = cpu->pstate.current_pstate;
1889 	struct sample *sample;
1890 	int target_pstate;
1891 
1892 	update_turbo_state();
1893 
1894 	target_pstate = get_target_pstate(cpu);
1895 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1896 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1897 	intel_pstate_update_pstate(cpu, target_pstate);
1898 
1899 	sample = &cpu->sample;
1900 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1901 		fp_toint(sample->busy_scaled),
1902 		from,
1903 		cpu->pstate.current_pstate,
1904 		sample->mperf,
1905 		sample->aperf,
1906 		sample->tsc,
1907 		get_avg_frequency(cpu),
1908 		fp_toint(cpu->iowait_boost * 100));
1909 }
1910 
1911 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1912 				     unsigned int flags)
1913 {
1914 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1915 	u64 delta_ns;
1916 
1917 	/* Don't allow remote callbacks */
1918 	if (smp_processor_id() != cpu->cpu)
1919 		return;
1920 
1921 	delta_ns = time - cpu->last_update;
1922 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1923 		/* Start over if the CPU may have been idle. */
1924 		if (delta_ns > TICK_NSEC) {
1925 			cpu->iowait_boost = ONE_EIGHTH_FP;
1926 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1927 			cpu->iowait_boost <<= 1;
1928 			if (cpu->iowait_boost > int_tofp(1))
1929 				cpu->iowait_boost = int_tofp(1);
1930 		} else {
1931 			cpu->iowait_boost = ONE_EIGHTH_FP;
1932 		}
1933 	} else if (cpu->iowait_boost) {
1934 		/* Clear iowait_boost if the CPU may have been idle. */
1935 		if (delta_ns > TICK_NSEC)
1936 			cpu->iowait_boost = 0;
1937 		else
1938 			cpu->iowait_boost >>= 1;
1939 	}
1940 	cpu->last_update = time;
1941 	delta_ns = time - cpu->sample.time;
1942 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1943 		return;
1944 
1945 	if (intel_pstate_sample(cpu, time))
1946 		intel_pstate_adjust_pstate(cpu);
1947 }
1948 
1949 static struct pstate_funcs core_funcs = {
1950 	.get_max = core_get_max_pstate,
1951 	.get_max_physical = core_get_max_pstate_physical,
1952 	.get_min = core_get_min_pstate,
1953 	.get_turbo = core_get_turbo_pstate,
1954 	.get_scaling = core_get_scaling,
1955 	.get_val = core_get_val,
1956 };
1957 
1958 static const struct pstate_funcs silvermont_funcs = {
1959 	.get_max = atom_get_max_pstate,
1960 	.get_max_physical = atom_get_max_pstate,
1961 	.get_min = atom_get_min_pstate,
1962 	.get_turbo = atom_get_turbo_pstate,
1963 	.get_val = atom_get_val,
1964 	.get_scaling = silvermont_get_scaling,
1965 	.get_vid = atom_get_vid,
1966 };
1967 
1968 static const struct pstate_funcs airmont_funcs = {
1969 	.get_max = atom_get_max_pstate,
1970 	.get_max_physical = atom_get_max_pstate,
1971 	.get_min = atom_get_min_pstate,
1972 	.get_turbo = atom_get_turbo_pstate,
1973 	.get_val = atom_get_val,
1974 	.get_scaling = airmont_get_scaling,
1975 	.get_vid = atom_get_vid,
1976 };
1977 
1978 static const struct pstate_funcs knl_funcs = {
1979 	.get_max = core_get_max_pstate,
1980 	.get_max_physical = core_get_max_pstate_physical,
1981 	.get_min = core_get_min_pstate,
1982 	.get_turbo = knl_get_turbo_pstate,
1983 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1984 	.get_scaling = core_get_scaling,
1985 	.get_val = core_get_val,
1986 };
1987 
1988 #define X86_MATCH(model, policy)					 \
1989 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
1990 					   X86_FEATURE_APERFMPERF, &policy)
1991 
1992 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1993 	X86_MATCH(SANDYBRIDGE,		core_funcs),
1994 	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
1995 	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
1996 	X86_MATCH(IVYBRIDGE,		core_funcs),
1997 	X86_MATCH(HASWELL,		core_funcs),
1998 	X86_MATCH(BROADWELL,		core_funcs),
1999 	X86_MATCH(IVYBRIDGE_X,		core_funcs),
2000 	X86_MATCH(HASWELL_X,		core_funcs),
2001 	X86_MATCH(HASWELL_L,		core_funcs),
2002 	X86_MATCH(HASWELL_G,		core_funcs),
2003 	X86_MATCH(BROADWELL_G,		core_funcs),
2004 	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
2005 	X86_MATCH(SKYLAKE_L,		core_funcs),
2006 	X86_MATCH(BROADWELL_X,		core_funcs),
2007 	X86_MATCH(SKYLAKE,		core_funcs),
2008 	X86_MATCH(BROADWELL_D,		core_funcs),
2009 	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
2010 	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
2011 	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
2012 	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
2013 	X86_MATCH(SKYLAKE_X,		core_funcs),
2014 	{}
2015 };
2016 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2017 
2018 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2019 	X86_MATCH(BROADWELL_D,		core_funcs),
2020 	X86_MATCH(BROADWELL_X,		core_funcs),
2021 	X86_MATCH(SKYLAKE_X,		core_funcs),
2022 	{}
2023 };
2024 
2025 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2026 	X86_MATCH(KABYLAKE,		core_funcs),
2027 	{}
2028 };
2029 
2030 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2031 	X86_MATCH(SKYLAKE_X,		core_funcs),
2032 	X86_MATCH(SKYLAKE,		core_funcs),
2033 	{}
2034 };
2035 
2036 static int intel_pstate_init_cpu(unsigned int cpunum)
2037 {
2038 	struct cpudata *cpu;
2039 
2040 	cpu = all_cpu_data[cpunum];
2041 
2042 	if (!cpu) {
2043 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2044 		if (!cpu)
2045 			return -ENOMEM;
2046 
2047 		all_cpu_data[cpunum] = cpu;
2048 
2049 		cpu->epp_default = -EINVAL;
2050 		cpu->epp_powersave = -EINVAL;
2051 		cpu->epp_saved = -EINVAL;
2052 	}
2053 
2054 	cpu = all_cpu_data[cpunum];
2055 
2056 	cpu->cpu = cpunum;
2057 
2058 	if (hwp_active) {
2059 		const struct x86_cpu_id *id;
2060 
2061 		intel_pstate_hwp_enable(cpu);
2062 
2063 		id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2064 		if (id && intel_pstate_acpi_pm_profile_server())
2065 			hwp_boost = true;
2066 	}
2067 
2068 	intel_pstate_get_cpu_pstates(cpu);
2069 
2070 	pr_debug("controlling: cpu %d\n", cpunum);
2071 
2072 	return 0;
2073 }
2074 
2075 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2076 {
2077 	struct cpudata *cpu = all_cpu_data[cpu_num];
2078 
2079 	if (hwp_active && !hwp_boost)
2080 		return;
2081 
2082 	if (cpu->update_util_set)
2083 		return;
2084 
2085 	/* Prevent intel_pstate_update_util() from using stale data. */
2086 	cpu->sample.time = 0;
2087 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2088 				     (hwp_active ?
2089 				      intel_pstate_update_util_hwp :
2090 				      intel_pstate_update_util));
2091 	cpu->update_util_set = true;
2092 }
2093 
2094 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2095 {
2096 	struct cpudata *cpu_data = all_cpu_data[cpu];
2097 
2098 	if (!cpu_data->update_util_set)
2099 		return;
2100 
2101 	cpufreq_remove_update_util_hook(cpu);
2102 	cpu_data->update_util_set = false;
2103 	synchronize_rcu();
2104 }
2105 
2106 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2107 {
2108 	return global.turbo_disabled || global.no_turbo ?
2109 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2110 }
2111 
2112 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2113 					    unsigned int policy_min,
2114 					    unsigned int policy_max)
2115 {
2116 	int max_freq = intel_pstate_get_max_freq(cpu);
2117 	int32_t max_policy_perf, min_policy_perf;
2118 	int max_state, turbo_max;
2119 
2120 	/*
2121 	 * HWP needs some special consideration, because on BDX the
2122 	 * HWP_REQUEST uses abstract value to represent performance
2123 	 * rather than pure ratios.
2124 	 */
2125 	if (hwp_active) {
2126 		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2127 	} else {
2128 		max_state = global.no_turbo || global.turbo_disabled ?
2129 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2130 		turbo_max = cpu->pstate.turbo_pstate;
2131 	}
2132 
2133 	max_policy_perf = max_state * policy_max / max_freq;
2134 	if (policy_max == policy_min) {
2135 		min_policy_perf = max_policy_perf;
2136 	} else {
2137 		min_policy_perf = max_state * policy_min / max_freq;
2138 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2139 					  0, max_policy_perf);
2140 	}
2141 
2142 	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2143 		 cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2144 
2145 	/* Normalize user input to [min_perf, max_perf] */
2146 	if (per_cpu_limits) {
2147 		cpu->min_perf_ratio = min_policy_perf;
2148 		cpu->max_perf_ratio = max_policy_perf;
2149 	} else {
2150 		int32_t global_min, global_max;
2151 
2152 		/* Global limits are in percent of the maximum turbo P-state. */
2153 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2154 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2155 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2156 
2157 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2158 			 global_min, global_max);
2159 
2160 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2161 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2162 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2163 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2164 
2165 		/* Make sure min_perf <= max_perf */
2166 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2167 					  cpu->max_perf_ratio);
2168 
2169 	}
2170 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2171 		 cpu->max_perf_ratio,
2172 		 cpu->min_perf_ratio);
2173 }
2174 
2175 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2176 {
2177 	struct cpudata *cpu;
2178 
2179 	if (!policy->cpuinfo.max_freq)
2180 		return -ENODEV;
2181 
2182 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2183 		 policy->cpuinfo.max_freq, policy->max);
2184 
2185 	cpu = all_cpu_data[policy->cpu];
2186 	cpu->policy = policy->policy;
2187 
2188 	mutex_lock(&intel_pstate_limits_lock);
2189 
2190 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2191 
2192 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2193 		/*
2194 		 * NOHZ_FULL CPUs need this as the governor callback may not
2195 		 * be invoked on them.
2196 		 */
2197 		intel_pstate_clear_update_util_hook(policy->cpu);
2198 		intel_pstate_max_within_limits(cpu);
2199 	} else {
2200 		intel_pstate_set_update_util_hook(policy->cpu);
2201 	}
2202 
2203 	if (hwp_active) {
2204 		/*
2205 		 * When hwp_boost was active before and dynamically it
2206 		 * was turned off, in that case we need to clear the
2207 		 * update util hook.
2208 		 */
2209 		if (!hwp_boost)
2210 			intel_pstate_clear_update_util_hook(policy->cpu);
2211 		intel_pstate_hwp_set(policy->cpu);
2212 	}
2213 
2214 	mutex_unlock(&intel_pstate_limits_lock);
2215 
2216 	return 0;
2217 }
2218 
2219 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2220 					   struct cpufreq_policy_data *policy)
2221 {
2222 	if (!hwp_active &&
2223 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2224 	    policy->max < policy->cpuinfo.max_freq &&
2225 	    policy->max > cpu->pstate.max_freq) {
2226 		pr_debug("policy->max > max non turbo frequency\n");
2227 		policy->max = policy->cpuinfo.max_freq;
2228 	}
2229 }
2230 
2231 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2232 					   struct cpufreq_policy_data *policy)
2233 {
2234 	update_turbo_state();
2235 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2236 				     intel_pstate_get_max_freq(cpu));
2237 
2238 	intel_pstate_adjust_policy_max(cpu, policy);
2239 }
2240 
2241 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2242 {
2243 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2244 
2245 	return 0;
2246 }
2247 
2248 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2249 {
2250 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2251 }
2252 
2253 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2254 {
2255 	pr_debug("CPU %d exiting\n", policy->cpu);
2256 
2257 	intel_pstate_clear_update_util_hook(policy->cpu);
2258 	if (hwp_active) {
2259 		intel_pstate_hwp_save_state(policy);
2260 		intel_pstate_hwp_force_min_perf(policy->cpu);
2261 	} else {
2262 		intel_cpufreq_stop_cpu(policy);
2263 	}
2264 }
2265 
2266 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2267 {
2268 	intel_pstate_exit_perf_limits(policy);
2269 
2270 	policy->fast_switch_possible = false;
2271 
2272 	return 0;
2273 }
2274 
2275 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2276 {
2277 	struct cpudata *cpu;
2278 	int rc;
2279 
2280 	rc = intel_pstate_init_cpu(policy->cpu);
2281 	if (rc)
2282 		return rc;
2283 
2284 	cpu = all_cpu_data[policy->cpu];
2285 
2286 	cpu->max_perf_ratio = 0xFF;
2287 	cpu->min_perf_ratio = 0;
2288 
2289 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2290 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2291 
2292 	/* cpuinfo and default policy values */
2293 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2294 	update_turbo_state();
2295 	global.turbo_disabled_mf = global.turbo_disabled;
2296 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2297 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2298 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2299 
2300 	if (hwp_active) {
2301 		unsigned int max_freq;
2302 
2303 		max_freq = global.turbo_disabled ?
2304 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2305 		if (max_freq < policy->cpuinfo.max_freq)
2306 			policy->cpuinfo.max_freq = max_freq;
2307 	}
2308 
2309 	intel_pstate_init_acpi_perf_limits(policy);
2310 
2311 	policy->fast_switch_possible = true;
2312 
2313 	return 0;
2314 }
2315 
2316 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2317 {
2318 	int ret = __intel_pstate_cpu_init(policy);
2319 
2320 	if (ret)
2321 		return ret;
2322 
2323 	/*
2324 	 * Set the policy to powersave to provide a valid fallback value in case
2325 	 * the default cpufreq governor is neither powersave nor performance.
2326 	 */
2327 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2328 
2329 	return 0;
2330 }
2331 
2332 static struct cpufreq_driver intel_pstate = {
2333 	.flags		= CPUFREQ_CONST_LOOPS,
2334 	.verify		= intel_pstate_verify_policy,
2335 	.setpolicy	= intel_pstate_set_policy,
2336 	.suspend	= intel_pstate_hwp_save_state,
2337 	.resume		= intel_pstate_resume,
2338 	.init		= intel_pstate_cpu_init,
2339 	.exit		= intel_pstate_cpu_exit,
2340 	.stop_cpu	= intel_pstate_stop_cpu,
2341 	.update_limits	= intel_pstate_update_limits,
2342 	.name		= "intel_pstate",
2343 };
2344 
2345 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2346 {
2347 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2348 
2349 	intel_pstate_verify_cpu_policy(cpu, policy);
2350 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2351 
2352 	return 0;
2353 }
2354 
2355 /* Use of trace in passive mode:
2356  *
2357  * In passive mode the trace core_busy field (also known as the
2358  * performance field, and lablelled as such on the graphs; also known as
2359  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2360  * driver call was via the normal or fast switch path. Various graphs
2361  * output from the intel_pstate_tracer.py utility that include core_busy
2362  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2363  * so we use 10 to indicate the the normal path through the driver, and
2364  * 90 to indicate the fast switch path through the driver.
2365  * The scaled_busy field is not used, and is set to 0.
2366  */
2367 
2368 #define	INTEL_PSTATE_TRACE_TARGET 10
2369 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2370 
2371 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2372 {
2373 	struct sample *sample;
2374 
2375 	if (!trace_pstate_sample_enabled())
2376 		return;
2377 
2378 	if (!intel_pstate_sample(cpu, ktime_get()))
2379 		return;
2380 
2381 	sample = &cpu->sample;
2382 	trace_pstate_sample(trace_type,
2383 		0,
2384 		old_pstate,
2385 		cpu->pstate.current_pstate,
2386 		sample->mperf,
2387 		sample->aperf,
2388 		sample->tsc,
2389 		get_avg_frequency(cpu),
2390 		fp_toint(cpu->iowait_boost * 100));
2391 }
2392 
2393 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2394 				unsigned int target_freq,
2395 				unsigned int relation)
2396 {
2397 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2398 	struct cpufreq_freqs freqs;
2399 	int target_pstate, old_pstate;
2400 
2401 	update_turbo_state();
2402 
2403 	freqs.old = policy->cur;
2404 	freqs.new = target_freq;
2405 
2406 	cpufreq_freq_transition_begin(policy, &freqs);
2407 	switch (relation) {
2408 	case CPUFREQ_RELATION_L:
2409 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2410 		break;
2411 	case CPUFREQ_RELATION_H:
2412 		target_pstate = freqs.new / cpu->pstate.scaling;
2413 		break;
2414 	default:
2415 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2416 		break;
2417 	}
2418 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2419 	old_pstate = cpu->pstate.current_pstate;
2420 	if (target_pstate != cpu->pstate.current_pstate) {
2421 		cpu->pstate.current_pstate = target_pstate;
2422 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2423 			      pstate_funcs.get_val(cpu, target_pstate));
2424 	}
2425 	freqs.new = target_pstate * cpu->pstate.scaling;
2426 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2427 	cpufreq_freq_transition_end(policy, &freqs, false);
2428 
2429 	return 0;
2430 }
2431 
2432 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2433 					      unsigned int target_freq)
2434 {
2435 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2436 	int target_pstate, old_pstate;
2437 
2438 	update_turbo_state();
2439 
2440 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2441 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2442 	old_pstate = cpu->pstate.current_pstate;
2443 	intel_pstate_update_pstate(cpu, target_pstate);
2444 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2445 	return target_pstate * cpu->pstate.scaling;
2446 }
2447 
2448 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2449 {
2450 	int max_state, turbo_max, min_freq, max_freq, ret;
2451 	struct freq_qos_request *req;
2452 	struct cpudata *cpu;
2453 	struct device *dev;
2454 
2455 	dev = get_cpu_device(policy->cpu);
2456 	if (!dev)
2457 		return -ENODEV;
2458 
2459 	ret = __intel_pstate_cpu_init(policy);
2460 	if (ret)
2461 		return ret;
2462 
2463 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2464 	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2465 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2466 	policy->cur = policy->cpuinfo.min_freq;
2467 
2468 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2469 	if (!req) {
2470 		ret = -ENOMEM;
2471 		goto pstate_exit;
2472 	}
2473 
2474 	cpu = all_cpu_data[policy->cpu];
2475 
2476 	if (hwp_active)
2477 		intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2478 	else
2479 		turbo_max = cpu->pstate.turbo_pstate;
2480 
2481 	min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2482 	min_freq *= cpu->pstate.scaling;
2483 	max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2484 	max_freq *= cpu->pstate.scaling;
2485 
2486 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2487 				   min_freq);
2488 	if (ret < 0) {
2489 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2490 		goto free_req;
2491 	}
2492 
2493 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2494 				   max_freq);
2495 	if (ret < 0) {
2496 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2497 		goto remove_min_req;
2498 	}
2499 
2500 	policy->driver_data = req;
2501 
2502 	return 0;
2503 
2504 remove_min_req:
2505 	freq_qos_remove_request(req);
2506 free_req:
2507 	kfree(req);
2508 pstate_exit:
2509 	intel_pstate_exit_perf_limits(policy);
2510 
2511 	return ret;
2512 }
2513 
2514 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2515 {
2516 	struct freq_qos_request *req;
2517 
2518 	req = policy->driver_data;
2519 
2520 	freq_qos_remove_request(req + 1);
2521 	freq_qos_remove_request(req);
2522 	kfree(req);
2523 
2524 	return intel_pstate_cpu_exit(policy);
2525 }
2526 
2527 static struct cpufreq_driver intel_cpufreq = {
2528 	.flags		= CPUFREQ_CONST_LOOPS,
2529 	.verify		= intel_cpufreq_verify_policy,
2530 	.target		= intel_cpufreq_target,
2531 	.fast_switch	= intel_cpufreq_fast_switch,
2532 	.init		= intel_cpufreq_cpu_init,
2533 	.exit		= intel_cpufreq_cpu_exit,
2534 	.stop_cpu	= intel_cpufreq_stop_cpu,
2535 	.update_limits	= intel_pstate_update_limits,
2536 	.name		= "intel_cpufreq",
2537 };
2538 
2539 static struct cpufreq_driver *default_driver;
2540 
2541 static void intel_pstate_driver_cleanup(void)
2542 {
2543 	unsigned int cpu;
2544 
2545 	get_online_cpus();
2546 	for_each_online_cpu(cpu) {
2547 		if (all_cpu_data[cpu]) {
2548 			if (intel_pstate_driver == &intel_pstate)
2549 				intel_pstate_clear_update_util_hook(cpu);
2550 
2551 			kfree(all_cpu_data[cpu]);
2552 			all_cpu_data[cpu] = NULL;
2553 		}
2554 	}
2555 	put_online_cpus();
2556 	intel_pstate_driver = NULL;
2557 }
2558 
2559 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2560 {
2561 	int ret;
2562 
2563 	memset(&global, 0, sizeof(global));
2564 	global.max_perf_pct = 100;
2565 
2566 	intel_pstate_driver = driver;
2567 	ret = cpufreq_register_driver(intel_pstate_driver);
2568 	if (ret) {
2569 		intel_pstate_driver_cleanup();
2570 		return ret;
2571 	}
2572 
2573 	global.min_perf_pct = min_perf_pct_min();
2574 
2575 	return 0;
2576 }
2577 
2578 static int intel_pstate_unregister_driver(void)
2579 {
2580 	if (hwp_active)
2581 		return -EBUSY;
2582 
2583 	cpufreq_unregister_driver(intel_pstate_driver);
2584 	intel_pstate_driver_cleanup();
2585 
2586 	return 0;
2587 }
2588 
2589 static ssize_t intel_pstate_show_status(char *buf)
2590 {
2591 	if (!intel_pstate_driver)
2592 		return sprintf(buf, "off\n");
2593 
2594 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2595 					"active" : "passive");
2596 }
2597 
2598 static int intel_pstate_update_status(const char *buf, size_t size)
2599 {
2600 	int ret;
2601 
2602 	if (size == 3 && !strncmp(buf, "off", size))
2603 		return intel_pstate_driver ?
2604 			intel_pstate_unregister_driver() : -EINVAL;
2605 
2606 	if (size == 6 && !strncmp(buf, "active", size)) {
2607 		if (intel_pstate_driver) {
2608 			if (intel_pstate_driver == &intel_pstate)
2609 				return 0;
2610 
2611 			ret = intel_pstate_unregister_driver();
2612 			if (ret)
2613 				return ret;
2614 		}
2615 
2616 		return intel_pstate_register_driver(&intel_pstate);
2617 	}
2618 
2619 	if (size == 7 && !strncmp(buf, "passive", size)) {
2620 		if (intel_pstate_driver) {
2621 			if (intel_pstate_driver == &intel_cpufreq)
2622 				return 0;
2623 
2624 			ret = intel_pstate_unregister_driver();
2625 			if (ret)
2626 				return ret;
2627 		}
2628 
2629 		return intel_pstate_register_driver(&intel_cpufreq);
2630 	}
2631 
2632 	return -EINVAL;
2633 }
2634 
2635 static int no_load __initdata;
2636 static int no_hwp __initdata;
2637 static int hwp_only __initdata;
2638 static unsigned int force_load __initdata;
2639 
2640 static int __init intel_pstate_msrs_not_valid(void)
2641 {
2642 	if (!pstate_funcs.get_max() ||
2643 	    !pstate_funcs.get_min() ||
2644 	    !pstate_funcs.get_turbo())
2645 		return -ENODEV;
2646 
2647 	return 0;
2648 }
2649 
2650 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2651 {
2652 	pstate_funcs.get_max   = funcs->get_max;
2653 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2654 	pstate_funcs.get_min   = funcs->get_min;
2655 	pstate_funcs.get_turbo = funcs->get_turbo;
2656 	pstate_funcs.get_scaling = funcs->get_scaling;
2657 	pstate_funcs.get_val   = funcs->get_val;
2658 	pstate_funcs.get_vid   = funcs->get_vid;
2659 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2660 }
2661 
2662 #ifdef CONFIG_ACPI
2663 
2664 static bool __init intel_pstate_no_acpi_pss(void)
2665 {
2666 	int i;
2667 
2668 	for_each_possible_cpu(i) {
2669 		acpi_status status;
2670 		union acpi_object *pss;
2671 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2672 		struct acpi_processor *pr = per_cpu(processors, i);
2673 
2674 		if (!pr)
2675 			continue;
2676 
2677 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2678 		if (ACPI_FAILURE(status))
2679 			continue;
2680 
2681 		pss = buffer.pointer;
2682 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2683 			kfree(pss);
2684 			return false;
2685 		}
2686 
2687 		kfree(pss);
2688 	}
2689 
2690 	pr_debug("ACPI _PSS not found\n");
2691 	return true;
2692 }
2693 
2694 static bool __init intel_pstate_no_acpi_pcch(void)
2695 {
2696 	acpi_status status;
2697 	acpi_handle handle;
2698 
2699 	status = acpi_get_handle(NULL, "\\_SB", &handle);
2700 	if (ACPI_FAILURE(status))
2701 		goto not_found;
2702 
2703 	if (acpi_has_method(handle, "PCCH"))
2704 		return false;
2705 
2706 not_found:
2707 	pr_debug("ACPI PCCH not found\n");
2708 	return true;
2709 }
2710 
2711 static bool __init intel_pstate_has_acpi_ppc(void)
2712 {
2713 	int i;
2714 
2715 	for_each_possible_cpu(i) {
2716 		struct acpi_processor *pr = per_cpu(processors, i);
2717 
2718 		if (!pr)
2719 			continue;
2720 		if (acpi_has_method(pr->handle, "_PPC"))
2721 			return true;
2722 	}
2723 	pr_debug("ACPI _PPC not found\n");
2724 	return false;
2725 }
2726 
2727 enum {
2728 	PSS,
2729 	PPC,
2730 };
2731 
2732 /* Hardware vendor-specific info that has its own power management modes */
2733 static struct acpi_platform_list plat_info[] __initdata = {
2734 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
2735 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2736 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2737 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2738 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2739 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2740 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2741 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2742 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2743 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2744 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2745 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2746 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2747 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2748 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2749 	{ } /* End */
2750 };
2751 
2752 #define BITMASK_OOB	(BIT(8) | BIT(18))
2753 
2754 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2755 {
2756 	const struct x86_cpu_id *id;
2757 	u64 misc_pwr;
2758 	int idx;
2759 
2760 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2761 	if (id) {
2762 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2763 		if (misc_pwr & BITMASK_OOB) {
2764 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
2765 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
2766 			return true;
2767 		}
2768 	}
2769 
2770 	idx = acpi_match_platform_list(plat_info);
2771 	if (idx < 0)
2772 		return false;
2773 
2774 	switch (plat_info[idx].data) {
2775 	case PSS:
2776 		if (!intel_pstate_no_acpi_pss())
2777 			return false;
2778 
2779 		return intel_pstate_no_acpi_pcch();
2780 	case PPC:
2781 		return intel_pstate_has_acpi_ppc() && !force_load;
2782 	}
2783 
2784 	return false;
2785 }
2786 
2787 static void intel_pstate_request_control_from_smm(void)
2788 {
2789 	/*
2790 	 * It may be unsafe to request P-states control from SMM if _PPC support
2791 	 * has not been enabled.
2792 	 */
2793 	if (acpi_ppc)
2794 		acpi_processor_pstate_control();
2795 }
2796 #else /* CONFIG_ACPI not enabled */
2797 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2798 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2799 static inline void intel_pstate_request_control_from_smm(void) {}
2800 #endif /* CONFIG_ACPI */
2801 
2802 #define INTEL_PSTATE_HWP_BROADWELL	0x01
2803 
2804 #define X86_MATCH_HWP(model, hwp_mode)					\
2805 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2806 					   X86_FEATURE_HWP, hwp_mode)
2807 
2808 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2809 	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
2810 	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
2811 	X86_MATCH_HWP(ANY,		0),
2812 	{}
2813 };
2814 
2815 static int __init intel_pstate_init(void)
2816 {
2817 	const struct x86_cpu_id *id;
2818 	int rc;
2819 
2820 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2821 		return -ENODEV;
2822 
2823 	if (no_load)
2824 		return -ENODEV;
2825 
2826 	id = x86_match_cpu(hwp_support_ids);
2827 	if (id) {
2828 		copy_cpu_funcs(&core_funcs);
2829 		/*
2830 		 * Avoid enabling HWP for processors without EPP support,
2831 		 * because that means incomplete HWP implementation which is a
2832 		 * corner case and supporting it is generally problematic.
2833 		 */
2834 		if (!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) {
2835 			hwp_active++;
2836 			hwp_mode_bdw = id->driver_data;
2837 			intel_pstate.attr = hwp_cpufreq_attrs;
2838 			default_driver = &intel_pstate;
2839 			goto hwp_cpu_matched;
2840 		}
2841 	} else {
2842 		id = x86_match_cpu(intel_pstate_cpu_ids);
2843 		if (!id) {
2844 			pr_info("CPU model not supported\n");
2845 			return -ENODEV;
2846 		}
2847 
2848 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2849 	}
2850 
2851 	if (intel_pstate_msrs_not_valid()) {
2852 		pr_info("Invalid MSRs\n");
2853 		return -ENODEV;
2854 	}
2855 	/* Without HWP start in the passive mode. */
2856 	if (!default_driver)
2857 		default_driver = &intel_cpufreq;
2858 
2859 hwp_cpu_matched:
2860 	/*
2861 	 * The Intel pstate driver will be ignored if the platform
2862 	 * firmware has its own power management modes.
2863 	 */
2864 	if (intel_pstate_platform_pwr_mgmt_exists()) {
2865 		pr_info("P-states controlled by the platform\n");
2866 		return -ENODEV;
2867 	}
2868 
2869 	if (!hwp_active && hwp_only)
2870 		return -ENOTSUPP;
2871 
2872 	pr_info("Intel P-state driver initializing\n");
2873 
2874 	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2875 	if (!all_cpu_data)
2876 		return -ENOMEM;
2877 
2878 	intel_pstate_request_control_from_smm();
2879 
2880 	intel_pstate_sysfs_expose_params();
2881 
2882 	mutex_lock(&intel_pstate_driver_lock);
2883 	rc = intel_pstate_register_driver(default_driver);
2884 	mutex_unlock(&intel_pstate_driver_lock);
2885 	if (rc)
2886 		return rc;
2887 
2888 	if (hwp_active) {
2889 		const struct x86_cpu_id *id;
2890 
2891 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
2892 		if (id) {
2893 			set_power_ctl_ee_state(false);
2894 			pr_info("Disabling energy efficiency optimization\n");
2895 		}
2896 
2897 		pr_info("HWP enabled\n");
2898 	}
2899 
2900 	return 0;
2901 }
2902 device_initcall(intel_pstate_init);
2903 
2904 static int __init intel_pstate_setup(char *str)
2905 {
2906 	if (!str)
2907 		return -EINVAL;
2908 
2909 	if (!strcmp(str, "disable")) {
2910 		no_load = 1;
2911 	} else if (!strcmp(str, "active")) {
2912 		default_driver = &intel_pstate;
2913 	} else if (!strcmp(str, "passive")) {
2914 		default_driver = &intel_cpufreq;
2915 		no_hwp = 1;
2916 	}
2917 	if (!strcmp(str, "no_hwp")) {
2918 		pr_info("HWP disabled\n");
2919 		no_hwp = 1;
2920 	}
2921 	if (!strcmp(str, "force"))
2922 		force_load = 1;
2923 	if (!strcmp(str, "hwp_only"))
2924 		hwp_only = 1;
2925 	if (!strcmp(str, "per_cpu_perf_limits"))
2926 		per_cpu_limits = true;
2927 
2928 #ifdef CONFIG_ACPI
2929 	if (!strcmp(str, "support_acpi_ppc"))
2930 		acpi_ppc = true;
2931 #endif
2932 
2933 	return 0;
2934 }
2935 early_param("intel_pstate", intel_pstate_setup);
2936 
2937 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2938 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2939 MODULE_LICENSE("GPL");
2940