1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
41 #define INTEL_PSTATE_HWP_SAMPLING_INTERVAL	(50 * NSEC_PER_MSEC)
42 
43 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
45 
46 #ifdef CONFIG_ACPI
47 #include <acpi/processor.h>
48 #include <acpi/cppc_acpi.h>
49 #endif
50 
51 #define FRAC_BITS 8
52 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53 #define fp_toint(X) ((X) >> FRAC_BITS)
54 
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59 
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64 
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67 	return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69 
70 static inline int ceiling_fp(int32_t x)
71 {
72 	int mask, ret;
73 
74 	ret = fp_toint(x);
75 	mask = (1 << FRAC_BITS) - 1;
76 	if (x & mask)
77 		ret += 1;
78 	return ret;
79 }
80 
81 static inline int32_t percent_fp(int percent)
82 {
83 	return div_fp(percent, 100);
84 }
85 
86 static inline u64 mul_ext_fp(u64 x, u64 y)
87 {
88 	return (x * y) >> EXT_FRAC_BITS;
89 }
90 
91 static inline u64 div_ext_fp(u64 x, u64 y)
92 {
93 	return div64_u64(x << EXT_FRAC_BITS, y);
94 }
95 
96 static inline int32_t percent_ext_fp(int percent)
97 {
98 	return div_ext_fp(percent, 100);
99 }
100 
101 /**
102  * struct sample -	Store performance sample
103  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
104  *			performance during last sample period
105  * @busy_scaled:	Scaled busy value which is used to calculate next
106  *			P state. This can be different than core_avg_perf
107  *			to account for cpu idle period
108  * @aperf:		Difference of actual performance frequency clock count
109  *			read from APERF MSR between last and current sample
110  * @mperf:		Difference of maximum performance frequency clock count
111  *			read from MPERF MSR between last and current sample
112  * @tsc:		Difference of time stamp counter between last and
113  *			current sample
114  * @time:		Current time from scheduler
115  *
116  * This structure is used in the cpudata structure to store performance sample
117  * data for choosing next P State.
118  */
119 struct sample {
120 	int32_t core_avg_perf;
121 	int32_t busy_scaled;
122 	u64 aperf;
123 	u64 mperf;
124 	u64 tsc;
125 	u64 time;
126 };
127 
128 /**
129  * struct pstate_data - Store P state data
130  * @current_pstate:	Current requested P state
131  * @min_pstate:		Min P state possible for this platform
132  * @max_pstate:		Max P state possible for this platform
133  * @max_pstate_physical:This is physical Max P state for a processor
134  *			This can be higher than the max_pstate which can
135  *			be limited by platform thermal design power limits
136  * @scaling:		Scaling factor to  convert frequency to cpufreq
137  *			frequency units
138  * @turbo_pstate:	Max Turbo P state possible for this platform
139  * @max_freq:		@max_pstate frequency in cpufreq units
140  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
141  *
142  * Stores the per cpu model P state limits and current P state.
143  */
144 struct pstate_data {
145 	int	current_pstate;
146 	int	min_pstate;
147 	int	max_pstate;
148 	int	max_pstate_physical;
149 	int	scaling;
150 	int	turbo_pstate;
151 	unsigned int max_freq;
152 	unsigned int turbo_freq;
153 };
154 
155 /**
156  * struct vid_data -	Stores voltage information data
157  * @min:		VID data for this platform corresponding to
158  *			the lowest P state
159  * @max:		VID data corresponding to the highest P State.
160  * @turbo:		VID data for turbo P state
161  * @ratio:		Ratio of (vid max - vid min) /
162  *			(max P state - Min P State)
163  *
164  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165  * This data is used in Atom platforms, where in addition to target P state,
166  * the voltage data needs to be specified to select next P State.
167  */
168 struct vid_data {
169 	int min;
170 	int max;
171 	int turbo;
172 	int32_t ratio;
173 };
174 
175 /**
176  * struct _pid -	Stores PID data
177  * @setpoint:		Target set point for busyness or performance
178  * @integral:		Storage for accumulated error values
179  * @p_gain:		PID proportional gain
180  * @i_gain:		PID integral gain
181  * @d_gain:		PID derivative gain
182  * @deadband:		PID deadband
183  * @last_err:		Last error storage for integral part of PID calculation
184  *
185  * Stores PID coefficients and last error for PID controller.
186  */
187 struct _pid {
188 	int setpoint;
189 	int32_t integral;
190 	int32_t p_gain;
191 	int32_t i_gain;
192 	int32_t d_gain;
193 	int deadband;
194 	int32_t last_err;
195 };
196 
197 /**
198  * struct global_params - Global parameters, mostly tunable via sysfs.
199  * @no_turbo:		Whether or not to use turbo P-states.
200  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
201  *			based on the MSR_IA32_MISC_ENABLE value and whether or
202  *			not the maximum reported turbo P-state is different from
203  *			the maximum reported non-turbo one.
204  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
205  *			P-state capacity.
206  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
207  *			P-state capacity.
208  */
209 struct global_params {
210 	bool no_turbo;
211 	bool turbo_disabled;
212 	int max_perf_pct;
213 	int min_perf_pct;
214 };
215 
216 /**
217  * struct cpudata -	Per CPU instance data storage
218  * @cpu:		CPU number for this instance data
219  * @policy:		CPUFreq policy value
220  * @update_util:	CPUFreq utility callback information
221  * @update_util_set:	CPUFreq utility callback is set
222  * @iowait_boost:	iowait-related boost fraction
223  * @last_update:	Time of the last update.
224  * @pstate:		Stores P state limits for this CPU
225  * @vid:		Stores VID limits for this CPU
226  * @pid:		Stores PID parameters for this CPU
227  * @last_sample_time:	Last Sample time
228  * @prev_aperf:		Last APERF value read from APERF MSR
229  * @prev_mperf:		Last MPERF value read from MPERF MSR
230  * @prev_tsc:		Last timestamp counter (TSC) value
231  * @prev_cummulative_iowait: IO Wait time difference from last and
232  *			current sample
233  * @sample:		Storage for storing last Sample data
234  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
235  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
236  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
237  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
238  * @epp_powersave:	Last saved HWP energy performance preference
239  *			(EPP) or energy performance bias (EPB),
240  *			when policy switched to performance
241  * @epp_policy:		Last saved policy used to set EPP/EPB
242  * @epp_default:	Power on default HWP energy performance
243  *			preference/bias
244  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
245  *			operation
246  *
247  * This structure stores per CPU instance data for all CPUs.
248  */
249 struct cpudata {
250 	int cpu;
251 
252 	unsigned int policy;
253 	struct update_util_data update_util;
254 	bool   update_util_set;
255 
256 	struct pstate_data pstate;
257 	struct vid_data vid;
258 	struct _pid pid;
259 
260 	u64	last_update;
261 	u64	last_sample_time;
262 	u64	prev_aperf;
263 	u64	prev_mperf;
264 	u64	prev_tsc;
265 	u64	prev_cummulative_iowait;
266 	struct sample sample;
267 	int32_t	min_perf_ratio;
268 	int32_t	max_perf_ratio;
269 #ifdef CONFIG_ACPI
270 	struct acpi_processor_performance acpi_perf_data;
271 	bool valid_pss_table;
272 #endif
273 	unsigned int iowait_boost;
274 	s16 epp_powersave;
275 	s16 epp_policy;
276 	s16 epp_default;
277 	s16 epp_saved;
278 };
279 
280 static struct cpudata **all_cpu_data;
281 
282 /**
283  * struct pstate_adjust_policy - Stores static PID configuration data
284  * @sample_rate_ms:	PID calculation sample rate in ms
285  * @sample_rate_ns:	Sample rate calculation in ns
286  * @deadband:		PID deadband
287  * @setpoint:		PID Setpoint
288  * @p_gain_pct:		PID proportional gain
289  * @i_gain_pct:		PID integral gain
290  * @d_gain_pct:		PID derivative gain
291  *
292  * Stores per CPU model static PID configuration data.
293  */
294 struct pstate_adjust_policy {
295 	int sample_rate_ms;
296 	s64 sample_rate_ns;
297 	int deadband;
298 	int setpoint;
299 	int p_gain_pct;
300 	int d_gain_pct;
301 	int i_gain_pct;
302 };
303 
304 /**
305  * struct pstate_funcs - Per CPU model specific callbacks
306  * @get_max:		Callback to get maximum non turbo effective P state
307  * @get_max_physical:	Callback to get maximum non turbo physical P state
308  * @get_min:		Callback to get minimum P state
309  * @get_turbo:		Callback to get turbo P state
310  * @get_scaling:	Callback to get frequency scaling factor
311  * @get_val:		Callback to convert P state to actual MSR write value
312  * @get_vid:		Callback to get VID data for Atom platforms
313  * @update_util:	Active mode utilization update callback.
314  *
315  * Core and Atom CPU models have different way to get P State limits. This
316  * structure is used to store those callbacks.
317  */
318 struct pstate_funcs {
319 	int (*get_max)(void);
320 	int (*get_max_physical)(void);
321 	int (*get_min)(void);
322 	int (*get_turbo)(void);
323 	int (*get_scaling)(void);
324 	u64 (*get_val)(struct cpudata*, int pstate);
325 	void (*get_vid)(struct cpudata *);
326 	void (*update_util)(struct update_util_data *data, u64 time,
327 			    unsigned int flags);
328 };
329 
330 static struct pstate_funcs pstate_funcs __read_mostly;
331 static struct pstate_adjust_policy pid_params __read_mostly = {
332 	.sample_rate_ms = 10,
333 	.sample_rate_ns = 10 * NSEC_PER_MSEC,
334 	.deadband = 0,
335 	.setpoint = 97,
336 	.p_gain_pct = 20,
337 	.d_gain_pct = 0,
338 	.i_gain_pct = 0,
339 };
340 
341 static int hwp_active __read_mostly;
342 static bool per_cpu_limits __read_mostly;
343 
344 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
345 
346 #ifdef CONFIG_ACPI
347 static bool acpi_ppc;
348 #endif
349 
350 static struct global_params global;
351 
352 static DEFINE_MUTEX(intel_pstate_driver_lock);
353 static DEFINE_MUTEX(intel_pstate_limits_lock);
354 
355 #ifdef CONFIG_ACPI
356 
357 static bool intel_pstate_get_ppc_enable_status(void)
358 {
359 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
360 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
361 		return true;
362 
363 	return acpi_ppc;
364 }
365 
366 #ifdef CONFIG_ACPI_CPPC_LIB
367 
368 /* The work item is needed to avoid CPU hotplug locking issues */
369 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
370 {
371 	sched_set_itmt_support();
372 }
373 
374 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
375 
376 static void intel_pstate_set_itmt_prio(int cpu)
377 {
378 	struct cppc_perf_caps cppc_perf;
379 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
380 	int ret;
381 
382 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
383 	if (ret)
384 		return;
385 
386 	/*
387 	 * The priorities can be set regardless of whether or not
388 	 * sched_set_itmt_support(true) has been called and it is valid to
389 	 * update them at any time after it has been called.
390 	 */
391 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
392 
393 	if (max_highest_perf <= min_highest_perf) {
394 		if (cppc_perf.highest_perf > max_highest_perf)
395 			max_highest_perf = cppc_perf.highest_perf;
396 
397 		if (cppc_perf.highest_perf < min_highest_perf)
398 			min_highest_perf = cppc_perf.highest_perf;
399 
400 		if (max_highest_perf > min_highest_perf) {
401 			/*
402 			 * This code can be run during CPU online under the
403 			 * CPU hotplug locks, so sched_set_itmt_support()
404 			 * cannot be called from here.  Queue up a work item
405 			 * to invoke it.
406 			 */
407 			schedule_work(&sched_itmt_work);
408 		}
409 	}
410 }
411 #else
412 static void intel_pstate_set_itmt_prio(int cpu)
413 {
414 }
415 #endif
416 
417 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
418 {
419 	struct cpudata *cpu;
420 	int ret;
421 	int i;
422 
423 	if (hwp_active) {
424 		intel_pstate_set_itmt_prio(policy->cpu);
425 		return;
426 	}
427 
428 	if (!intel_pstate_get_ppc_enable_status())
429 		return;
430 
431 	cpu = all_cpu_data[policy->cpu];
432 
433 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
434 						  policy->cpu);
435 	if (ret)
436 		return;
437 
438 	/*
439 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
440 	 * guarantee that the states returned by it map to the states in our
441 	 * list directly.
442 	 */
443 	if (cpu->acpi_perf_data.control_register.space_id !=
444 						ACPI_ADR_SPACE_FIXED_HARDWARE)
445 		goto err;
446 
447 	/*
448 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
449 	 * usual without taking _PSS into account
450 	 */
451 	if (cpu->acpi_perf_data.state_count < 2)
452 		goto err;
453 
454 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
455 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
456 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
457 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
458 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
459 			 (u32) cpu->acpi_perf_data.states[i].power,
460 			 (u32) cpu->acpi_perf_data.states[i].control);
461 	}
462 
463 	/*
464 	 * The _PSS table doesn't contain whole turbo frequency range.
465 	 * This just contains +1 MHZ above the max non turbo frequency,
466 	 * with control value corresponding to max turbo ratio. But
467 	 * when cpufreq set policy is called, it will call with this
468 	 * max frequency, which will cause a reduced performance as
469 	 * this driver uses real max turbo frequency as the max
470 	 * frequency. So correct this frequency in _PSS table to
471 	 * correct max turbo frequency based on the turbo state.
472 	 * Also need to convert to MHz as _PSS freq is in MHz.
473 	 */
474 	if (!global.turbo_disabled)
475 		cpu->acpi_perf_data.states[0].core_frequency =
476 					policy->cpuinfo.max_freq / 1000;
477 	cpu->valid_pss_table = true;
478 	pr_debug("_PPC limits will be enforced\n");
479 
480 	return;
481 
482  err:
483 	cpu->valid_pss_table = false;
484 	acpi_processor_unregister_performance(policy->cpu);
485 }
486 
487 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
488 {
489 	struct cpudata *cpu;
490 
491 	cpu = all_cpu_data[policy->cpu];
492 	if (!cpu->valid_pss_table)
493 		return;
494 
495 	acpi_processor_unregister_performance(policy->cpu);
496 }
497 #else
498 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
499 {
500 }
501 
502 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
503 {
504 }
505 #endif
506 
507 static signed int pid_calc(struct _pid *pid, int32_t busy)
508 {
509 	signed int result;
510 	int32_t pterm, dterm, fp_error;
511 	int32_t integral_limit;
512 
513 	fp_error = pid->setpoint - busy;
514 
515 	if (abs(fp_error) <= pid->deadband)
516 		return 0;
517 
518 	pterm = mul_fp(pid->p_gain, fp_error);
519 
520 	pid->integral += fp_error;
521 
522 	/*
523 	 * We limit the integral here so that it will never
524 	 * get higher than 30.  This prevents it from becoming
525 	 * too large an input over long periods of time and allows
526 	 * it to get factored out sooner.
527 	 *
528 	 * The value of 30 was chosen through experimentation.
529 	 */
530 	integral_limit = int_tofp(30);
531 	if (pid->integral > integral_limit)
532 		pid->integral = integral_limit;
533 	if (pid->integral < -integral_limit)
534 		pid->integral = -integral_limit;
535 
536 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
537 	pid->last_err = fp_error;
538 
539 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
540 	result = result + (1 << (FRAC_BITS-1));
541 	return (signed int)fp_toint(result);
542 }
543 
544 static inline void intel_pstate_pid_reset(struct cpudata *cpu)
545 {
546 	struct _pid *pid = &cpu->pid;
547 
548 	pid->p_gain = percent_fp(pid_params.p_gain_pct);
549 	pid->d_gain = percent_fp(pid_params.d_gain_pct);
550 	pid->i_gain = percent_fp(pid_params.i_gain_pct);
551 	pid->setpoint = int_tofp(pid_params.setpoint);
552 	pid->last_err  = pid->setpoint - int_tofp(100);
553 	pid->deadband  = int_tofp(pid_params.deadband);
554 	pid->integral  = 0;
555 }
556 
557 static inline void update_turbo_state(void)
558 {
559 	u64 misc_en;
560 	struct cpudata *cpu;
561 
562 	cpu = all_cpu_data[0];
563 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
564 	global.turbo_disabled =
565 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
566 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
567 }
568 
569 static int min_perf_pct_min(void)
570 {
571 	struct cpudata *cpu = all_cpu_data[0];
572 	int turbo_pstate = cpu->pstate.turbo_pstate;
573 
574 	return turbo_pstate ?
575 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
576 }
577 
578 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
579 {
580 	u64 epb;
581 	int ret;
582 
583 	if (!static_cpu_has(X86_FEATURE_EPB))
584 		return -ENXIO;
585 
586 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
587 	if (ret)
588 		return (s16)ret;
589 
590 	return (s16)(epb & 0x0f);
591 }
592 
593 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
594 {
595 	s16 epp;
596 
597 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
598 		/*
599 		 * When hwp_req_data is 0, means that caller didn't read
600 		 * MSR_HWP_REQUEST, so need to read and get EPP.
601 		 */
602 		if (!hwp_req_data) {
603 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
604 					    &hwp_req_data);
605 			if (epp)
606 				return epp;
607 		}
608 		epp = (hwp_req_data >> 24) & 0xff;
609 	} else {
610 		/* When there is no EPP present, HWP uses EPB settings */
611 		epp = intel_pstate_get_epb(cpu_data);
612 	}
613 
614 	return epp;
615 }
616 
617 static int intel_pstate_set_epb(int cpu, s16 pref)
618 {
619 	u64 epb;
620 	int ret;
621 
622 	if (!static_cpu_has(X86_FEATURE_EPB))
623 		return -ENXIO;
624 
625 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
626 	if (ret)
627 		return ret;
628 
629 	epb = (epb & ~0x0f) | pref;
630 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
631 
632 	return 0;
633 }
634 
635 /*
636  * EPP/EPB display strings corresponding to EPP index in the
637  * energy_perf_strings[]
638  *	index		String
639  *-------------------------------------
640  *	0		default
641  *	1		performance
642  *	2		balance_performance
643  *	3		balance_power
644  *	4		power
645  */
646 static const char * const energy_perf_strings[] = {
647 	"default",
648 	"performance",
649 	"balance_performance",
650 	"balance_power",
651 	"power",
652 	NULL
653 };
654 static const unsigned int epp_values[] = {
655 	HWP_EPP_PERFORMANCE,
656 	HWP_EPP_BALANCE_PERFORMANCE,
657 	HWP_EPP_BALANCE_POWERSAVE,
658 	HWP_EPP_POWERSAVE
659 };
660 
661 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
662 {
663 	s16 epp;
664 	int index = -EINVAL;
665 
666 	epp = intel_pstate_get_epp(cpu_data, 0);
667 	if (epp < 0)
668 		return epp;
669 
670 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
671 		if (epp == HWP_EPP_PERFORMANCE)
672 			return 1;
673 		if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
674 			return 2;
675 		if (epp <= HWP_EPP_BALANCE_POWERSAVE)
676 			return 3;
677 		else
678 			return 4;
679 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
680 		/*
681 		 * Range:
682 		 *	0x00-0x03	:	Performance
683 		 *	0x04-0x07	:	Balance performance
684 		 *	0x08-0x0B	:	Balance power
685 		 *	0x0C-0x0F	:	Power
686 		 * The EPB is a 4 bit value, but our ranges restrict the
687 		 * value which can be set. Here only using top two bits
688 		 * effectively.
689 		 */
690 		index = (epp >> 2) + 1;
691 	}
692 
693 	return index;
694 }
695 
696 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
697 					      int pref_index)
698 {
699 	int epp = -EINVAL;
700 	int ret;
701 
702 	if (!pref_index)
703 		epp = cpu_data->epp_default;
704 
705 	mutex_lock(&intel_pstate_limits_lock);
706 
707 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
708 		u64 value;
709 
710 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
711 		if (ret)
712 			goto return_pref;
713 
714 		value &= ~GENMASK_ULL(31, 24);
715 
716 		if (epp == -EINVAL)
717 			epp = epp_values[pref_index - 1];
718 
719 		value |= (u64)epp << 24;
720 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
721 	} else {
722 		if (epp == -EINVAL)
723 			epp = (pref_index - 1) << 2;
724 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
725 	}
726 return_pref:
727 	mutex_unlock(&intel_pstate_limits_lock);
728 
729 	return ret;
730 }
731 
732 static ssize_t show_energy_performance_available_preferences(
733 				struct cpufreq_policy *policy, char *buf)
734 {
735 	int i = 0;
736 	int ret = 0;
737 
738 	while (energy_perf_strings[i] != NULL)
739 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
740 
741 	ret += sprintf(&buf[ret], "\n");
742 
743 	return ret;
744 }
745 
746 cpufreq_freq_attr_ro(energy_performance_available_preferences);
747 
748 static ssize_t store_energy_performance_preference(
749 		struct cpufreq_policy *policy, const char *buf, size_t count)
750 {
751 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
752 	char str_preference[21];
753 	int ret, i = 0;
754 
755 	ret = sscanf(buf, "%20s", str_preference);
756 	if (ret != 1)
757 		return -EINVAL;
758 
759 	while (energy_perf_strings[i] != NULL) {
760 		if (!strcmp(str_preference, energy_perf_strings[i])) {
761 			intel_pstate_set_energy_pref_index(cpu_data, i);
762 			return count;
763 		}
764 		++i;
765 	}
766 
767 	return -EINVAL;
768 }
769 
770 static ssize_t show_energy_performance_preference(
771 				struct cpufreq_policy *policy, char *buf)
772 {
773 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
774 	int preference;
775 
776 	preference = intel_pstate_get_energy_pref_index(cpu_data);
777 	if (preference < 0)
778 		return preference;
779 
780 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
781 }
782 
783 cpufreq_freq_attr_rw(energy_performance_preference);
784 
785 static struct freq_attr *hwp_cpufreq_attrs[] = {
786 	&energy_performance_preference,
787 	&energy_performance_available_preferences,
788 	NULL,
789 };
790 
791 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
792 				     int *current_max)
793 {
794 	u64 cap;
795 
796 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
797 	if (global.no_turbo)
798 		*current_max = HWP_GUARANTEED_PERF(cap);
799 	else
800 		*current_max = HWP_HIGHEST_PERF(cap);
801 
802 	*phy_max = HWP_HIGHEST_PERF(cap);
803 }
804 
805 static void intel_pstate_hwp_set(unsigned int cpu)
806 {
807 	struct cpudata *cpu_data = all_cpu_data[cpu];
808 	int max, min;
809 	u64 value;
810 	s16 epp;
811 
812 	max = cpu_data->max_perf_ratio;
813 	min = cpu_data->min_perf_ratio;
814 
815 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
816 		min = max;
817 
818 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
819 
820 	value &= ~HWP_MIN_PERF(~0L);
821 	value |= HWP_MIN_PERF(min);
822 
823 	value &= ~HWP_MAX_PERF(~0L);
824 	value |= HWP_MAX_PERF(max);
825 
826 	if (cpu_data->epp_policy == cpu_data->policy)
827 		goto skip_epp;
828 
829 	cpu_data->epp_policy = cpu_data->policy;
830 
831 	if (cpu_data->epp_saved >= 0) {
832 		epp = cpu_data->epp_saved;
833 		cpu_data->epp_saved = -EINVAL;
834 		goto update_epp;
835 	}
836 
837 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
838 		epp = intel_pstate_get_epp(cpu_data, value);
839 		cpu_data->epp_powersave = epp;
840 		/* If EPP read was failed, then don't try to write */
841 		if (epp < 0)
842 			goto skip_epp;
843 
844 		epp = 0;
845 	} else {
846 		/* skip setting EPP, when saved value is invalid */
847 		if (cpu_data->epp_powersave < 0)
848 			goto skip_epp;
849 
850 		/*
851 		 * No need to restore EPP when it is not zero. This
852 		 * means:
853 		 *  - Policy is not changed
854 		 *  - user has manually changed
855 		 *  - Error reading EPB
856 		 */
857 		epp = intel_pstate_get_epp(cpu_data, value);
858 		if (epp)
859 			goto skip_epp;
860 
861 		epp = cpu_data->epp_powersave;
862 	}
863 update_epp:
864 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
865 		value &= ~GENMASK_ULL(31, 24);
866 		value |= (u64)epp << 24;
867 	} else {
868 		intel_pstate_set_epb(cpu, epp);
869 	}
870 skip_epp:
871 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
872 }
873 
874 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
875 {
876 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
877 
878 	if (!hwp_active)
879 		return 0;
880 
881 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
882 
883 	return 0;
884 }
885 
886 static int intel_pstate_resume(struct cpufreq_policy *policy)
887 {
888 	if (!hwp_active)
889 		return 0;
890 
891 	mutex_lock(&intel_pstate_limits_lock);
892 
893 	all_cpu_data[policy->cpu]->epp_policy = 0;
894 	intel_pstate_hwp_set(policy->cpu);
895 
896 	mutex_unlock(&intel_pstate_limits_lock);
897 
898 	return 0;
899 }
900 
901 static void intel_pstate_update_policies(void)
902 {
903 	int cpu;
904 
905 	for_each_possible_cpu(cpu)
906 		cpufreq_update_policy(cpu);
907 }
908 
909 /************************** debugfs begin ************************/
910 static int pid_param_set(void *data, u64 val)
911 {
912 	unsigned int cpu;
913 
914 	*(u32 *)data = val;
915 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
916 	for_each_possible_cpu(cpu)
917 		if (all_cpu_data[cpu])
918 			intel_pstate_pid_reset(all_cpu_data[cpu]);
919 
920 	return 0;
921 }
922 
923 static int pid_param_get(void *data, u64 *val)
924 {
925 	*val = *(u32 *)data;
926 	return 0;
927 }
928 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
929 
930 static struct dentry *debugfs_parent;
931 
932 struct pid_param {
933 	char *name;
934 	void *value;
935 	struct dentry *dentry;
936 };
937 
938 static struct pid_param pid_files[] = {
939 	{"sample_rate_ms", &pid_params.sample_rate_ms, },
940 	{"d_gain_pct", &pid_params.d_gain_pct, },
941 	{"i_gain_pct", &pid_params.i_gain_pct, },
942 	{"deadband", &pid_params.deadband, },
943 	{"setpoint", &pid_params.setpoint, },
944 	{"p_gain_pct", &pid_params.p_gain_pct, },
945 	{NULL, NULL, }
946 };
947 
948 static void intel_pstate_debug_expose_params(void)
949 {
950 	int i;
951 
952 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
953 	if (IS_ERR_OR_NULL(debugfs_parent))
954 		return;
955 
956 	for (i = 0; pid_files[i].name; i++) {
957 		struct dentry *dentry;
958 
959 		dentry = debugfs_create_file(pid_files[i].name, 0660,
960 					     debugfs_parent, pid_files[i].value,
961 					     &fops_pid_param);
962 		if (!IS_ERR(dentry))
963 			pid_files[i].dentry = dentry;
964 	}
965 }
966 
967 static void intel_pstate_debug_hide_params(void)
968 {
969 	int i;
970 
971 	if (IS_ERR_OR_NULL(debugfs_parent))
972 		return;
973 
974 	for (i = 0; pid_files[i].name; i++) {
975 		debugfs_remove(pid_files[i].dentry);
976 		pid_files[i].dentry = NULL;
977 	}
978 
979 	debugfs_remove(debugfs_parent);
980 	debugfs_parent = NULL;
981 }
982 
983 /************************** debugfs end ************************/
984 
985 /************************** sysfs begin ************************/
986 #define show_one(file_name, object)					\
987 	static ssize_t show_##file_name					\
988 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
989 	{								\
990 		return sprintf(buf, "%u\n", global.object);		\
991 	}
992 
993 static ssize_t intel_pstate_show_status(char *buf);
994 static int intel_pstate_update_status(const char *buf, size_t size);
995 
996 static ssize_t show_status(struct kobject *kobj,
997 			   struct attribute *attr, char *buf)
998 {
999 	ssize_t ret;
1000 
1001 	mutex_lock(&intel_pstate_driver_lock);
1002 	ret = intel_pstate_show_status(buf);
1003 	mutex_unlock(&intel_pstate_driver_lock);
1004 
1005 	return ret;
1006 }
1007 
1008 static ssize_t store_status(struct kobject *a, struct attribute *b,
1009 			    const char *buf, size_t count)
1010 {
1011 	char *p = memchr(buf, '\n', count);
1012 	int ret;
1013 
1014 	mutex_lock(&intel_pstate_driver_lock);
1015 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1016 	mutex_unlock(&intel_pstate_driver_lock);
1017 
1018 	return ret < 0 ? ret : count;
1019 }
1020 
1021 static ssize_t show_turbo_pct(struct kobject *kobj,
1022 				struct attribute *attr, char *buf)
1023 {
1024 	struct cpudata *cpu;
1025 	int total, no_turbo, turbo_pct;
1026 	uint32_t turbo_fp;
1027 
1028 	mutex_lock(&intel_pstate_driver_lock);
1029 
1030 	if (!intel_pstate_driver) {
1031 		mutex_unlock(&intel_pstate_driver_lock);
1032 		return -EAGAIN;
1033 	}
1034 
1035 	cpu = all_cpu_data[0];
1036 
1037 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1038 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1039 	turbo_fp = div_fp(no_turbo, total);
1040 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1041 
1042 	mutex_unlock(&intel_pstate_driver_lock);
1043 
1044 	return sprintf(buf, "%u\n", turbo_pct);
1045 }
1046 
1047 static ssize_t show_num_pstates(struct kobject *kobj,
1048 				struct attribute *attr, char *buf)
1049 {
1050 	struct cpudata *cpu;
1051 	int total;
1052 
1053 	mutex_lock(&intel_pstate_driver_lock);
1054 
1055 	if (!intel_pstate_driver) {
1056 		mutex_unlock(&intel_pstate_driver_lock);
1057 		return -EAGAIN;
1058 	}
1059 
1060 	cpu = all_cpu_data[0];
1061 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1062 
1063 	mutex_unlock(&intel_pstate_driver_lock);
1064 
1065 	return sprintf(buf, "%u\n", total);
1066 }
1067 
1068 static ssize_t show_no_turbo(struct kobject *kobj,
1069 			     struct attribute *attr, char *buf)
1070 {
1071 	ssize_t ret;
1072 
1073 	mutex_lock(&intel_pstate_driver_lock);
1074 
1075 	if (!intel_pstate_driver) {
1076 		mutex_unlock(&intel_pstate_driver_lock);
1077 		return -EAGAIN;
1078 	}
1079 
1080 	update_turbo_state();
1081 	if (global.turbo_disabled)
1082 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1083 	else
1084 		ret = sprintf(buf, "%u\n", global.no_turbo);
1085 
1086 	mutex_unlock(&intel_pstate_driver_lock);
1087 
1088 	return ret;
1089 }
1090 
1091 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1092 			      const char *buf, size_t count)
1093 {
1094 	unsigned int input;
1095 	int ret;
1096 
1097 	ret = sscanf(buf, "%u", &input);
1098 	if (ret != 1)
1099 		return -EINVAL;
1100 
1101 	mutex_lock(&intel_pstate_driver_lock);
1102 
1103 	if (!intel_pstate_driver) {
1104 		mutex_unlock(&intel_pstate_driver_lock);
1105 		return -EAGAIN;
1106 	}
1107 
1108 	mutex_lock(&intel_pstate_limits_lock);
1109 
1110 	update_turbo_state();
1111 	if (global.turbo_disabled) {
1112 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1113 		mutex_unlock(&intel_pstate_limits_lock);
1114 		mutex_unlock(&intel_pstate_driver_lock);
1115 		return -EPERM;
1116 	}
1117 
1118 	global.no_turbo = clamp_t(int, input, 0, 1);
1119 
1120 	if (global.no_turbo) {
1121 		struct cpudata *cpu = all_cpu_data[0];
1122 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1123 
1124 		/* Squash the global minimum into the permitted range. */
1125 		if (global.min_perf_pct > pct)
1126 			global.min_perf_pct = pct;
1127 	}
1128 
1129 	mutex_unlock(&intel_pstate_limits_lock);
1130 
1131 	intel_pstate_update_policies();
1132 
1133 	mutex_unlock(&intel_pstate_driver_lock);
1134 
1135 	return count;
1136 }
1137 
1138 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1139 				  const char *buf, size_t count)
1140 {
1141 	unsigned int input;
1142 	int ret;
1143 
1144 	ret = sscanf(buf, "%u", &input);
1145 	if (ret != 1)
1146 		return -EINVAL;
1147 
1148 	mutex_lock(&intel_pstate_driver_lock);
1149 
1150 	if (!intel_pstate_driver) {
1151 		mutex_unlock(&intel_pstate_driver_lock);
1152 		return -EAGAIN;
1153 	}
1154 
1155 	mutex_lock(&intel_pstate_limits_lock);
1156 
1157 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1158 
1159 	mutex_unlock(&intel_pstate_limits_lock);
1160 
1161 	intel_pstate_update_policies();
1162 
1163 	mutex_unlock(&intel_pstate_driver_lock);
1164 
1165 	return count;
1166 }
1167 
1168 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1169 				  const char *buf, size_t count)
1170 {
1171 	unsigned int input;
1172 	int ret;
1173 
1174 	ret = sscanf(buf, "%u", &input);
1175 	if (ret != 1)
1176 		return -EINVAL;
1177 
1178 	mutex_lock(&intel_pstate_driver_lock);
1179 
1180 	if (!intel_pstate_driver) {
1181 		mutex_unlock(&intel_pstate_driver_lock);
1182 		return -EAGAIN;
1183 	}
1184 
1185 	mutex_lock(&intel_pstate_limits_lock);
1186 
1187 	global.min_perf_pct = clamp_t(int, input,
1188 				      min_perf_pct_min(), global.max_perf_pct);
1189 
1190 	mutex_unlock(&intel_pstate_limits_lock);
1191 
1192 	intel_pstate_update_policies();
1193 
1194 	mutex_unlock(&intel_pstate_driver_lock);
1195 
1196 	return count;
1197 }
1198 
1199 show_one(max_perf_pct, max_perf_pct);
1200 show_one(min_perf_pct, min_perf_pct);
1201 
1202 define_one_global_rw(status);
1203 define_one_global_rw(no_turbo);
1204 define_one_global_rw(max_perf_pct);
1205 define_one_global_rw(min_perf_pct);
1206 define_one_global_ro(turbo_pct);
1207 define_one_global_ro(num_pstates);
1208 
1209 static struct attribute *intel_pstate_attributes[] = {
1210 	&status.attr,
1211 	&no_turbo.attr,
1212 	&turbo_pct.attr,
1213 	&num_pstates.attr,
1214 	NULL
1215 };
1216 
1217 static const struct attribute_group intel_pstate_attr_group = {
1218 	.attrs = intel_pstate_attributes,
1219 };
1220 
1221 static void __init intel_pstate_sysfs_expose_params(void)
1222 {
1223 	struct kobject *intel_pstate_kobject;
1224 	int rc;
1225 
1226 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1227 						&cpu_subsys.dev_root->kobj);
1228 	if (WARN_ON(!intel_pstate_kobject))
1229 		return;
1230 
1231 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1232 	if (WARN_ON(rc))
1233 		return;
1234 
1235 	/*
1236 	 * If per cpu limits are enforced there are no global limits, so
1237 	 * return without creating max/min_perf_pct attributes
1238 	 */
1239 	if (per_cpu_limits)
1240 		return;
1241 
1242 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1243 	WARN_ON(rc);
1244 
1245 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1246 	WARN_ON(rc);
1247 
1248 }
1249 /************************** sysfs end ************************/
1250 
1251 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1252 {
1253 	/* First disable HWP notification interrupt as we don't process them */
1254 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1255 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1256 
1257 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1258 	cpudata->epp_policy = 0;
1259 	if (cpudata->epp_default == -EINVAL)
1260 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1261 }
1262 
1263 #define MSR_IA32_POWER_CTL_BIT_EE	19
1264 
1265 /* Disable energy efficiency optimization */
1266 static void intel_pstate_disable_ee(int cpu)
1267 {
1268 	u64 power_ctl;
1269 	int ret;
1270 
1271 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1272 	if (ret)
1273 		return;
1274 
1275 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1276 		pr_info("Disabling energy efficiency optimization\n");
1277 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1278 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1279 	}
1280 }
1281 
1282 static int atom_get_min_pstate(void)
1283 {
1284 	u64 value;
1285 
1286 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1287 	return (value >> 8) & 0x7F;
1288 }
1289 
1290 static int atom_get_max_pstate(void)
1291 {
1292 	u64 value;
1293 
1294 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1295 	return (value >> 16) & 0x7F;
1296 }
1297 
1298 static int atom_get_turbo_pstate(void)
1299 {
1300 	u64 value;
1301 
1302 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1303 	return value & 0x7F;
1304 }
1305 
1306 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1307 {
1308 	u64 val;
1309 	int32_t vid_fp;
1310 	u32 vid;
1311 
1312 	val = (u64)pstate << 8;
1313 	if (global.no_turbo && !global.turbo_disabled)
1314 		val |= (u64)1 << 32;
1315 
1316 	vid_fp = cpudata->vid.min + mul_fp(
1317 		int_tofp(pstate - cpudata->pstate.min_pstate),
1318 		cpudata->vid.ratio);
1319 
1320 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1321 	vid = ceiling_fp(vid_fp);
1322 
1323 	if (pstate > cpudata->pstate.max_pstate)
1324 		vid = cpudata->vid.turbo;
1325 
1326 	return val | vid;
1327 }
1328 
1329 static int silvermont_get_scaling(void)
1330 {
1331 	u64 value;
1332 	int i;
1333 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1334 	static int silvermont_freq_table[] = {
1335 		83300, 100000, 133300, 116700, 80000};
1336 
1337 	rdmsrl(MSR_FSB_FREQ, value);
1338 	i = value & 0x7;
1339 	WARN_ON(i > 4);
1340 
1341 	return silvermont_freq_table[i];
1342 }
1343 
1344 static int airmont_get_scaling(void)
1345 {
1346 	u64 value;
1347 	int i;
1348 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1349 	static int airmont_freq_table[] = {
1350 		83300, 100000, 133300, 116700, 80000,
1351 		93300, 90000, 88900, 87500};
1352 
1353 	rdmsrl(MSR_FSB_FREQ, value);
1354 	i = value & 0xF;
1355 	WARN_ON(i > 8);
1356 
1357 	return airmont_freq_table[i];
1358 }
1359 
1360 static void atom_get_vid(struct cpudata *cpudata)
1361 {
1362 	u64 value;
1363 
1364 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1365 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1366 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1367 	cpudata->vid.ratio = div_fp(
1368 		cpudata->vid.max - cpudata->vid.min,
1369 		int_tofp(cpudata->pstate.max_pstate -
1370 			cpudata->pstate.min_pstate));
1371 
1372 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1373 	cpudata->vid.turbo = value & 0x7f;
1374 }
1375 
1376 static int core_get_min_pstate(void)
1377 {
1378 	u64 value;
1379 
1380 	rdmsrl(MSR_PLATFORM_INFO, value);
1381 	return (value >> 40) & 0xFF;
1382 }
1383 
1384 static int core_get_max_pstate_physical(void)
1385 {
1386 	u64 value;
1387 
1388 	rdmsrl(MSR_PLATFORM_INFO, value);
1389 	return (value >> 8) & 0xFF;
1390 }
1391 
1392 static int core_get_tdp_ratio(u64 plat_info)
1393 {
1394 	/* Check how many TDP levels present */
1395 	if (plat_info & 0x600000000) {
1396 		u64 tdp_ctrl;
1397 		u64 tdp_ratio;
1398 		int tdp_msr;
1399 		int err;
1400 
1401 		/* Get the TDP level (0, 1, 2) to get ratios */
1402 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1403 		if (err)
1404 			return err;
1405 
1406 		/* TDP MSR are continuous starting at 0x648 */
1407 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1408 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1409 		if (err)
1410 			return err;
1411 
1412 		/* For level 1 and 2, bits[23:16] contain the ratio */
1413 		if (tdp_ctrl & 0x03)
1414 			tdp_ratio >>= 16;
1415 
1416 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1417 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1418 
1419 		return (int)tdp_ratio;
1420 	}
1421 
1422 	return -ENXIO;
1423 }
1424 
1425 static int core_get_max_pstate(void)
1426 {
1427 	u64 tar;
1428 	u64 plat_info;
1429 	int max_pstate;
1430 	int tdp_ratio;
1431 	int err;
1432 
1433 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1434 	max_pstate = (plat_info >> 8) & 0xFF;
1435 
1436 	tdp_ratio = core_get_tdp_ratio(plat_info);
1437 	if (tdp_ratio <= 0)
1438 		return max_pstate;
1439 
1440 	if (hwp_active) {
1441 		/* Turbo activation ratio is not used on HWP platforms */
1442 		return tdp_ratio;
1443 	}
1444 
1445 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1446 	if (!err) {
1447 		int tar_levels;
1448 
1449 		/* Do some sanity checking for safety */
1450 		tar_levels = tar & 0xff;
1451 		if (tdp_ratio - 1 == tar_levels) {
1452 			max_pstate = tar_levels;
1453 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1454 		}
1455 	}
1456 
1457 	return max_pstate;
1458 }
1459 
1460 static int core_get_turbo_pstate(void)
1461 {
1462 	u64 value;
1463 	int nont, ret;
1464 
1465 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1466 	nont = core_get_max_pstate();
1467 	ret = (value) & 255;
1468 	if (ret <= nont)
1469 		ret = nont;
1470 	return ret;
1471 }
1472 
1473 static inline int core_get_scaling(void)
1474 {
1475 	return 100000;
1476 }
1477 
1478 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1479 {
1480 	u64 val;
1481 
1482 	val = (u64)pstate << 8;
1483 	if (global.no_turbo && !global.turbo_disabled)
1484 		val |= (u64)1 << 32;
1485 
1486 	return val;
1487 }
1488 
1489 static int knl_get_turbo_pstate(void)
1490 {
1491 	u64 value;
1492 	int nont, ret;
1493 
1494 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1495 	nont = core_get_max_pstate();
1496 	ret = (((value) >> 8) & 0xFF);
1497 	if (ret <= nont)
1498 		ret = nont;
1499 	return ret;
1500 }
1501 
1502 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1503 {
1504 	return global.no_turbo || global.turbo_disabled ?
1505 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1506 }
1507 
1508 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1509 {
1510 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1511 	cpu->pstate.current_pstate = pstate;
1512 	/*
1513 	 * Generally, there is no guarantee that this code will always run on
1514 	 * the CPU being updated, so force the register update to run on the
1515 	 * right CPU.
1516 	 */
1517 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1518 		      pstate_funcs.get_val(cpu, pstate));
1519 }
1520 
1521 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1522 {
1523 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1524 }
1525 
1526 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1527 {
1528 	int pstate;
1529 
1530 	update_turbo_state();
1531 	pstate = intel_pstate_get_base_pstate(cpu);
1532 	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1533 	intel_pstate_set_pstate(cpu, pstate);
1534 }
1535 
1536 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1537 {
1538 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1539 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1540 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1541 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1542 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1543 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1544 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1545 
1546 	if (pstate_funcs.get_vid)
1547 		pstate_funcs.get_vid(cpu);
1548 
1549 	intel_pstate_set_min_pstate(cpu);
1550 }
1551 
1552 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1553 {
1554 	struct sample *sample = &cpu->sample;
1555 
1556 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1557 }
1558 
1559 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1560 {
1561 	u64 aperf, mperf;
1562 	unsigned long flags;
1563 	u64 tsc;
1564 
1565 	local_irq_save(flags);
1566 	rdmsrl(MSR_IA32_APERF, aperf);
1567 	rdmsrl(MSR_IA32_MPERF, mperf);
1568 	tsc = rdtsc();
1569 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1570 		local_irq_restore(flags);
1571 		return false;
1572 	}
1573 	local_irq_restore(flags);
1574 
1575 	cpu->last_sample_time = cpu->sample.time;
1576 	cpu->sample.time = time;
1577 	cpu->sample.aperf = aperf;
1578 	cpu->sample.mperf = mperf;
1579 	cpu->sample.tsc =  tsc;
1580 	cpu->sample.aperf -= cpu->prev_aperf;
1581 	cpu->sample.mperf -= cpu->prev_mperf;
1582 	cpu->sample.tsc -= cpu->prev_tsc;
1583 
1584 	cpu->prev_aperf = aperf;
1585 	cpu->prev_mperf = mperf;
1586 	cpu->prev_tsc = tsc;
1587 	/*
1588 	 * First time this function is invoked in a given cycle, all of the
1589 	 * previous sample data fields are equal to zero or stale and they must
1590 	 * be populated with meaningful numbers for things to work, so assume
1591 	 * that sample.time will always be reset before setting the utilization
1592 	 * update hook and make the caller skip the sample then.
1593 	 */
1594 	if (cpu->last_sample_time) {
1595 		intel_pstate_calc_avg_perf(cpu);
1596 		return true;
1597 	}
1598 	return false;
1599 }
1600 
1601 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1602 {
1603 	return mul_ext_fp(cpu->sample.core_avg_perf,
1604 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1605 }
1606 
1607 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1608 {
1609 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1610 			  cpu->sample.core_avg_perf);
1611 }
1612 
1613 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1614 {
1615 	struct sample *sample = &cpu->sample;
1616 	int32_t busy_frac, boost;
1617 	int target, avg_pstate;
1618 
1619 	busy_frac = div_fp(sample->mperf, sample->tsc);
1620 
1621 	boost = cpu->iowait_boost;
1622 	cpu->iowait_boost >>= 1;
1623 
1624 	if (busy_frac < boost)
1625 		busy_frac = boost;
1626 
1627 	sample->busy_scaled = busy_frac * 100;
1628 
1629 	target = global.no_turbo || global.turbo_disabled ?
1630 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1631 	target += target >> 2;
1632 	target = mul_fp(target, busy_frac);
1633 	if (target < cpu->pstate.min_pstate)
1634 		target = cpu->pstate.min_pstate;
1635 
1636 	/*
1637 	 * If the average P-state during the previous cycle was higher than the
1638 	 * current target, add 50% of the difference to the target to reduce
1639 	 * possible performance oscillations and offset possible performance
1640 	 * loss related to moving the workload from one CPU to another within
1641 	 * a package/module.
1642 	 */
1643 	avg_pstate = get_avg_pstate(cpu);
1644 	if (avg_pstate > target)
1645 		target += (avg_pstate - target) >> 1;
1646 
1647 	return target;
1648 }
1649 
1650 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1651 {
1652 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1653 	u64 duration_ns;
1654 
1655 	/*
1656 	 * perf_scaled is the ratio of the average P-state during the last
1657 	 * sampling period to the P-state requested last time (in percent).
1658 	 *
1659 	 * That measures the system's response to the previous P-state
1660 	 * selection.
1661 	 */
1662 	max_pstate = cpu->pstate.max_pstate_physical;
1663 	current_pstate = cpu->pstate.current_pstate;
1664 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1665 			       div_fp(100 * max_pstate, current_pstate));
1666 
1667 	/*
1668 	 * Since our utilization update callback will not run unless we are
1669 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1670 	 * than our sample interval.  If it is, then we were idle for a long
1671 	 * enough period of time to adjust our performance metric.
1672 	 */
1673 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1674 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1675 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1676 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1677 	} else {
1678 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1679 		if (sample_ratio < int_tofp(1))
1680 			perf_scaled = 0;
1681 	}
1682 
1683 	cpu->sample.busy_scaled = perf_scaled;
1684 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1685 }
1686 
1687 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1688 {
1689 	int max_pstate = intel_pstate_get_base_pstate(cpu);
1690 	int min_pstate;
1691 
1692 	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1693 	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1694 	return clamp_t(int, pstate, min_pstate, max_pstate);
1695 }
1696 
1697 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1698 {
1699 	if (pstate == cpu->pstate.current_pstate)
1700 		return;
1701 
1702 	cpu->pstate.current_pstate = pstate;
1703 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1704 }
1705 
1706 static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1707 {
1708 	int from = cpu->pstate.current_pstate;
1709 	struct sample *sample;
1710 
1711 	update_turbo_state();
1712 
1713 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1714 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1715 	intel_pstate_update_pstate(cpu, target_pstate);
1716 
1717 	sample = &cpu->sample;
1718 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1719 		fp_toint(sample->busy_scaled),
1720 		from,
1721 		cpu->pstate.current_pstate,
1722 		sample->mperf,
1723 		sample->aperf,
1724 		sample->tsc,
1725 		get_avg_frequency(cpu),
1726 		fp_toint(cpu->iowait_boost * 100));
1727 }
1728 
1729 static void intel_pstate_update_util_pid(struct update_util_data *data,
1730 					 u64 time, unsigned int flags)
1731 {
1732 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1733 	u64 delta_ns = time - cpu->sample.time;
1734 
1735 	if ((s64)delta_ns < pid_params.sample_rate_ns)
1736 		return;
1737 
1738 	if (intel_pstate_sample(cpu, time)) {
1739 		int target_pstate;
1740 
1741 		target_pstate = get_target_pstate_use_performance(cpu);
1742 		intel_pstate_adjust_pstate(cpu, target_pstate);
1743 	}
1744 }
1745 
1746 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1747 				     unsigned int flags)
1748 {
1749 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1750 	u64 delta_ns;
1751 
1752 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1753 		cpu->iowait_boost = int_tofp(1);
1754 	} else if (cpu->iowait_boost) {
1755 		/* Clear iowait_boost if the CPU may have been idle. */
1756 		delta_ns = time - cpu->last_update;
1757 		if (delta_ns > TICK_NSEC)
1758 			cpu->iowait_boost = 0;
1759 	}
1760 	cpu->last_update = time;
1761 	delta_ns = time - cpu->sample.time;
1762 	if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
1763 		return;
1764 
1765 	if (intel_pstate_sample(cpu, time)) {
1766 		int target_pstate;
1767 
1768 		target_pstate = get_target_pstate_use_cpu_load(cpu);
1769 		intel_pstate_adjust_pstate(cpu, target_pstate);
1770 	}
1771 }
1772 
1773 static struct pstate_funcs core_funcs = {
1774 	.get_max = core_get_max_pstate,
1775 	.get_max_physical = core_get_max_pstate_physical,
1776 	.get_min = core_get_min_pstate,
1777 	.get_turbo = core_get_turbo_pstate,
1778 	.get_scaling = core_get_scaling,
1779 	.get_val = core_get_val,
1780 	.update_util = intel_pstate_update_util_pid,
1781 };
1782 
1783 static const struct pstate_funcs silvermont_funcs = {
1784 	.get_max = atom_get_max_pstate,
1785 	.get_max_physical = atom_get_max_pstate,
1786 	.get_min = atom_get_min_pstate,
1787 	.get_turbo = atom_get_turbo_pstate,
1788 	.get_val = atom_get_val,
1789 	.get_scaling = silvermont_get_scaling,
1790 	.get_vid = atom_get_vid,
1791 	.update_util = intel_pstate_update_util,
1792 };
1793 
1794 static const struct pstate_funcs airmont_funcs = {
1795 	.get_max = atom_get_max_pstate,
1796 	.get_max_physical = atom_get_max_pstate,
1797 	.get_min = atom_get_min_pstate,
1798 	.get_turbo = atom_get_turbo_pstate,
1799 	.get_val = atom_get_val,
1800 	.get_scaling = airmont_get_scaling,
1801 	.get_vid = atom_get_vid,
1802 	.update_util = intel_pstate_update_util,
1803 };
1804 
1805 static const struct pstate_funcs knl_funcs = {
1806 	.get_max = core_get_max_pstate,
1807 	.get_max_physical = core_get_max_pstate_physical,
1808 	.get_min = core_get_min_pstate,
1809 	.get_turbo = knl_get_turbo_pstate,
1810 	.get_scaling = core_get_scaling,
1811 	.get_val = core_get_val,
1812 	.update_util = intel_pstate_update_util_pid,
1813 };
1814 
1815 static const struct pstate_funcs bxt_funcs = {
1816 	.get_max = core_get_max_pstate,
1817 	.get_max_physical = core_get_max_pstate_physical,
1818 	.get_min = core_get_min_pstate,
1819 	.get_turbo = core_get_turbo_pstate,
1820 	.get_scaling = core_get_scaling,
1821 	.get_val = core_get_val,
1822 	.update_util = intel_pstate_update_util,
1823 };
1824 
1825 #define ICPU(model, policy) \
1826 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1827 			(unsigned long)&policy }
1828 
1829 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1830 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
1831 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1832 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
1833 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1834 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
1835 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
1836 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
1837 	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1838 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
1839 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
1840 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
1841 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1842 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
1843 	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1844 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
1845 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
1846 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
1847 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1848 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_funcs),
1849 	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       bxt_funcs),
1850 	{}
1851 };
1852 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1853 
1854 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1855 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1856 	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1857 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1858 	{}
1859 };
1860 
1861 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1862 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1863 	{}
1864 };
1865 
1866 static bool pid_in_use(void);
1867 
1868 static int intel_pstate_init_cpu(unsigned int cpunum)
1869 {
1870 	struct cpudata *cpu;
1871 
1872 	cpu = all_cpu_data[cpunum];
1873 
1874 	if (!cpu) {
1875 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1876 		if (!cpu)
1877 			return -ENOMEM;
1878 
1879 		all_cpu_data[cpunum] = cpu;
1880 
1881 		cpu->epp_default = -EINVAL;
1882 		cpu->epp_powersave = -EINVAL;
1883 		cpu->epp_saved = -EINVAL;
1884 	}
1885 
1886 	cpu = all_cpu_data[cpunum];
1887 
1888 	cpu->cpu = cpunum;
1889 
1890 	if (hwp_active) {
1891 		const struct x86_cpu_id *id;
1892 
1893 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1894 		if (id)
1895 			intel_pstate_disable_ee(cpunum);
1896 
1897 		intel_pstate_hwp_enable(cpu);
1898 	} else if (pid_in_use()) {
1899 		intel_pstate_pid_reset(cpu);
1900 	}
1901 
1902 	intel_pstate_get_cpu_pstates(cpu);
1903 
1904 	pr_debug("controlling: cpu %d\n", cpunum);
1905 
1906 	return 0;
1907 }
1908 
1909 static unsigned int intel_pstate_get(unsigned int cpu_num)
1910 {
1911 	struct cpudata *cpu = all_cpu_data[cpu_num];
1912 
1913 	return cpu ? get_avg_frequency(cpu) : 0;
1914 }
1915 
1916 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1917 {
1918 	struct cpudata *cpu = all_cpu_data[cpu_num];
1919 
1920 	if (hwp_active)
1921 		return;
1922 
1923 	if (cpu->update_util_set)
1924 		return;
1925 
1926 	/* Prevent intel_pstate_update_util() from using stale data. */
1927 	cpu->sample.time = 0;
1928 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1929 				     pstate_funcs.update_util);
1930 	cpu->update_util_set = true;
1931 }
1932 
1933 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1934 {
1935 	struct cpudata *cpu_data = all_cpu_data[cpu];
1936 
1937 	if (!cpu_data->update_util_set)
1938 		return;
1939 
1940 	cpufreq_remove_update_util_hook(cpu);
1941 	cpu_data->update_util_set = false;
1942 	synchronize_sched();
1943 }
1944 
1945 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1946 {
1947 	return global.turbo_disabled || global.no_turbo ?
1948 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1949 }
1950 
1951 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1952 					    struct cpudata *cpu)
1953 {
1954 	int max_freq = intel_pstate_get_max_freq(cpu);
1955 	int32_t max_policy_perf, min_policy_perf;
1956 	int max_state, turbo_max;
1957 
1958 	/*
1959 	 * HWP needs some special consideration, because on BDX the
1960 	 * HWP_REQUEST uses abstract value to represent performance
1961 	 * rather than pure ratios.
1962 	 */
1963 	if (hwp_active) {
1964 		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1965 	} else {
1966 		max_state = intel_pstate_get_base_pstate(cpu);
1967 		turbo_max = cpu->pstate.turbo_pstate;
1968 	}
1969 
1970 	max_policy_perf = max_state * policy->max / max_freq;
1971 	if (policy->max == policy->min) {
1972 		min_policy_perf = max_policy_perf;
1973 	} else {
1974 		min_policy_perf = max_state * policy->min / max_freq;
1975 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1976 					  0, max_policy_perf);
1977 	}
1978 
1979 	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1980 		 policy->cpu, max_state,
1981 		 min_policy_perf, max_policy_perf);
1982 
1983 	/* Normalize user input to [min_perf, max_perf] */
1984 	if (per_cpu_limits) {
1985 		cpu->min_perf_ratio = min_policy_perf;
1986 		cpu->max_perf_ratio = max_policy_perf;
1987 	} else {
1988 		int32_t global_min, global_max;
1989 
1990 		/* Global limits are in percent of the maximum turbo P-state. */
1991 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
1992 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
1993 		global_min = clamp_t(int32_t, global_min, 0, global_max);
1994 
1995 		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
1996 			 global_min, global_max);
1997 
1998 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
1999 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2000 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2001 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2002 
2003 		/* Make sure min_perf <= max_perf */
2004 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2005 					  cpu->max_perf_ratio);
2006 
2007 	}
2008 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2009 		 cpu->max_perf_ratio,
2010 		 cpu->min_perf_ratio);
2011 }
2012 
2013 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2014 {
2015 	struct cpudata *cpu;
2016 
2017 	if (!policy->cpuinfo.max_freq)
2018 		return -ENODEV;
2019 
2020 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2021 		 policy->cpuinfo.max_freq, policy->max);
2022 
2023 	cpu = all_cpu_data[policy->cpu];
2024 	cpu->policy = policy->policy;
2025 
2026 	mutex_lock(&intel_pstate_limits_lock);
2027 
2028 	intel_pstate_update_perf_limits(policy, cpu);
2029 
2030 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2031 		/*
2032 		 * NOHZ_FULL CPUs need this as the governor callback may not
2033 		 * be invoked on them.
2034 		 */
2035 		intel_pstate_clear_update_util_hook(policy->cpu);
2036 		intel_pstate_max_within_limits(cpu);
2037 	} else {
2038 		intel_pstate_set_update_util_hook(policy->cpu);
2039 	}
2040 
2041 	if (hwp_active)
2042 		intel_pstate_hwp_set(policy->cpu);
2043 
2044 	mutex_unlock(&intel_pstate_limits_lock);
2045 
2046 	return 0;
2047 }
2048 
2049 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2050 					 struct cpudata *cpu)
2051 {
2052 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2053 	    policy->max < policy->cpuinfo.max_freq &&
2054 	    policy->max > cpu->pstate.max_freq) {
2055 		pr_debug("policy->max > max non turbo frequency\n");
2056 		policy->max = policy->cpuinfo.max_freq;
2057 	}
2058 }
2059 
2060 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2061 {
2062 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2063 
2064 	update_turbo_state();
2065 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2066 				     intel_pstate_get_max_freq(cpu));
2067 
2068 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2069 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2070 		return -EINVAL;
2071 
2072 	intel_pstate_adjust_policy_max(policy, cpu);
2073 
2074 	return 0;
2075 }
2076 
2077 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2078 {
2079 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2080 }
2081 
2082 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2083 {
2084 	pr_debug("CPU %d exiting\n", policy->cpu);
2085 
2086 	intel_pstate_clear_update_util_hook(policy->cpu);
2087 	if (hwp_active)
2088 		intel_pstate_hwp_save_state(policy);
2089 	else
2090 		intel_cpufreq_stop_cpu(policy);
2091 }
2092 
2093 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2094 {
2095 	intel_pstate_exit_perf_limits(policy);
2096 
2097 	policy->fast_switch_possible = false;
2098 
2099 	return 0;
2100 }
2101 
2102 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2103 {
2104 	struct cpudata *cpu;
2105 	int rc;
2106 
2107 	rc = intel_pstate_init_cpu(policy->cpu);
2108 	if (rc)
2109 		return rc;
2110 
2111 	cpu = all_cpu_data[policy->cpu];
2112 
2113 	cpu->max_perf_ratio = 0xFF;
2114 	cpu->min_perf_ratio = 0;
2115 
2116 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2117 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2118 
2119 	/* cpuinfo and default policy values */
2120 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2121 	update_turbo_state();
2122 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2123 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2124 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2125 
2126 	intel_pstate_init_acpi_perf_limits(policy);
2127 	cpumask_set_cpu(policy->cpu, policy->cpus);
2128 
2129 	policy->fast_switch_possible = true;
2130 
2131 	return 0;
2132 }
2133 
2134 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2135 {
2136 	int ret = __intel_pstate_cpu_init(policy);
2137 
2138 	if (ret)
2139 		return ret;
2140 
2141 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2142 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2143 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2144 	else
2145 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2146 
2147 	return 0;
2148 }
2149 
2150 static struct cpufreq_driver intel_pstate = {
2151 	.flags		= CPUFREQ_CONST_LOOPS,
2152 	.verify		= intel_pstate_verify_policy,
2153 	.setpolicy	= intel_pstate_set_policy,
2154 	.suspend	= intel_pstate_hwp_save_state,
2155 	.resume		= intel_pstate_resume,
2156 	.get		= intel_pstate_get,
2157 	.init		= intel_pstate_cpu_init,
2158 	.exit		= intel_pstate_cpu_exit,
2159 	.stop_cpu	= intel_pstate_stop_cpu,
2160 	.name		= "intel_pstate",
2161 };
2162 
2163 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2164 {
2165 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2166 
2167 	update_turbo_state();
2168 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2169 				     intel_pstate_get_max_freq(cpu));
2170 
2171 	intel_pstate_adjust_policy_max(policy, cpu);
2172 
2173 	intel_pstate_update_perf_limits(policy, cpu);
2174 
2175 	return 0;
2176 }
2177 
2178 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2179 				unsigned int target_freq,
2180 				unsigned int relation)
2181 {
2182 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2183 	struct cpufreq_freqs freqs;
2184 	int target_pstate;
2185 
2186 	update_turbo_state();
2187 
2188 	freqs.old = policy->cur;
2189 	freqs.new = target_freq;
2190 
2191 	cpufreq_freq_transition_begin(policy, &freqs);
2192 	switch (relation) {
2193 	case CPUFREQ_RELATION_L:
2194 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2195 		break;
2196 	case CPUFREQ_RELATION_H:
2197 		target_pstate = freqs.new / cpu->pstate.scaling;
2198 		break;
2199 	default:
2200 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2201 		break;
2202 	}
2203 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2204 	if (target_pstate != cpu->pstate.current_pstate) {
2205 		cpu->pstate.current_pstate = target_pstate;
2206 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2207 			      pstate_funcs.get_val(cpu, target_pstate));
2208 	}
2209 	freqs.new = target_pstate * cpu->pstate.scaling;
2210 	cpufreq_freq_transition_end(policy, &freqs, false);
2211 
2212 	return 0;
2213 }
2214 
2215 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2216 					      unsigned int target_freq)
2217 {
2218 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2219 	int target_pstate;
2220 
2221 	update_turbo_state();
2222 
2223 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2224 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2225 	intel_pstate_update_pstate(cpu, target_pstate);
2226 	return target_pstate * cpu->pstate.scaling;
2227 }
2228 
2229 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2230 {
2231 	int ret = __intel_pstate_cpu_init(policy);
2232 
2233 	if (ret)
2234 		return ret;
2235 
2236 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2237 	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2238 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2239 	policy->cur = policy->cpuinfo.min_freq;
2240 
2241 	return 0;
2242 }
2243 
2244 static struct cpufreq_driver intel_cpufreq = {
2245 	.flags		= CPUFREQ_CONST_LOOPS,
2246 	.verify		= intel_cpufreq_verify_policy,
2247 	.target		= intel_cpufreq_target,
2248 	.fast_switch	= intel_cpufreq_fast_switch,
2249 	.init		= intel_cpufreq_cpu_init,
2250 	.exit		= intel_pstate_cpu_exit,
2251 	.stop_cpu	= intel_cpufreq_stop_cpu,
2252 	.name		= "intel_cpufreq",
2253 };
2254 
2255 static struct cpufreq_driver *default_driver = &intel_pstate;
2256 
2257 static bool pid_in_use(void)
2258 {
2259 	return intel_pstate_driver == &intel_pstate &&
2260 		pstate_funcs.update_util == intel_pstate_update_util_pid;
2261 }
2262 
2263 static void intel_pstate_driver_cleanup(void)
2264 {
2265 	unsigned int cpu;
2266 
2267 	get_online_cpus();
2268 	for_each_online_cpu(cpu) {
2269 		if (all_cpu_data[cpu]) {
2270 			if (intel_pstate_driver == &intel_pstate)
2271 				intel_pstate_clear_update_util_hook(cpu);
2272 
2273 			kfree(all_cpu_data[cpu]);
2274 			all_cpu_data[cpu] = NULL;
2275 		}
2276 	}
2277 	put_online_cpus();
2278 	intel_pstate_driver = NULL;
2279 }
2280 
2281 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2282 {
2283 	int ret;
2284 
2285 	memset(&global, 0, sizeof(global));
2286 	global.max_perf_pct = 100;
2287 
2288 	intel_pstate_driver = driver;
2289 	ret = cpufreq_register_driver(intel_pstate_driver);
2290 	if (ret) {
2291 		intel_pstate_driver_cleanup();
2292 		return ret;
2293 	}
2294 
2295 	global.min_perf_pct = min_perf_pct_min();
2296 
2297 	if (pid_in_use())
2298 		intel_pstate_debug_expose_params();
2299 
2300 	return 0;
2301 }
2302 
2303 static int intel_pstate_unregister_driver(void)
2304 {
2305 	if (hwp_active)
2306 		return -EBUSY;
2307 
2308 	if (pid_in_use())
2309 		intel_pstate_debug_hide_params();
2310 
2311 	cpufreq_unregister_driver(intel_pstate_driver);
2312 	intel_pstate_driver_cleanup();
2313 
2314 	return 0;
2315 }
2316 
2317 static ssize_t intel_pstate_show_status(char *buf)
2318 {
2319 	if (!intel_pstate_driver)
2320 		return sprintf(buf, "off\n");
2321 
2322 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2323 					"active" : "passive");
2324 }
2325 
2326 static int intel_pstate_update_status(const char *buf, size_t size)
2327 {
2328 	int ret;
2329 
2330 	if (size == 3 && !strncmp(buf, "off", size))
2331 		return intel_pstate_driver ?
2332 			intel_pstate_unregister_driver() : -EINVAL;
2333 
2334 	if (size == 6 && !strncmp(buf, "active", size)) {
2335 		if (intel_pstate_driver) {
2336 			if (intel_pstate_driver == &intel_pstate)
2337 				return 0;
2338 
2339 			ret = intel_pstate_unregister_driver();
2340 			if (ret)
2341 				return ret;
2342 		}
2343 
2344 		return intel_pstate_register_driver(&intel_pstate);
2345 	}
2346 
2347 	if (size == 7 && !strncmp(buf, "passive", size)) {
2348 		if (intel_pstate_driver) {
2349 			if (intel_pstate_driver == &intel_cpufreq)
2350 				return 0;
2351 
2352 			ret = intel_pstate_unregister_driver();
2353 			if (ret)
2354 				return ret;
2355 		}
2356 
2357 		return intel_pstate_register_driver(&intel_cpufreq);
2358 	}
2359 
2360 	return -EINVAL;
2361 }
2362 
2363 static int no_load __initdata;
2364 static int no_hwp __initdata;
2365 static int hwp_only __initdata;
2366 static unsigned int force_load __initdata;
2367 
2368 static int __init intel_pstate_msrs_not_valid(void)
2369 {
2370 	if (!pstate_funcs.get_max() ||
2371 	    !pstate_funcs.get_min() ||
2372 	    !pstate_funcs.get_turbo())
2373 		return -ENODEV;
2374 
2375 	return 0;
2376 }
2377 
2378 #ifdef CONFIG_ACPI
2379 static void intel_pstate_use_acpi_profile(void)
2380 {
2381 	switch (acpi_gbl_FADT.preferred_profile) {
2382 	case PM_MOBILE:
2383 	case PM_TABLET:
2384 	case PM_APPLIANCE_PC:
2385 	case PM_DESKTOP:
2386 	case PM_WORKSTATION:
2387 		pstate_funcs.update_util = intel_pstate_update_util;
2388 	}
2389 }
2390 #else
2391 static void intel_pstate_use_acpi_profile(void)
2392 {
2393 }
2394 #endif
2395 
2396 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2397 {
2398 	pstate_funcs.get_max   = funcs->get_max;
2399 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2400 	pstate_funcs.get_min   = funcs->get_min;
2401 	pstate_funcs.get_turbo = funcs->get_turbo;
2402 	pstate_funcs.get_scaling = funcs->get_scaling;
2403 	pstate_funcs.get_val   = funcs->get_val;
2404 	pstate_funcs.get_vid   = funcs->get_vid;
2405 	pstate_funcs.update_util = funcs->update_util;
2406 
2407 	intel_pstate_use_acpi_profile();
2408 }
2409 
2410 #ifdef CONFIG_ACPI
2411 
2412 static bool __init intel_pstate_no_acpi_pss(void)
2413 {
2414 	int i;
2415 
2416 	for_each_possible_cpu(i) {
2417 		acpi_status status;
2418 		union acpi_object *pss;
2419 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2420 		struct acpi_processor *pr = per_cpu(processors, i);
2421 
2422 		if (!pr)
2423 			continue;
2424 
2425 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2426 		if (ACPI_FAILURE(status))
2427 			continue;
2428 
2429 		pss = buffer.pointer;
2430 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2431 			kfree(pss);
2432 			return false;
2433 		}
2434 
2435 		kfree(pss);
2436 	}
2437 
2438 	return true;
2439 }
2440 
2441 static bool __init intel_pstate_has_acpi_ppc(void)
2442 {
2443 	int i;
2444 
2445 	for_each_possible_cpu(i) {
2446 		struct acpi_processor *pr = per_cpu(processors, i);
2447 
2448 		if (!pr)
2449 			continue;
2450 		if (acpi_has_method(pr->handle, "_PPC"))
2451 			return true;
2452 	}
2453 	return false;
2454 }
2455 
2456 enum {
2457 	PSS,
2458 	PPC,
2459 };
2460 
2461 struct hw_vendor_info {
2462 	u16  valid;
2463 	char oem_id[ACPI_OEM_ID_SIZE];
2464 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2465 	int  oem_pwr_table;
2466 };
2467 
2468 /* Hardware vendor-specific info that has its own power management modes */
2469 static struct hw_vendor_info vendor_info[] __initdata = {
2470 	{1, "HP    ", "ProLiant", PSS},
2471 	{1, "ORACLE", "X4-2    ", PPC},
2472 	{1, "ORACLE", "X4-2L   ", PPC},
2473 	{1, "ORACLE", "X4-2B   ", PPC},
2474 	{1, "ORACLE", "X3-2    ", PPC},
2475 	{1, "ORACLE", "X3-2L   ", PPC},
2476 	{1, "ORACLE", "X3-2B   ", PPC},
2477 	{1, "ORACLE", "X4470M2 ", PPC},
2478 	{1, "ORACLE", "X4270M3 ", PPC},
2479 	{1, "ORACLE", "X4270M2 ", PPC},
2480 	{1, "ORACLE", "X4170M2 ", PPC},
2481 	{1, "ORACLE", "X4170 M3", PPC},
2482 	{1, "ORACLE", "X4275 M3", PPC},
2483 	{1, "ORACLE", "X6-2    ", PPC},
2484 	{1, "ORACLE", "Sudbury ", PPC},
2485 	{0, "", ""},
2486 };
2487 
2488 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2489 {
2490 	struct acpi_table_header hdr;
2491 	struct hw_vendor_info *v_info;
2492 	const struct x86_cpu_id *id;
2493 	u64 misc_pwr;
2494 
2495 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2496 	if (id) {
2497 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2498 		if ( misc_pwr & (1 << 8))
2499 			return true;
2500 	}
2501 
2502 	if (acpi_disabled ||
2503 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2504 		return false;
2505 
2506 	for (v_info = vendor_info; v_info->valid; v_info++) {
2507 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2508 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
2509 						ACPI_OEM_TABLE_ID_SIZE))
2510 			switch (v_info->oem_pwr_table) {
2511 			case PSS:
2512 				return intel_pstate_no_acpi_pss();
2513 			case PPC:
2514 				return intel_pstate_has_acpi_ppc() &&
2515 					(!force_load);
2516 			}
2517 	}
2518 
2519 	return false;
2520 }
2521 
2522 static void intel_pstate_request_control_from_smm(void)
2523 {
2524 	/*
2525 	 * It may be unsafe to request P-states control from SMM if _PPC support
2526 	 * has not been enabled.
2527 	 */
2528 	if (acpi_ppc)
2529 		acpi_processor_pstate_control();
2530 }
2531 #else /* CONFIG_ACPI not enabled */
2532 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2533 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2534 static inline void intel_pstate_request_control_from_smm(void) {}
2535 #endif /* CONFIG_ACPI */
2536 
2537 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2538 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2539 	{}
2540 };
2541 
2542 static int __init intel_pstate_init(void)
2543 {
2544 	int rc;
2545 
2546 	if (no_load)
2547 		return -ENODEV;
2548 
2549 	if (x86_match_cpu(hwp_support_ids)) {
2550 		copy_cpu_funcs(&core_funcs);
2551 		if (no_hwp) {
2552 			pstate_funcs.update_util = intel_pstate_update_util;
2553 		} else {
2554 			hwp_active++;
2555 			intel_pstate.attr = hwp_cpufreq_attrs;
2556 			goto hwp_cpu_matched;
2557 		}
2558 	} else {
2559 		const struct x86_cpu_id *id;
2560 
2561 		id = x86_match_cpu(intel_pstate_cpu_ids);
2562 		if (!id)
2563 			return -ENODEV;
2564 
2565 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2566 	}
2567 
2568 	if (intel_pstate_msrs_not_valid())
2569 		return -ENODEV;
2570 
2571 hwp_cpu_matched:
2572 	/*
2573 	 * The Intel pstate driver will be ignored if the platform
2574 	 * firmware has its own power management modes.
2575 	 */
2576 	if (intel_pstate_platform_pwr_mgmt_exists())
2577 		return -ENODEV;
2578 
2579 	if (!hwp_active && hwp_only)
2580 		return -ENOTSUPP;
2581 
2582 	pr_info("Intel P-state driver initializing\n");
2583 
2584 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2585 	if (!all_cpu_data)
2586 		return -ENOMEM;
2587 
2588 	intel_pstate_request_control_from_smm();
2589 
2590 	intel_pstate_sysfs_expose_params();
2591 
2592 	mutex_lock(&intel_pstate_driver_lock);
2593 	rc = intel_pstate_register_driver(default_driver);
2594 	mutex_unlock(&intel_pstate_driver_lock);
2595 	if (rc)
2596 		return rc;
2597 
2598 	if (hwp_active)
2599 		pr_info("HWP enabled\n");
2600 
2601 	return 0;
2602 }
2603 device_initcall(intel_pstate_init);
2604 
2605 static int __init intel_pstate_setup(char *str)
2606 {
2607 	if (!str)
2608 		return -EINVAL;
2609 
2610 	if (!strcmp(str, "disable")) {
2611 		no_load = 1;
2612 	} else if (!strcmp(str, "passive")) {
2613 		pr_info("Passive mode enabled\n");
2614 		default_driver = &intel_cpufreq;
2615 		no_hwp = 1;
2616 	}
2617 	if (!strcmp(str, "no_hwp")) {
2618 		pr_info("HWP disabled\n");
2619 		no_hwp = 1;
2620 	}
2621 	if (!strcmp(str, "force"))
2622 		force_load = 1;
2623 	if (!strcmp(str, "hwp_only"))
2624 		hwp_only = 1;
2625 	if (!strcmp(str, "per_cpu_perf_limits"))
2626 		per_cpu_limits = true;
2627 
2628 #ifdef CONFIG_ACPI
2629 	if (!strcmp(str, "support_acpi_ppc"))
2630 		acpi_ppc = true;
2631 #endif
2632 
2633 	return 0;
2634 }
2635 early_param("intel_pstate", intel_pstate_setup);
2636 
2637 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2638 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2639 MODULE_LICENSE("GPL");
2640