1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define ATOM_RATIOS		0x66a
41 #define ATOM_VIDS		0x66b
42 #define ATOM_TURBO_RATIOS	0x66c
43 #define ATOM_TURBO_VIDS		0x66d
44 
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #endif
48 
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52 
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60 
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 	return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65 
66 static inline int ceiling_fp(int32_t x)
67 {
68 	int mask, ret;
69 
70 	ret = fp_toint(x);
71 	mask = (1 << FRAC_BITS) - 1;
72 	if (x & mask)
73 		ret += 1;
74 	return ret;
75 }
76 
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 	return (x * y) >> EXT_FRAC_BITS;
80 }
81 
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 	return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86 
87 /**
88  * struct sample -	Store performance sample
89  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
90  *			performance during last sample period
91  * @busy_scaled:	Scaled busy value which is used to calculate next
92  *			P state. This can be different than core_avg_perf
93  *			to account for cpu idle period
94  * @aperf:		Difference of actual performance frequency clock count
95  *			read from APERF MSR between last and current sample
96  * @mperf:		Difference of maximum performance frequency clock count
97  *			read from MPERF MSR between last and current sample
98  * @tsc:		Difference of time stamp counter between last and
99  *			current sample
100  * @freq:		Effective frequency calculated from APERF/MPERF
101  * @time:		Current time from scheduler
102  *
103  * This structure is used in the cpudata structure to store performance sample
104  * data for choosing next P State.
105  */
106 struct sample {
107 	int32_t core_avg_perf;
108 	int32_t busy_scaled;
109 	u64 aperf;
110 	u64 mperf;
111 	u64 tsc;
112 	int freq;
113 	u64 time;
114 };
115 
116 /**
117  * struct pstate_data - Store P state data
118  * @current_pstate:	Current requested P state
119  * @min_pstate:		Min P state possible for this platform
120  * @max_pstate:		Max P state possible for this platform
121  * @max_pstate_physical:This is physical Max P state for a processor
122  *			This can be higher than the max_pstate which can
123  *			be limited by platform thermal design power limits
124  * @scaling:		Scaling factor to  convert frequency to cpufreq
125  *			frequency units
126  * @turbo_pstate:	Max Turbo P state possible for this platform
127  *
128  * Stores the per cpu model P state limits and current P state.
129  */
130 struct pstate_data {
131 	int	current_pstate;
132 	int	min_pstate;
133 	int	max_pstate;
134 	int	max_pstate_physical;
135 	int	scaling;
136 	int	turbo_pstate;
137 };
138 
139 /**
140  * struct vid_data -	Stores voltage information data
141  * @min:		VID data for this platform corresponding to
142  *			the lowest P state
143  * @max:		VID data corresponding to the highest P State.
144  * @turbo:		VID data for turbo P state
145  * @ratio:		Ratio of (vid max - vid min) /
146  *			(max P state - Min P State)
147  *
148  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
149  * This data is used in Atom platforms, where in addition to target P state,
150  * the voltage data needs to be specified to select next P State.
151  */
152 struct vid_data {
153 	int min;
154 	int max;
155 	int turbo;
156 	int32_t ratio;
157 };
158 
159 /**
160  * struct _pid -	Stores PID data
161  * @setpoint:		Target set point for busyness or performance
162  * @integral:		Storage for accumulated error values
163  * @p_gain:		PID proportional gain
164  * @i_gain:		PID integral gain
165  * @d_gain:		PID derivative gain
166  * @deadband:		PID deadband
167  * @last_err:		Last error storage for integral part of PID calculation
168  *
169  * Stores PID coefficients and last error for PID controller.
170  */
171 struct _pid {
172 	int setpoint;
173 	int32_t integral;
174 	int32_t p_gain;
175 	int32_t i_gain;
176 	int32_t d_gain;
177 	int deadband;
178 	int32_t last_err;
179 };
180 
181 /**
182  * struct cpudata -	Per CPU instance data storage
183  * @cpu:		CPU number for this instance data
184  * @update_util:	CPUFreq utility callback information
185  * @update_util_set:	CPUFreq utility callback is set
186  * @pstate:		Stores P state limits for this CPU
187  * @vid:		Stores VID limits for this CPU
188  * @pid:		Stores PID parameters for this CPU
189  * @last_sample_time:	Last Sample time
190  * @prev_aperf:		Last APERF value read from APERF MSR
191  * @prev_mperf:		Last MPERF value read from MPERF MSR
192  * @prev_tsc:		Last timestamp counter (TSC) value
193  * @prev_cummulative_iowait: IO Wait time difference from last and
194  *			current sample
195  * @sample:		Storage for storing last Sample data
196  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
197  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
198  *
199  * This structure stores per CPU instance data for all CPUs.
200  */
201 struct cpudata {
202 	int cpu;
203 
204 	struct update_util_data update_util;
205 	bool   update_util_set;
206 
207 	struct pstate_data pstate;
208 	struct vid_data vid;
209 	struct _pid pid;
210 
211 	u64	last_sample_time;
212 	u64	prev_aperf;
213 	u64	prev_mperf;
214 	u64	prev_tsc;
215 	u64	prev_cummulative_iowait;
216 	struct sample sample;
217 #ifdef CONFIG_ACPI
218 	struct acpi_processor_performance acpi_perf_data;
219 	bool valid_pss_table;
220 #endif
221 };
222 
223 static struct cpudata **all_cpu_data;
224 
225 /**
226  * struct pid_adjust_policy - Stores static PID configuration data
227  * @sample_rate_ms:	PID calculation sample rate in ms
228  * @sample_rate_ns:	Sample rate calculation in ns
229  * @deadband:		PID deadband
230  * @setpoint:		PID Setpoint
231  * @p_gain_pct:		PID proportional gain
232  * @i_gain_pct:		PID integral gain
233  * @d_gain_pct:		PID derivative gain
234  *
235  * Stores per CPU model static PID configuration data.
236  */
237 struct pstate_adjust_policy {
238 	int sample_rate_ms;
239 	s64 sample_rate_ns;
240 	int deadband;
241 	int setpoint;
242 	int p_gain_pct;
243 	int d_gain_pct;
244 	int i_gain_pct;
245 };
246 
247 /**
248  * struct pstate_funcs - Per CPU model specific callbacks
249  * @get_max:		Callback to get maximum non turbo effective P state
250  * @get_max_physical:	Callback to get maximum non turbo physical P state
251  * @get_min:		Callback to get minimum P state
252  * @get_turbo:		Callback to get turbo P state
253  * @get_scaling:	Callback to get frequency scaling factor
254  * @get_val:		Callback to convert P state to actual MSR write value
255  * @get_vid:		Callback to get VID data for Atom platforms
256  * @get_target_pstate:	Callback to a function to calculate next P state to use
257  *
258  * Core and Atom CPU models have different way to get P State limits. This
259  * structure is used to store those callbacks.
260  */
261 struct pstate_funcs {
262 	int (*get_max)(void);
263 	int (*get_max_physical)(void);
264 	int (*get_min)(void);
265 	int (*get_turbo)(void);
266 	int (*get_scaling)(void);
267 	u64 (*get_val)(struct cpudata*, int pstate);
268 	void (*get_vid)(struct cpudata *);
269 	int32_t (*get_target_pstate)(struct cpudata *);
270 };
271 
272 /**
273  * struct cpu_defaults- Per CPU model default config data
274  * @pid_policy:	PID config data
275  * @funcs:		Callback function data
276  */
277 struct cpu_defaults {
278 	struct pstate_adjust_policy pid_policy;
279 	struct pstate_funcs funcs;
280 };
281 
282 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
283 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
284 
285 static struct pstate_adjust_policy pid_params __read_mostly;
286 static struct pstate_funcs pstate_funcs __read_mostly;
287 static int hwp_active __read_mostly;
288 
289 #ifdef CONFIG_ACPI
290 static bool acpi_ppc;
291 #endif
292 
293 /**
294  * struct perf_limits - Store user and policy limits
295  * @no_turbo:		User requested turbo state from intel_pstate sysfs
296  * @turbo_disabled:	Platform turbo status either from msr
297  *			MSR_IA32_MISC_ENABLE or when maximum available pstate
298  *			matches the maximum turbo pstate
299  * @max_perf_pct:	Effective maximum performance limit in percentage, this
300  *			is minimum of either limits enforced by cpufreq policy
301  *			or limits from user set limits via intel_pstate sysfs
302  * @min_perf_pct:	Effective minimum performance limit in percentage, this
303  *			is maximum of either limits enforced by cpufreq policy
304  *			or limits from user set limits via intel_pstate sysfs
305  * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
306  *			This value is used to limit max pstate
307  * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
308  *			This value is used to limit min pstate
309  * @max_policy_pct:	The maximum performance in percentage enforced by
310  *			cpufreq setpolicy interface
311  * @max_sysfs_pct:	The maximum performance in percentage enforced by
312  *			intel pstate sysfs interface
313  * @min_policy_pct:	The minimum performance in percentage enforced by
314  *			cpufreq setpolicy interface
315  * @min_sysfs_pct:	The minimum performance in percentage enforced by
316  *			intel pstate sysfs interface
317  *
318  * Storage for user and policy defined limits.
319  */
320 struct perf_limits {
321 	int no_turbo;
322 	int turbo_disabled;
323 	int max_perf_pct;
324 	int min_perf_pct;
325 	int32_t max_perf;
326 	int32_t min_perf;
327 	int max_policy_pct;
328 	int max_sysfs_pct;
329 	int min_policy_pct;
330 	int min_sysfs_pct;
331 };
332 
333 static struct perf_limits performance_limits = {
334 	.no_turbo = 0,
335 	.turbo_disabled = 0,
336 	.max_perf_pct = 100,
337 	.max_perf = int_tofp(1),
338 	.min_perf_pct = 100,
339 	.min_perf = int_tofp(1),
340 	.max_policy_pct = 100,
341 	.max_sysfs_pct = 100,
342 	.min_policy_pct = 0,
343 	.min_sysfs_pct = 0,
344 };
345 
346 static struct perf_limits powersave_limits = {
347 	.no_turbo = 0,
348 	.turbo_disabled = 0,
349 	.max_perf_pct = 100,
350 	.max_perf = int_tofp(1),
351 	.min_perf_pct = 0,
352 	.min_perf = 0,
353 	.max_policy_pct = 100,
354 	.max_sysfs_pct = 100,
355 	.min_policy_pct = 0,
356 	.min_sysfs_pct = 0,
357 };
358 
359 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
360 static struct perf_limits *limits = &performance_limits;
361 #else
362 static struct perf_limits *limits = &powersave_limits;
363 #endif
364 
365 #ifdef CONFIG_ACPI
366 
367 static bool intel_pstate_get_ppc_enable_status(void)
368 {
369 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
370 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
371 		return true;
372 
373 	return acpi_ppc;
374 }
375 
376 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
377 {
378 	struct cpudata *cpu;
379 	int ret;
380 	int i;
381 
382 	if (hwp_active)
383 		return;
384 
385 	if (!intel_pstate_get_ppc_enable_status())
386 		return;
387 
388 	cpu = all_cpu_data[policy->cpu];
389 
390 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
391 						  policy->cpu);
392 	if (ret)
393 		return;
394 
395 	/*
396 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
397 	 * guarantee that the states returned by it map to the states in our
398 	 * list directly.
399 	 */
400 	if (cpu->acpi_perf_data.control_register.space_id !=
401 						ACPI_ADR_SPACE_FIXED_HARDWARE)
402 		goto err;
403 
404 	/*
405 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
406 	 * usual without taking _PSS into account
407 	 */
408 	if (cpu->acpi_perf_data.state_count < 2)
409 		goto err;
410 
411 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
412 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
413 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
414 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
415 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
416 			 (u32) cpu->acpi_perf_data.states[i].power,
417 			 (u32) cpu->acpi_perf_data.states[i].control);
418 	}
419 
420 	/*
421 	 * The _PSS table doesn't contain whole turbo frequency range.
422 	 * This just contains +1 MHZ above the max non turbo frequency,
423 	 * with control value corresponding to max turbo ratio. But
424 	 * when cpufreq set policy is called, it will call with this
425 	 * max frequency, which will cause a reduced performance as
426 	 * this driver uses real max turbo frequency as the max
427 	 * frequency. So correct this frequency in _PSS table to
428 	 * correct max turbo frequency based on the turbo state.
429 	 * Also need to convert to MHz as _PSS freq is in MHz.
430 	 */
431 	if (!limits->turbo_disabled)
432 		cpu->acpi_perf_data.states[0].core_frequency =
433 					policy->cpuinfo.max_freq / 1000;
434 	cpu->valid_pss_table = true;
435 	pr_debug("_PPC limits will be enforced\n");
436 
437 	return;
438 
439  err:
440 	cpu->valid_pss_table = false;
441 	acpi_processor_unregister_performance(policy->cpu);
442 }
443 
444 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
445 {
446 	struct cpudata *cpu;
447 
448 	cpu = all_cpu_data[policy->cpu];
449 	if (!cpu->valid_pss_table)
450 		return;
451 
452 	acpi_processor_unregister_performance(policy->cpu);
453 }
454 
455 #else
456 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
457 {
458 }
459 
460 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
461 {
462 }
463 #endif
464 
465 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
466 			     int deadband, int integral) {
467 	pid->setpoint = int_tofp(setpoint);
468 	pid->deadband  = int_tofp(deadband);
469 	pid->integral  = int_tofp(integral);
470 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
471 }
472 
473 static inline void pid_p_gain_set(struct _pid *pid, int percent)
474 {
475 	pid->p_gain = div_fp(percent, 100);
476 }
477 
478 static inline void pid_i_gain_set(struct _pid *pid, int percent)
479 {
480 	pid->i_gain = div_fp(percent, 100);
481 }
482 
483 static inline void pid_d_gain_set(struct _pid *pid, int percent)
484 {
485 	pid->d_gain = div_fp(percent, 100);
486 }
487 
488 static signed int pid_calc(struct _pid *pid, int32_t busy)
489 {
490 	signed int result;
491 	int32_t pterm, dterm, fp_error;
492 	int32_t integral_limit;
493 
494 	fp_error = pid->setpoint - busy;
495 
496 	if (abs(fp_error) <= pid->deadband)
497 		return 0;
498 
499 	pterm = mul_fp(pid->p_gain, fp_error);
500 
501 	pid->integral += fp_error;
502 
503 	/*
504 	 * We limit the integral here so that it will never
505 	 * get higher than 30.  This prevents it from becoming
506 	 * too large an input over long periods of time and allows
507 	 * it to get factored out sooner.
508 	 *
509 	 * The value of 30 was chosen through experimentation.
510 	 */
511 	integral_limit = int_tofp(30);
512 	if (pid->integral > integral_limit)
513 		pid->integral = integral_limit;
514 	if (pid->integral < -integral_limit)
515 		pid->integral = -integral_limit;
516 
517 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
518 	pid->last_err = fp_error;
519 
520 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
521 	result = result + (1 << (FRAC_BITS-1));
522 	return (signed int)fp_toint(result);
523 }
524 
525 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
526 {
527 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
528 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
529 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
530 
531 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
532 }
533 
534 static inline void intel_pstate_reset_all_pid(void)
535 {
536 	unsigned int cpu;
537 
538 	for_each_online_cpu(cpu) {
539 		if (all_cpu_data[cpu])
540 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
541 	}
542 }
543 
544 static inline void update_turbo_state(void)
545 {
546 	u64 misc_en;
547 	struct cpudata *cpu;
548 
549 	cpu = all_cpu_data[0];
550 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
551 	limits->turbo_disabled =
552 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
553 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
554 }
555 
556 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
557 {
558 	int min, hw_min, max, hw_max, cpu, range, adj_range;
559 	u64 value, cap;
560 
561 	rdmsrl(MSR_HWP_CAPABILITIES, cap);
562 	hw_min = HWP_LOWEST_PERF(cap);
563 	hw_max = HWP_HIGHEST_PERF(cap);
564 	range = hw_max - hw_min;
565 
566 	for_each_cpu(cpu, cpumask) {
567 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
568 		adj_range = limits->min_perf_pct * range / 100;
569 		min = hw_min + adj_range;
570 		value &= ~HWP_MIN_PERF(~0L);
571 		value |= HWP_MIN_PERF(min);
572 
573 		adj_range = limits->max_perf_pct * range / 100;
574 		max = hw_min + adj_range;
575 		if (limits->no_turbo) {
576 			hw_max = HWP_GUARANTEED_PERF(cap);
577 			if (hw_max < max)
578 				max = hw_max;
579 		}
580 
581 		value &= ~HWP_MAX_PERF(~0L);
582 		value |= HWP_MAX_PERF(max);
583 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
584 	}
585 }
586 
587 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
588 {
589 	if (hwp_active)
590 		intel_pstate_hwp_set(policy->cpus);
591 
592 	return 0;
593 }
594 
595 static void intel_pstate_hwp_set_online_cpus(void)
596 {
597 	get_online_cpus();
598 	intel_pstate_hwp_set(cpu_online_mask);
599 	put_online_cpus();
600 }
601 
602 /************************** debugfs begin ************************/
603 static int pid_param_set(void *data, u64 val)
604 {
605 	*(u32 *)data = val;
606 	intel_pstate_reset_all_pid();
607 	return 0;
608 }
609 
610 static int pid_param_get(void *data, u64 *val)
611 {
612 	*val = *(u32 *)data;
613 	return 0;
614 }
615 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
616 
617 struct pid_param {
618 	char *name;
619 	void *value;
620 };
621 
622 static struct pid_param pid_files[] = {
623 	{"sample_rate_ms", &pid_params.sample_rate_ms},
624 	{"d_gain_pct", &pid_params.d_gain_pct},
625 	{"i_gain_pct", &pid_params.i_gain_pct},
626 	{"deadband", &pid_params.deadband},
627 	{"setpoint", &pid_params.setpoint},
628 	{"p_gain_pct", &pid_params.p_gain_pct},
629 	{NULL, NULL}
630 };
631 
632 static void __init intel_pstate_debug_expose_params(void)
633 {
634 	struct dentry *debugfs_parent;
635 	int i = 0;
636 
637 	if (hwp_active)
638 		return;
639 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
640 	if (IS_ERR_OR_NULL(debugfs_parent))
641 		return;
642 	while (pid_files[i].name) {
643 		debugfs_create_file(pid_files[i].name, 0660,
644 				    debugfs_parent, pid_files[i].value,
645 				    &fops_pid_param);
646 		i++;
647 	}
648 }
649 
650 /************************** debugfs end ************************/
651 
652 /************************** sysfs begin ************************/
653 #define show_one(file_name, object)					\
654 	static ssize_t show_##file_name					\
655 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
656 	{								\
657 		return sprintf(buf, "%u\n", limits->object);		\
658 	}
659 
660 static ssize_t show_turbo_pct(struct kobject *kobj,
661 				struct attribute *attr, char *buf)
662 {
663 	struct cpudata *cpu;
664 	int total, no_turbo, turbo_pct;
665 	uint32_t turbo_fp;
666 
667 	cpu = all_cpu_data[0];
668 
669 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
670 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
671 	turbo_fp = div_fp(no_turbo, total);
672 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
673 	return sprintf(buf, "%u\n", turbo_pct);
674 }
675 
676 static ssize_t show_num_pstates(struct kobject *kobj,
677 				struct attribute *attr, char *buf)
678 {
679 	struct cpudata *cpu;
680 	int total;
681 
682 	cpu = all_cpu_data[0];
683 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
684 	return sprintf(buf, "%u\n", total);
685 }
686 
687 static ssize_t show_no_turbo(struct kobject *kobj,
688 			     struct attribute *attr, char *buf)
689 {
690 	ssize_t ret;
691 
692 	update_turbo_state();
693 	if (limits->turbo_disabled)
694 		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
695 	else
696 		ret = sprintf(buf, "%u\n", limits->no_turbo);
697 
698 	return ret;
699 }
700 
701 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
702 			      const char *buf, size_t count)
703 {
704 	unsigned int input;
705 	int ret;
706 
707 	ret = sscanf(buf, "%u", &input);
708 	if (ret != 1)
709 		return -EINVAL;
710 
711 	update_turbo_state();
712 	if (limits->turbo_disabled) {
713 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
714 		return -EPERM;
715 	}
716 
717 	limits->no_turbo = clamp_t(int, input, 0, 1);
718 
719 	if (hwp_active)
720 		intel_pstate_hwp_set_online_cpus();
721 
722 	return count;
723 }
724 
725 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
726 				  const char *buf, size_t count)
727 {
728 	unsigned int input;
729 	int ret;
730 
731 	ret = sscanf(buf, "%u", &input);
732 	if (ret != 1)
733 		return -EINVAL;
734 
735 	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
736 	limits->max_perf_pct = min(limits->max_policy_pct,
737 				   limits->max_sysfs_pct);
738 	limits->max_perf_pct = max(limits->min_policy_pct,
739 				   limits->max_perf_pct);
740 	limits->max_perf_pct = max(limits->min_perf_pct,
741 				   limits->max_perf_pct);
742 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
743 
744 	if (hwp_active)
745 		intel_pstate_hwp_set_online_cpus();
746 	return count;
747 }
748 
749 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
750 				  const char *buf, size_t count)
751 {
752 	unsigned int input;
753 	int ret;
754 
755 	ret = sscanf(buf, "%u", &input);
756 	if (ret != 1)
757 		return -EINVAL;
758 
759 	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
760 	limits->min_perf_pct = max(limits->min_policy_pct,
761 				   limits->min_sysfs_pct);
762 	limits->min_perf_pct = min(limits->max_policy_pct,
763 				   limits->min_perf_pct);
764 	limits->min_perf_pct = min(limits->max_perf_pct,
765 				   limits->min_perf_pct);
766 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
767 
768 	if (hwp_active)
769 		intel_pstate_hwp_set_online_cpus();
770 	return count;
771 }
772 
773 show_one(max_perf_pct, max_perf_pct);
774 show_one(min_perf_pct, min_perf_pct);
775 
776 define_one_global_rw(no_turbo);
777 define_one_global_rw(max_perf_pct);
778 define_one_global_rw(min_perf_pct);
779 define_one_global_ro(turbo_pct);
780 define_one_global_ro(num_pstates);
781 
782 static struct attribute *intel_pstate_attributes[] = {
783 	&no_turbo.attr,
784 	&max_perf_pct.attr,
785 	&min_perf_pct.attr,
786 	&turbo_pct.attr,
787 	&num_pstates.attr,
788 	NULL
789 };
790 
791 static struct attribute_group intel_pstate_attr_group = {
792 	.attrs = intel_pstate_attributes,
793 };
794 
795 static void __init intel_pstate_sysfs_expose_params(void)
796 {
797 	struct kobject *intel_pstate_kobject;
798 	int rc;
799 
800 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
801 						&cpu_subsys.dev_root->kobj);
802 	BUG_ON(!intel_pstate_kobject);
803 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
804 	BUG_ON(rc);
805 }
806 /************************** sysfs end ************************/
807 
808 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
809 {
810 	/* First disable HWP notification interrupt as we don't process them */
811 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
812 
813 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
814 }
815 
816 static int atom_get_min_pstate(void)
817 {
818 	u64 value;
819 
820 	rdmsrl(ATOM_RATIOS, value);
821 	return (value >> 8) & 0x7F;
822 }
823 
824 static int atom_get_max_pstate(void)
825 {
826 	u64 value;
827 
828 	rdmsrl(ATOM_RATIOS, value);
829 	return (value >> 16) & 0x7F;
830 }
831 
832 static int atom_get_turbo_pstate(void)
833 {
834 	u64 value;
835 
836 	rdmsrl(ATOM_TURBO_RATIOS, value);
837 	return value & 0x7F;
838 }
839 
840 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
841 {
842 	u64 val;
843 	int32_t vid_fp;
844 	u32 vid;
845 
846 	val = (u64)pstate << 8;
847 	if (limits->no_turbo && !limits->turbo_disabled)
848 		val |= (u64)1 << 32;
849 
850 	vid_fp = cpudata->vid.min + mul_fp(
851 		int_tofp(pstate - cpudata->pstate.min_pstate),
852 		cpudata->vid.ratio);
853 
854 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
855 	vid = ceiling_fp(vid_fp);
856 
857 	if (pstate > cpudata->pstate.max_pstate)
858 		vid = cpudata->vid.turbo;
859 
860 	return val | vid;
861 }
862 
863 static int silvermont_get_scaling(void)
864 {
865 	u64 value;
866 	int i;
867 	/* Defined in Table 35-6 from SDM (Sept 2015) */
868 	static int silvermont_freq_table[] = {
869 		83300, 100000, 133300, 116700, 80000};
870 
871 	rdmsrl(MSR_FSB_FREQ, value);
872 	i = value & 0x7;
873 	WARN_ON(i > 4);
874 
875 	return silvermont_freq_table[i];
876 }
877 
878 static int airmont_get_scaling(void)
879 {
880 	u64 value;
881 	int i;
882 	/* Defined in Table 35-10 from SDM (Sept 2015) */
883 	static int airmont_freq_table[] = {
884 		83300, 100000, 133300, 116700, 80000,
885 		93300, 90000, 88900, 87500};
886 
887 	rdmsrl(MSR_FSB_FREQ, value);
888 	i = value & 0xF;
889 	WARN_ON(i > 8);
890 
891 	return airmont_freq_table[i];
892 }
893 
894 static void atom_get_vid(struct cpudata *cpudata)
895 {
896 	u64 value;
897 
898 	rdmsrl(ATOM_VIDS, value);
899 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
900 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
901 	cpudata->vid.ratio = div_fp(
902 		cpudata->vid.max - cpudata->vid.min,
903 		int_tofp(cpudata->pstate.max_pstate -
904 			cpudata->pstate.min_pstate));
905 
906 	rdmsrl(ATOM_TURBO_VIDS, value);
907 	cpudata->vid.turbo = value & 0x7f;
908 }
909 
910 static int core_get_min_pstate(void)
911 {
912 	u64 value;
913 
914 	rdmsrl(MSR_PLATFORM_INFO, value);
915 	return (value >> 40) & 0xFF;
916 }
917 
918 static int core_get_max_pstate_physical(void)
919 {
920 	u64 value;
921 
922 	rdmsrl(MSR_PLATFORM_INFO, value);
923 	return (value >> 8) & 0xFF;
924 }
925 
926 static int core_get_max_pstate(void)
927 {
928 	u64 tar;
929 	u64 plat_info;
930 	int max_pstate;
931 	int err;
932 
933 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
934 	max_pstate = (plat_info >> 8) & 0xFF;
935 
936 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
937 	if (!err) {
938 		/* Do some sanity checking for safety */
939 		if (plat_info & 0x600000000) {
940 			u64 tdp_ctrl;
941 			u64 tdp_ratio;
942 			int tdp_msr;
943 
944 			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
945 			if (err)
946 				goto skip_tar;
947 
948 			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
949 			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
950 			if (err)
951 				goto skip_tar;
952 
953 			/* For level 1 and 2, bits[23:16] contain the ratio */
954 			if (tdp_ctrl)
955 				tdp_ratio >>= 16;
956 
957 			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
958 			if (tdp_ratio - 1 == tar) {
959 				max_pstate = tar;
960 				pr_debug("max_pstate=TAC %x\n", max_pstate);
961 			} else {
962 				goto skip_tar;
963 			}
964 		}
965 	}
966 
967 skip_tar:
968 	return max_pstate;
969 }
970 
971 static int core_get_turbo_pstate(void)
972 {
973 	u64 value;
974 	int nont, ret;
975 
976 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
977 	nont = core_get_max_pstate();
978 	ret = (value) & 255;
979 	if (ret <= nont)
980 		ret = nont;
981 	return ret;
982 }
983 
984 static inline int core_get_scaling(void)
985 {
986 	return 100000;
987 }
988 
989 static u64 core_get_val(struct cpudata *cpudata, int pstate)
990 {
991 	u64 val;
992 
993 	val = (u64)pstate << 8;
994 	if (limits->no_turbo && !limits->turbo_disabled)
995 		val |= (u64)1 << 32;
996 
997 	return val;
998 }
999 
1000 static int knl_get_turbo_pstate(void)
1001 {
1002 	u64 value;
1003 	int nont, ret;
1004 
1005 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1006 	nont = core_get_max_pstate();
1007 	ret = (((value) >> 8) & 0xFF);
1008 	if (ret <= nont)
1009 		ret = nont;
1010 	return ret;
1011 }
1012 
1013 static struct cpu_defaults core_params = {
1014 	.pid_policy = {
1015 		.sample_rate_ms = 10,
1016 		.deadband = 0,
1017 		.setpoint = 97,
1018 		.p_gain_pct = 20,
1019 		.d_gain_pct = 0,
1020 		.i_gain_pct = 0,
1021 	},
1022 	.funcs = {
1023 		.get_max = core_get_max_pstate,
1024 		.get_max_physical = core_get_max_pstate_physical,
1025 		.get_min = core_get_min_pstate,
1026 		.get_turbo = core_get_turbo_pstate,
1027 		.get_scaling = core_get_scaling,
1028 		.get_val = core_get_val,
1029 		.get_target_pstate = get_target_pstate_use_performance,
1030 	},
1031 };
1032 
1033 static struct cpu_defaults silvermont_params = {
1034 	.pid_policy = {
1035 		.sample_rate_ms = 10,
1036 		.deadband = 0,
1037 		.setpoint = 60,
1038 		.p_gain_pct = 14,
1039 		.d_gain_pct = 0,
1040 		.i_gain_pct = 4,
1041 	},
1042 	.funcs = {
1043 		.get_max = atom_get_max_pstate,
1044 		.get_max_physical = atom_get_max_pstate,
1045 		.get_min = atom_get_min_pstate,
1046 		.get_turbo = atom_get_turbo_pstate,
1047 		.get_val = atom_get_val,
1048 		.get_scaling = silvermont_get_scaling,
1049 		.get_vid = atom_get_vid,
1050 		.get_target_pstate = get_target_pstate_use_cpu_load,
1051 	},
1052 };
1053 
1054 static struct cpu_defaults airmont_params = {
1055 	.pid_policy = {
1056 		.sample_rate_ms = 10,
1057 		.deadband = 0,
1058 		.setpoint = 60,
1059 		.p_gain_pct = 14,
1060 		.d_gain_pct = 0,
1061 		.i_gain_pct = 4,
1062 	},
1063 	.funcs = {
1064 		.get_max = atom_get_max_pstate,
1065 		.get_max_physical = atom_get_max_pstate,
1066 		.get_min = atom_get_min_pstate,
1067 		.get_turbo = atom_get_turbo_pstate,
1068 		.get_val = atom_get_val,
1069 		.get_scaling = airmont_get_scaling,
1070 		.get_vid = atom_get_vid,
1071 		.get_target_pstate = get_target_pstate_use_cpu_load,
1072 	},
1073 };
1074 
1075 static struct cpu_defaults knl_params = {
1076 	.pid_policy = {
1077 		.sample_rate_ms = 10,
1078 		.deadband = 0,
1079 		.setpoint = 97,
1080 		.p_gain_pct = 20,
1081 		.d_gain_pct = 0,
1082 		.i_gain_pct = 0,
1083 	},
1084 	.funcs = {
1085 		.get_max = core_get_max_pstate,
1086 		.get_max_physical = core_get_max_pstate_physical,
1087 		.get_min = core_get_min_pstate,
1088 		.get_turbo = knl_get_turbo_pstate,
1089 		.get_scaling = core_get_scaling,
1090 		.get_val = core_get_val,
1091 		.get_target_pstate = get_target_pstate_use_performance,
1092 	},
1093 };
1094 
1095 static struct cpu_defaults bxt_params = {
1096 	.pid_policy = {
1097 		.sample_rate_ms = 10,
1098 		.deadband = 0,
1099 		.setpoint = 60,
1100 		.p_gain_pct = 14,
1101 		.d_gain_pct = 0,
1102 		.i_gain_pct = 4,
1103 	},
1104 	.funcs = {
1105 		.get_max = core_get_max_pstate,
1106 		.get_max_physical = core_get_max_pstate_physical,
1107 		.get_min = core_get_min_pstate,
1108 		.get_turbo = core_get_turbo_pstate,
1109 		.get_scaling = core_get_scaling,
1110 		.get_val = core_get_val,
1111 		.get_target_pstate = get_target_pstate_use_cpu_load,
1112 	},
1113 };
1114 
1115 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1116 {
1117 	int max_perf = cpu->pstate.turbo_pstate;
1118 	int max_perf_adj;
1119 	int min_perf;
1120 
1121 	if (limits->no_turbo || limits->turbo_disabled)
1122 		max_perf = cpu->pstate.max_pstate;
1123 
1124 	/*
1125 	 * performance can be limited by user through sysfs, by cpufreq
1126 	 * policy, or by cpu specific default values determined through
1127 	 * experimentation.
1128 	 */
1129 	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1130 	*max = clamp_t(int, max_perf_adj,
1131 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1132 
1133 	min_perf = fp_toint(max_perf * limits->min_perf);
1134 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1135 }
1136 
1137 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1138 {
1139 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1140 	cpu->pstate.current_pstate = pstate;
1141 }
1142 
1143 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1144 {
1145 	int pstate = cpu->pstate.min_pstate;
1146 
1147 	intel_pstate_record_pstate(cpu, pstate);
1148 	/*
1149 	 * Generally, there is no guarantee that this code will always run on
1150 	 * the CPU being updated, so force the register update to run on the
1151 	 * right CPU.
1152 	 */
1153 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1154 		      pstate_funcs.get_val(cpu, pstate));
1155 }
1156 
1157 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1158 {
1159 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1160 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1161 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1162 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1163 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1164 
1165 	if (pstate_funcs.get_vid)
1166 		pstate_funcs.get_vid(cpu);
1167 
1168 	intel_pstate_set_min_pstate(cpu);
1169 }
1170 
1171 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1172 {
1173 	struct sample *sample = &cpu->sample;
1174 
1175 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1176 }
1177 
1178 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1179 {
1180 	u64 aperf, mperf;
1181 	unsigned long flags;
1182 	u64 tsc;
1183 
1184 	local_irq_save(flags);
1185 	rdmsrl(MSR_IA32_APERF, aperf);
1186 	rdmsrl(MSR_IA32_MPERF, mperf);
1187 	tsc = rdtsc();
1188 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1189 		local_irq_restore(flags);
1190 		return false;
1191 	}
1192 	local_irq_restore(flags);
1193 
1194 	cpu->last_sample_time = cpu->sample.time;
1195 	cpu->sample.time = time;
1196 	cpu->sample.aperf = aperf;
1197 	cpu->sample.mperf = mperf;
1198 	cpu->sample.tsc =  tsc;
1199 	cpu->sample.aperf -= cpu->prev_aperf;
1200 	cpu->sample.mperf -= cpu->prev_mperf;
1201 	cpu->sample.tsc -= cpu->prev_tsc;
1202 
1203 	cpu->prev_aperf = aperf;
1204 	cpu->prev_mperf = mperf;
1205 	cpu->prev_tsc = tsc;
1206 	/*
1207 	 * First time this function is invoked in a given cycle, all of the
1208 	 * previous sample data fields are equal to zero or stale and they must
1209 	 * be populated with meaningful numbers for things to work, so assume
1210 	 * that sample.time will always be reset before setting the utilization
1211 	 * update hook and make the caller skip the sample then.
1212 	 */
1213 	return !!cpu->last_sample_time;
1214 }
1215 
1216 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1217 {
1218 	return mul_ext_fp(cpu->sample.core_avg_perf,
1219 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1220 }
1221 
1222 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1223 {
1224 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1225 			  cpu->sample.core_avg_perf);
1226 }
1227 
1228 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1229 {
1230 	struct sample *sample = &cpu->sample;
1231 	u64 cummulative_iowait, delta_iowait_us;
1232 	u64 delta_iowait_mperf;
1233 	u64 mperf, now;
1234 	int32_t cpu_load;
1235 
1236 	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1237 
1238 	/*
1239 	 * Convert iowait time into number of IO cycles spent at max_freq.
1240 	 * IO is considered as busy only for the cpu_load algorithm. For
1241 	 * performance this is not needed since we always try to reach the
1242 	 * maximum P-State, so we are already boosting the IOs.
1243 	 */
1244 	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1245 	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1246 		cpu->pstate.max_pstate, MSEC_PER_SEC);
1247 
1248 	mperf = cpu->sample.mperf + delta_iowait_mperf;
1249 	cpu->prev_cummulative_iowait = cummulative_iowait;
1250 
1251 	/*
1252 	 * The load can be estimated as the ratio of the mperf counter
1253 	 * running at a constant frequency during active periods
1254 	 * (C0) and the time stamp counter running at the same frequency
1255 	 * also during C-states.
1256 	 */
1257 	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1258 	cpu->sample.busy_scaled = cpu_load;
1259 
1260 	return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1261 }
1262 
1263 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1264 {
1265 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1266 	u64 duration_ns;
1267 
1268 	/*
1269 	 * perf_scaled is the average performance during the last sampling
1270 	 * period scaled by the ratio of the maximum P-state to the P-state
1271 	 * requested last time (in percent).  That measures the system's
1272 	 * response to the previous P-state selection.
1273 	 */
1274 	max_pstate = cpu->pstate.max_pstate_physical;
1275 	current_pstate = cpu->pstate.current_pstate;
1276 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1277 			       div_fp(100 * max_pstate, current_pstate));
1278 
1279 	/*
1280 	 * Since our utilization update callback will not run unless we are
1281 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1282 	 * than our sample interval.  If it is, then we were idle for a long
1283 	 * enough period of time to adjust our performance metric.
1284 	 */
1285 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1286 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1287 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1288 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1289 	} else {
1290 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1291 		if (sample_ratio < int_tofp(1))
1292 			perf_scaled = 0;
1293 	}
1294 
1295 	cpu->sample.busy_scaled = perf_scaled;
1296 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1297 }
1298 
1299 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1300 {
1301 	int max_perf, min_perf;
1302 
1303 	update_turbo_state();
1304 
1305 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1306 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1307 	if (pstate == cpu->pstate.current_pstate)
1308 		return;
1309 
1310 	intel_pstate_record_pstate(cpu, pstate);
1311 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1312 }
1313 
1314 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1315 {
1316 	int from, target_pstate;
1317 	struct sample *sample;
1318 
1319 	from = cpu->pstate.current_pstate;
1320 
1321 	target_pstate = pstate_funcs.get_target_pstate(cpu);
1322 
1323 	intel_pstate_update_pstate(cpu, target_pstate);
1324 
1325 	sample = &cpu->sample;
1326 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1327 		fp_toint(sample->busy_scaled),
1328 		from,
1329 		cpu->pstate.current_pstate,
1330 		sample->mperf,
1331 		sample->aperf,
1332 		sample->tsc,
1333 		get_avg_frequency(cpu));
1334 }
1335 
1336 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1337 				     unsigned long util, unsigned long max)
1338 {
1339 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1340 	u64 delta_ns = time - cpu->sample.time;
1341 
1342 	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1343 		bool sample_taken = intel_pstate_sample(cpu, time);
1344 
1345 		if (sample_taken) {
1346 			intel_pstate_calc_avg_perf(cpu);
1347 			if (!hwp_active)
1348 				intel_pstate_adjust_busy_pstate(cpu);
1349 		}
1350 	}
1351 }
1352 
1353 #define ICPU(model, policy) \
1354 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1355 			(unsigned long)&policy }
1356 
1357 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1358 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
1359 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
1360 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
1361 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
1362 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
1363 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
1364 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
1365 	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
1366 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
1367 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
1368 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
1369 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
1370 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
1371 	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
1372 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
1373 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
1374 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1375 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1376 	{}
1377 };
1378 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1379 
1380 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1381 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1382 	{}
1383 };
1384 
1385 static int intel_pstate_init_cpu(unsigned int cpunum)
1386 {
1387 	struct cpudata *cpu;
1388 
1389 	if (!all_cpu_data[cpunum])
1390 		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1391 					       GFP_KERNEL);
1392 	if (!all_cpu_data[cpunum])
1393 		return -ENOMEM;
1394 
1395 	cpu = all_cpu_data[cpunum];
1396 
1397 	cpu->cpu = cpunum;
1398 
1399 	if (hwp_active) {
1400 		intel_pstate_hwp_enable(cpu);
1401 		pid_params.sample_rate_ms = 50;
1402 		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1403 	}
1404 
1405 	intel_pstate_get_cpu_pstates(cpu);
1406 
1407 	intel_pstate_busy_pid_reset(cpu);
1408 
1409 	pr_debug("controlling: cpu %d\n", cpunum);
1410 
1411 	return 0;
1412 }
1413 
1414 static unsigned int intel_pstate_get(unsigned int cpu_num)
1415 {
1416 	struct cpudata *cpu = all_cpu_data[cpu_num];
1417 
1418 	return cpu ? get_avg_frequency(cpu) : 0;
1419 }
1420 
1421 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1422 {
1423 	struct cpudata *cpu = all_cpu_data[cpu_num];
1424 
1425 	/* Prevent intel_pstate_update_util() from using stale data. */
1426 	cpu->sample.time = 0;
1427 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1428 				     intel_pstate_update_util);
1429 	cpu->update_util_set = true;
1430 }
1431 
1432 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1433 {
1434 	struct cpudata *cpu_data = all_cpu_data[cpu];
1435 
1436 	if (!cpu_data->update_util_set)
1437 		return;
1438 
1439 	cpufreq_remove_update_util_hook(cpu);
1440 	cpu_data->update_util_set = false;
1441 	synchronize_sched();
1442 }
1443 
1444 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1445 {
1446 	limits->no_turbo = 0;
1447 	limits->turbo_disabled = 0;
1448 	limits->max_perf_pct = 100;
1449 	limits->max_perf = int_tofp(1);
1450 	limits->min_perf_pct = 100;
1451 	limits->min_perf = int_tofp(1);
1452 	limits->max_policy_pct = 100;
1453 	limits->max_sysfs_pct = 100;
1454 	limits->min_policy_pct = 0;
1455 	limits->min_sysfs_pct = 0;
1456 }
1457 
1458 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1459 {
1460 	struct cpudata *cpu;
1461 
1462 	if (!policy->cpuinfo.max_freq)
1463 		return -ENODEV;
1464 
1465 	intel_pstate_clear_update_util_hook(policy->cpu);
1466 
1467 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1468 		 policy->cpuinfo.max_freq, policy->max);
1469 
1470 	cpu = all_cpu_data[0];
1471 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1472 	    policy->max < policy->cpuinfo.max_freq &&
1473 	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1474 		pr_debug("policy->max > max non turbo frequency\n");
1475 		policy->max = policy->cpuinfo.max_freq;
1476 	}
1477 
1478 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1479 		limits = &performance_limits;
1480 		if (policy->max >= policy->cpuinfo.max_freq) {
1481 			pr_debug("set performance\n");
1482 			intel_pstate_set_performance_limits(limits);
1483 			goto out;
1484 		}
1485 	} else {
1486 		pr_debug("set powersave\n");
1487 		limits = &powersave_limits;
1488 	}
1489 
1490 	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1491 	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1492 	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1493 					      policy->cpuinfo.max_freq);
1494 	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1495 
1496 	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1497 	limits->min_perf_pct = max(limits->min_policy_pct,
1498 				   limits->min_sysfs_pct);
1499 	limits->min_perf_pct = min(limits->max_policy_pct,
1500 				   limits->min_perf_pct);
1501 	limits->max_perf_pct = min(limits->max_policy_pct,
1502 				   limits->max_sysfs_pct);
1503 	limits->max_perf_pct = max(limits->min_policy_pct,
1504 				   limits->max_perf_pct);
1505 
1506 	/* Make sure min_perf_pct <= max_perf_pct */
1507 	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1508 
1509 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
1510 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1511 	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1512 
1513  out:
1514 	intel_pstate_set_update_util_hook(policy->cpu);
1515 
1516 	intel_pstate_hwp_set_policy(policy);
1517 
1518 	return 0;
1519 }
1520 
1521 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1522 {
1523 	cpufreq_verify_within_cpu_limits(policy);
1524 
1525 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1526 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1527 		return -EINVAL;
1528 
1529 	return 0;
1530 }
1531 
1532 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1533 {
1534 	int cpu_num = policy->cpu;
1535 	struct cpudata *cpu = all_cpu_data[cpu_num];
1536 
1537 	pr_debug("CPU %d exiting\n", cpu_num);
1538 
1539 	intel_pstate_clear_update_util_hook(cpu_num);
1540 
1541 	if (hwp_active)
1542 		return;
1543 
1544 	intel_pstate_set_min_pstate(cpu);
1545 }
1546 
1547 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1548 {
1549 	struct cpudata *cpu;
1550 	int rc;
1551 
1552 	rc = intel_pstate_init_cpu(policy->cpu);
1553 	if (rc)
1554 		return rc;
1555 
1556 	cpu = all_cpu_data[policy->cpu];
1557 
1558 	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1559 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1560 	else
1561 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1562 
1563 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1564 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1565 
1566 	/* cpuinfo and default policy values */
1567 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1568 	update_turbo_state();
1569 	policy->cpuinfo.max_freq = limits->turbo_disabled ?
1570 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1571 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1572 
1573 	intel_pstate_init_acpi_perf_limits(policy);
1574 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1575 	cpumask_set_cpu(policy->cpu, policy->cpus);
1576 
1577 	return 0;
1578 }
1579 
1580 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1581 {
1582 	intel_pstate_exit_perf_limits(policy);
1583 
1584 	return 0;
1585 }
1586 
1587 static struct cpufreq_driver intel_pstate_driver = {
1588 	.flags		= CPUFREQ_CONST_LOOPS,
1589 	.verify		= intel_pstate_verify_policy,
1590 	.setpolicy	= intel_pstate_set_policy,
1591 	.resume		= intel_pstate_hwp_set_policy,
1592 	.get		= intel_pstate_get,
1593 	.init		= intel_pstate_cpu_init,
1594 	.exit		= intel_pstate_cpu_exit,
1595 	.stop_cpu	= intel_pstate_stop_cpu,
1596 	.name		= "intel_pstate",
1597 };
1598 
1599 static int no_load __initdata;
1600 static int no_hwp __initdata;
1601 static int hwp_only __initdata;
1602 static unsigned int force_load __initdata;
1603 
1604 static int __init intel_pstate_msrs_not_valid(void)
1605 {
1606 	if (!pstate_funcs.get_max() ||
1607 	    !pstate_funcs.get_min() ||
1608 	    !pstate_funcs.get_turbo())
1609 		return -ENODEV;
1610 
1611 	return 0;
1612 }
1613 
1614 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1615 {
1616 	pid_params.sample_rate_ms = policy->sample_rate_ms;
1617 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1618 	pid_params.p_gain_pct = policy->p_gain_pct;
1619 	pid_params.i_gain_pct = policy->i_gain_pct;
1620 	pid_params.d_gain_pct = policy->d_gain_pct;
1621 	pid_params.deadband = policy->deadband;
1622 	pid_params.setpoint = policy->setpoint;
1623 }
1624 
1625 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1626 {
1627 	pstate_funcs.get_max   = funcs->get_max;
1628 	pstate_funcs.get_max_physical = funcs->get_max_physical;
1629 	pstate_funcs.get_min   = funcs->get_min;
1630 	pstate_funcs.get_turbo = funcs->get_turbo;
1631 	pstate_funcs.get_scaling = funcs->get_scaling;
1632 	pstate_funcs.get_val   = funcs->get_val;
1633 	pstate_funcs.get_vid   = funcs->get_vid;
1634 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1635 
1636 }
1637 
1638 #ifdef CONFIG_ACPI
1639 
1640 static bool __init intel_pstate_no_acpi_pss(void)
1641 {
1642 	int i;
1643 
1644 	for_each_possible_cpu(i) {
1645 		acpi_status status;
1646 		union acpi_object *pss;
1647 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1648 		struct acpi_processor *pr = per_cpu(processors, i);
1649 
1650 		if (!pr)
1651 			continue;
1652 
1653 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1654 		if (ACPI_FAILURE(status))
1655 			continue;
1656 
1657 		pss = buffer.pointer;
1658 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1659 			kfree(pss);
1660 			return false;
1661 		}
1662 
1663 		kfree(pss);
1664 	}
1665 
1666 	return true;
1667 }
1668 
1669 static bool __init intel_pstate_has_acpi_ppc(void)
1670 {
1671 	int i;
1672 
1673 	for_each_possible_cpu(i) {
1674 		struct acpi_processor *pr = per_cpu(processors, i);
1675 
1676 		if (!pr)
1677 			continue;
1678 		if (acpi_has_method(pr->handle, "_PPC"))
1679 			return true;
1680 	}
1681 	return false;
1682 }
1683 
1684 enum {
1685 	PSS,
1686 	PPC,
1687 };
1688 
1689 struct hw_vendor_info {
1690 	u16  valid;
1691 	char oem_id[ACPI_OEM_ID_SIZE];
1692 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1693 	int  oem_pwr_table;
1694 };
1695 
1696 /* Hardware vendor-specific info that has its own power management modes */
1697 static struct hw_vendor_info vendor_info[] __initdata = {
1698 	{1, "HP    ", "ProLiant", PSS},
1699 	{1, "ORACLE", "X4-2    ", PPC},
1700 	{1, "ORACLE", "X4-2L   ", PPC},
1701 	{1, "ORACLE", "X4-2B   ", PPC},
1702 	{1, "ORACLE", "X3-2    ", PPC},
1703 	{1, "ORACLE", "X3-2L   ", PPC},
1704 	{1, "ORACLE", "X3-2B   ", PPC},
1705 	{1, "ORACLE", "X4470M2 ", PPC},
1706 	{1, "ORACLE", "X4270M3 ", PPC},
1707 	{1, "ORACLE", "X4270M2 ", PPC},
1708 	{1, "ORACLE", "X4170M2 ", PPC},
1709 	{1, "ORACLE", "X4170 M3", PPC},
1710 	{1, "ORACLE", "X4275 M3", PPC},
1711 	{1, "ORACLE", "X6-2    ", PPC},
1712 	{1, "ORACLE", "Sudbury ", PPC},
1713 	{0, "", ""},
1714 };
1715 
1716 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1717 {
1718 	struct acpi_table_header hdr;
1719 	struct hw_vendor_info *v_info;
1720 	const struct x86_cpu_id *id;
1721 	u64 misc_pwr;
1722 
1723 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1724 	if (id) {
1725 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1726 		if ( misc_pwr & (1 << 8))
1727 			return true;
1728 	}
1729 
1730 	if (acpi_disabled ||
1731 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1732 		return false;
1733 
1734 	for (v_info = vendor_info; v_info->valid; v_info++) {
1735 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1736 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1737 						ACPI_OEM_TABLE_ID_SIZE))
1738 			switch (v_info->oem_pwr_table) {
1739 			case PSS:
1740 				return intel_pstate_no_acpi_pss();
1741 			case PPC:
1742 				return intel_pstate_has_acpi_ppc() &&
1743 					(!force_load);
1744 			}
1745 	}
1746 
1747 	return false;
1748 }
1749 #else /* CONFIG_ACPI not enabled */
1750 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1751 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1752 #endif /* CONFIG_ACPI */
1753 
1754 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1755 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1756 	{}
1757 };
1758 
1759 static int __init intel_pstate_init(void)
1760 {
1761 	int cpu, rc = 0;
1762 	const struct x86_cpu_id *id;
1763 	struct cpu_defaults *cpu_def;
1764 
1765 	if (no_load)
1766 		return -ENODEV;
1767 
1768 	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1769 		copy_cpu_funcs(&core_params.funcs);
1770 		hwp_active++;
1771 		goto hwp_cpu_matched;
1772 	}
1773 
1774 	id = x86_match_cpu(intel_pstate_cpu_ids);
1775 	if (!id)
1776 		return -ENODEV;
1777 
1778 	cpu_def = (struct cpu_defaults *)id->driver_data;
1779 
1780 	copy_pid_params(&cpu_def->pid_policy);
1781 	copy_cpu_funcs(&cpu_def->funcs);
1782 
1783 	if (intel_pstate_msrs_not_valid())
1784 		return -ENODEV;
1785 
1786 hwp_cpu_matched:
1787 	/*
1788 	 * The Intel pstate driver will be ignored if the platform
1789 	 * firmware has its own power management modes.
1790 	 */
1791 	if (intel_pstate_platform_pwr_mgmt_exists())
1792 		return -ENODEV;
1793 
1794 	pr_info("Intel P-state driver initializing\n");
1795 
1796 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1797 	if (!all_cpu_data)
1798 		return -ENOMEM;
1799 
1800 	if (!hwp_active && hwp_only)
1801 		goto out;
1802 
1803 	rc = cpufreq_register_driver(&intel_pstate_driver);
1804 	if (rc)
1805 		goto out;
1806 
1807 	intel_pstate_debug_expose_params();
1808 	intel_pstate_sysfs_expose_params();
1809 
1810 	if (hwp_active)
1811 		pr_info("HWP enabled\n");
1812 
1813 	return rc;
1814 out:
1815 	get_online_cpus();
1816 	for_each_online_cpu(cpu) {
1817 		if (all_cpu_data[cpu]) {
1818 			intel_pstate_clear_update_util_hook(cpu);
1819 			kfree(all_cpu_data[cpu]);
1820 		}
1821 	}
1822 
1823 	put_online_cpus();
1824 	vfree(all_cpu_data);
1825 	return -ENODEV;
1826 }
1827 device_initcall(intel_pstate_init);
1828 
1829 static int __init intel_pstate_setup(char *str)
1830 {
1831 	if (!str)
1832 		return -EINVAL;
1833 
1834 	if (!strcmp(str, "disable"))
1835 		no_load = 1;
1836 	if (!strcmp(str, "no_hwp")) {
1837 		pr_info("HWP disabled\n");
1838 		no_hwp = 1;
1839 	}
1840 	if (!strcmp(str, "force"))
1841 		force_load = 1;
1842 	if (!strcmp(str, "hwp_only"))
1843 		hwp_only = 1;
1844 
1845 #ifdef CONFIG_ACPI
1846 	if (!strcmp(str, "support_acpi_ppc"))
1847 		acpi_ppc = true;
1848 #endif
1849 
1850 	return 0;
1851 }
1852 early_param("intel_pstate", intel_pstate_setup);
1853 
1854 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1855 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1856 MODULE_LICENSE("GPL");
1857