1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29 
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35 #include "../drivers/thermal/intel/thermal_interrupt.h"
36 
37 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
38 
39 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
42 
43 #ifdef CONFIG_ACPI
44 #include <acpi/processor.h>
45 #include <acpi/cppc_acpi.h>
46 #endif
47 
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51 
52 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
53 
54 #define EXT_BITS 6
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58 
59 static inline int32_t mul_fp(int32_t x, int32_t y)
60 {
61 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62 }
63 
64 static inline int32_t div_fp(s64 x, s64 y)
65 {
66 	return div64_s64((int64_t)x << FRAC_BITS, y);
67 }
68 
69 static inline int ceiling_fp(int32_t x)
70 {
71 	int mask, ret;
72 
73 	ret = fp_toint(x);
74 	mask = (1 << FRAC_BITS) - 1;
75 	if (x & mask)
76 		ret += 1;
77 	return ret;
78 }
79 
80 static inline u64 mul_ext_fp(u64 x, u64 y)
81 {
82 	return (x * y) >> EXT_FRAC_BITS;
83 }
84 
85 static inline u64 div_ext_fp(u64 x, u64 y)
86 {
87 	return div64_u64(x << EXT_FRAC_BITS, y);
88 }
89 
90 /**
91  * struct sample -	Store performance sample
92  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
93  *			performance during last sample period
94  * @busy_scaled:	Scaled busy value which is used to calculate next
95  *			P state. This can be different than core_avg_perf
96  *			to account for cpu idle period
97  * @aperf:		Difference of actual performance frequency clock count
98  *			read from APERF MSR between last and current sample
99  * @mperf:		Difference of maximum performance frequency clock count
100  *			read from MPERF MSR between last and current sample
101  * @tsc:		Difference of time stamp counter between last and
102  *			current sample
103  * @time:		Current time from scheduler
104  *
105  * This structure is used in the cpudata structure to store performance sample
106  * data for choosing next P State.
107  */
108 struct sample {
109 	int32_t core_avg_perf;
110 	int32_t busy_scaled;
111 	u64 aperf;
112 	u64 mperf;
113 	u64 tsc;
114 	u64 time;
115 };
116 
117 /**
118  * struct pstate_data - Store P state data
119  * @current_pstate:	Current requested P state
120  * @min_pstate:		Min P state possible for this platform
121  * @max_pstate:		Max P state possible for this platform
122  * @max_pstate_physical:This is physical Max P state for a processor
123  *			This can be higher than the max_pstate which can
124  *			be limited by platform thermal design power limits
125  * @perf_ctl_scaling:	PERF_CTL P-state to frequency scaling factor
126  * @scaling:		Scaling factor between performance and frequency
127  * @turbo_pstate:	Max Turbo P state possible for this platform
128  * @min_freq:		@min_pstate frequency in cpufreq units
129  * @max_freq:		@max_pstate frequency in cpufreq units
130  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
131  *
132  * Stores the per cpu model P state limits and current P state.
133  */
134 struct pstate_data {
135 	int	current_pstate;
136 	int	min_pstate;
137 	int	max_pstate;
138 	int	max_pstate_physical;
139 	int	perf_ctl_scaling;
140 	int	scaling;
141 	int	turbo_pstate;
142 	unsigned int min_freq;
143 	unsigned int max_freq;
144 	unsigned int turbo_freq;
145 };
146 
147 /**
148  * struct vid_data -	Stores voltage information data
149  * @min:		VID data for this platform corresponding to
150  *			the lowest P state
151  * @max:		VID data corresponding to the highest P State.
152  * @turbo:		VID data for turbo P state
153  * @ratio:		Ratio of (vid max - vid min) /
154  *			(max P state - Min P State)
155  *
156  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
157  * This data is used in Atom platforms, where in addition to target P state,
158  * the voltage data needs to be specified to select next P State.
159  */
160 struct vid_data {
161 	int min;
162 	int max;
163 	int turbo;
164 	int32_t ratio;
165 };
166 
167 /**
168  * struct global_params - Global parameters, mostly tunable via sysfs.
169  * @no_turbo:		Whether or not to use turbo P-states.
170  * @turbo_disabled:	Whether or not turbo P-states are available at all,
171  *			based on the MSR_IA32_MISC_ENABLE value and whether or
172  *			not the maximum reported turbo P-state is different from
173  *			the maximum reported non-turbo one.
174  * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
175  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
176  *			P-state capacity.
177  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
178  *			P-state capacity.
179  */
180 struct global_params {
181 	bool no_turbo;
182 	bool turbo_disabled;
183 	bool turbo_disabled_mf;
184 	int max_perf_pct;
185 	int min_perf_pct;
186 };
187 
188 /**
189  * struct cpudata -	Per CPU instance data storage
190  * @cpu:		CPU number for this instance data
191  * @policy:		CPUFreq policy value
192  * @update_util:	CPUFreq utility callback information
193  * @update_util_set:	CPUFreq utility callback is set
194  * @iowait_boost:	iowait-related boost fraction
195  * @last_update:	Time of the last update.
196  * @pstate:		Stores P state limits for this CPU
197  * @vid:		Stores VID limits for this CPU
198  * @last_sample_time:	Last Sample time
199  * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
200  * @prev_aperf:		Last APERF value read from APERF MSR
201  * @prev_mperf:		Last MPERF value read from MPERF MSR
202  * @prev_tsc:		Last timestamp counter (TSC) value
203  * @prev_cummulative_iowait: IO Wait time difference from last and
204  *			current sample
205  * @sample:		Storage for storing last Sample data
206  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
207  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
208  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
209  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
210  * @epp_powersave:	Last saved HWP energy performance preference
211  *			(EPP) or energy performance bias (EPB),
212  *			when policy switched to performance
213  * @epp_policy:		Last saved policy used to set EPP/EPB
214  * @epp_default:	Power on default HWP energy performance
215  *			preference/bias
216  * @epp_cached		Cached HWP energy-performance preference value
217  * @hwp_req_cached:	Cached value of the last HWP Request MSR
218  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
219  * @last_io_update:	Last time when IO wake flag was set
220  * @sched_flags:	Store scheduler flags for possible cross CPU update
221  * @hwp_boost_min:	Last HWP boosted min performance
222  * @suspended:		Whether or not the driver has been suspended.
223  * @hwp_notify_work:	workqueue for HWP notifications.
224  *
225  * This structure stores per CPU instance data for all CPUs.
226  */
227 struct cpudata {
228 	int cpu;
229 
230 	unsigned int policy;
231 	struct update_util_data update_util;
232 	bool   update_util_set;
233 
234 	struct pstate_data pstate;
235 	struct vid_data vid;
236 
237 	u64	last_update;
238 	u64	last_sample_time;
239 	u64	aperf_mperf_shift;
240 	u64	prev_aperf;
241 	u64	prev_mperf;
242 	u64	prev_tsc;
243 	u64	prev_cummulative_iowait;
244 	struct sample sample;
245 	int32_t	min_perf_ratio;
246 	int32_t	max_perf_ratio;
247 #ifdef CONFIG_ACPI
248 	struct acpi_processor_performance acpi_perf_data;
249 	bool valid_pss_table;
250 #endif
251 	unsigned int iowait_boost;
252 	s16 epp_powersave;
253 	s16 epp_policy;
254 	s16 epp_default;
255 	s16 epp_cached;
256 	u64 hwp_req_cached;
257 	u64 hwp_cap_cached;
258 	u64 last_io_update;
259 	unsigned int sched_flags;
260 	u32 hwp_boost_min;
261 	bool suspended;
262 	struct delayed_work hwp_notify_work;
263 };
264 
265 static struct cpudata **all_cpu_data;
266 
267 /**
268  * struct pstate_funcs - Per CPU model specific callbacks
269  * @get_max:		Callback to get maximum non turbo effective P state
270  * @get_max_physical:	Callback to get maximum non turbo physical P state
271  * @get_min:		Callback to get minimum P state
272  * @get_turbo:		Callback to get turbo P state
273  * @get_scaling:	Callback to get frequency scaling factor
274  * @get_cpu_scaling:	Get frequency scaling factor for a given cpu
275  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
276  * @get_val:		Callback to convert P state to actual MSR write value
277  * @get_vid:		Callback to get VID data for Atom platforms
278  *
279  * Core and Atom CPU models have different way to get P State limits. This
280  * structure is used to store those callbacks.
281  */
282 struct pstate_funcs {
283 	int (*get_max)(void);
284 	int (*get_max_physical)(void);
285 	int (*get_min)(void);
286 	int (*get_turbo)(void);
287 	int (*get_scaling)(void);
288 	int (*get_cpu_scaling)(int cpu);
289 	int (*get_aperf_mperf_shift)(void);
290 	u64 (*get_val)(struct cpudata*, int pstate);
291 	void (*get_vid)(struct cpudata *);
292 };
293 
294 static struct pstate_funcs pstate_funcs __read_mostly;
295 
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300 
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302 
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306 
307 static struct global_params global;
308 
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311 
312 #ifdef CONFIG_ACPI
313 
314 static bool intel_pstate_acpi_pm_profile_server(void)
315 {
316 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318 		return true;
319 
320 	return false;
321 }
322 
323 static bool intel_pstate_get_ppc_enable_status(void)
324 {
325 	if (intel_pstate_acpi_pm_profile_server())
326 		return true;
327 
328 	return acpi_ppc;
329 }
330 
331 #ifdef CONFIG_ACPI_CPPC_LIB
332 
333 /* The work item is needed to avoid CPU hotplug locking issues */
334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335 {
336 	sched_set_itmt_support();
337 }
338 
339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340 
341 #define CPPC_MAX_PERF	U8_MAX
342 
343 static void intel_pstate_set_itmt_prio(int cpu)
344 {
345 	struct cppc_perf_caps cppc_perf;
346 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
347 	int ret;
348 
349 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
350 	if (ret)
351 		return;
352 
353 	/*
354 	 * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
355 	 * In this case we can't use CPPC.highest_perf to enable ITMT.
356 	 * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
357 	 */
358 	if (cppc_perf.highest_perf == CPPC_MAX_PERF)
359 		cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
360 
361 	/*
362 	 * The priorities can be set regardless of whether or not
363 	 * sched_set_itmt_support(true) has been called and it is valid to
364 	 * update them at any time after it has been called.
365 	 */
366 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
367 
368 	if (max_highest_perf <= min_highest_perf) {
369 		if (cppc_perf.highest_perf > max_highest_perf)
370 			max_highest_perf = cppc_perf.highest_perf;
371 
372 		if (cppc_perf.highest_perf < min_highest_perf)
373 			min_highest_perf = cppc_perf.highest_perf;
374 
375 		if (max_highest_perf > min_highest_perf) {
376 			/*
377 			 * This code can be run during CPU online under the
378 			 * CPU hotplug locks, so sched_set_itmt_support()
379 			 * cannot be called from here.  Queue up a work item
380 			 * to invoke it.
381 			 */
382 			schedule_work(&sched_itmt_work);
383 		}
384 	}
385 }
386 
387 static int intel_pstate_get_cppc_guaranteed(int cpu)
388 {
389 	struct cppc_perf_caps cppc_perf;
390 	int ret;
391 
392 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
393 	if (ret)
394 		return ret;
395 
396 	if (cppc_perf.guaranteed_perf)
397 		return cppc_perf.guaranteed_perf;
398 
399 	return cppc_perf.nominal_perf;
400 }
401 
402 static u32 intel_pstate_cppc_nominal(int cpu)
403 {
404 	u64 nominal_perf;
405 
406 	if (cppc_get_nominal_perf(cpu, &nominal_perf))
407 		return 0;
408 
409 	return nominal_perf;
410 }
411 #else /* CONFIG_ACPI_CPPC_LIB */
412 static inline void intel_pstate_set_itmt_prio(int cpu)
413 {
414 }
415 #endif /* CONFIG_ACPI_CPPC_LIB */
416 
417 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
418 {
419 	struct cpudata *cpu;
420 	int ret;
421 	int i;
422 
423 	if (hwp_active) {
424 		intel_pstate_set_itmt_prio(policy->cpu);
425 		return;
426 	}
427 
428 	if (!intel_pstate_get_ppc_enable_status())
429 		return;
430 
431 	cpu = all_cpu_data[policy->cpu];
432 
433 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
434 						  policy->cpu);
435 	if (ret)
436 		return;
437 
438 	/*
439 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
440 	 * guarantee that the states returned by it map to the states in our
441 	 * list directly.
442 	 */
443 	if (cpu->acpi_perf_data.control_register.space_id !=
444 						ACPI_ADR_SPACE_FIXED_HARDWARE)
445 		goto err;
446 
447 	/*
448 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
449 	 * usual without taking _PSS into account
450 	 */
451 	if (cpu->acpi_perf_data.state_count < 2)
452 		goto err;
453 
454 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
455 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
456 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
457 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
458 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
459 			 (u32) cpu->acpi_perf_data.states[i].power,
460 			 (u32) cpu->acpi_perf_data.states[i].control);
461 	}
462 
463 	/*
464 	 * The _PSS table doesn't contain whole turbo frequency range.
465 	 * This just contains +1 MHZ above the max non turbo frequency,
466 	 * with control value corresponding to max turbo ratio. But
467 	 * when cpufreq set policy is called, it will call with this
468 	 * max frequency, which will cause a reduced performance as
469 	 * this driver uses real max turbo frequency as the max
470 	 * frequency. So correct this frequency in _PSS table to
471 	 * correct max turbo frequency based on the turbo state.
472 	 * Also need to convert to MHz as _PSS freq is in MHz.
473 	 */
474 	if (!global.turbo_disabled)
475 		cpu->acpi_perf_data.states[0].core_frequency =
476 					policy->cpuinfo.max_freq / 1000;
477 	cpu->valid_pss_table = true;
478 	pr_debug("_PPC limits will be enforced\n");
479 
480 	return;
481 
482  err:
483 	cpu->valid_pss_table = false;
484 	acpi_processor_unregister_performance(policy->cpu);
485 }
486 
487 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
488 {
489 	struct cpudata *cpu;
490 
491 	cpu = all_cpu_data[policy->cpu];
492 	if (!cpu->valid_pss_table)
493 		return;
494 
495 	acpi_processor_unregister_performance(policy->cpu);
496 }
497 #else /* CONFIG_ACPI */
498 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
499 {
500 }
501 
502 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
503 {
504 }
505 
506 static inline bool intel_pstate_acpi_pm_profile_server(void)
507 {
508 	return false;
509 }
510 #endif /* CONFIG_ACPI */
511 
512 #ifndef CONFIG_ACPI_CPPC_LIB
513 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
514 {
515 	return -ENOTSUPP;
516 }
517 #endif /* CONFIG_ACPI_CPPC_LIB */
518 
519 /**
520  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
521  * @cpu: Target CPU.
522  *
523  * On hybrid processors, HWP may expose more performance levels than there are
524  * P-states accessible through the PERF_CTL interface.  If that happens, the
525  * scaling factor between HWP performance levels and CPU frequency will be less
526  * than the scaling factor between P-state values and CPU frequency.
527  *
528  * In that case, adjust the CPU parameters used in computations accordingly.
529  */
530 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
531 {
532 	int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
533 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
534 	int perf_ctl_turbo = pstate_funcs.get_turbo();
535 	int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
536 	int scaling = cpu->pstate.scaling;
537 
538 	pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
539 	pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, pstate_funcs.get_max());
540 	pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
541 	pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
542 	pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
543 	pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
544 	pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
545 
546 	/*
547 	 * If the product of the HWP performance scaling factor and the HWP_CAP
548 	 * highest performance is greater than the maximum turbo frequency
549 	 * corresponding to the pstate_funcs.get_turbo() return value, the
550 	 * scaling factor is too high, so recompute it to make the HWP_CAP
551 	 * highest performance correspond to the maximum turbo frequency.
552 	 */
553 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
554 	if (turbo_freq < cpu->pstate.turbo_freq) {
555 		cpu->pstate.turbo_freq = turbo_freq;
556 		scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
557 		cpu->pstate.scaling = scaling;
558 
559 		pr_debug("CPU%d: refined HWP-to-frequency scaling factor: %d\n",
560 			 cpu->cpu, scaling);
561 	}
562 
563 	cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
564 					 perf_ctl_scaling);
565 
566 	cpu->pstate.max_pstate_physical =
567 			DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
568 				     scaling);
569 
570 	cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
571 	/*
572 	 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
573 	 * the effective range of HWP performance levels.
574 	 */
575 	cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
576 }
577 
578 static inline void update_turbo_state(void)
579 {
580 	u64 misc_en;
581 	struct cpudata *cpu;
582 
583 	cpu = all_cpu_data[0];
584 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
585 	global.turbo_disabled =
586 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
587 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
588 }
589 
590 static int min_perf_pct_min(void)
591 {
592 	struct cpudata *cpu = all_cpu_data[0];
593 	int turbo_pstate = cpu->pstate.turbo_pstate;
594 
595 	return turbo_pstate ?
596 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
597 }
598 
599 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
600 {
601 	u64 epb;
602 	int ret;
603 
604 	if (!boot_cpu_has(X86_FEATURE_EPB))
605 		return -ENXIO;
606 
607 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
608 	if (ret)
609 		return (s16)ret;
610 
611 	return (s16)(epb & 0x0f);
612 }
613 
614 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
615 {
616 	s16 epp;
617 
618 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
619 		/*
620 		 * When hwp_req_data is 0, means that caller didn't read
621 		 * MSR_HWP_REQUEST, so need to read and get EPP.
622 		 */
623 		if (!hwp_req_data) {
624 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
625 					    &hwp_req_data);
626 			if (epp)
627 				return epp;
628 		}
629 		epp = (hwp_req_data >> 24) & 0xff;
630 	} else {
631 		/* When there is no EPP present, HWP uses EPB settings */
632 		epp = intel_pstate_get_epb(cpu_data);
633 	}
634 
635 	return epp;
636 }
637 
638 static int intel_pstate_set_epb(int cpu, s16 pref)
639 {
640 	u64 epb;
641 	int ret;
642 
643 	if (!boot_cpu_has(X86_FEATURE_EPB))
644 		return -ENXIO;
645 
646 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
647 	if (ret)
648 		return ret;
649 
650 	epb = (epb & ~0x0f) | pref;
651 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
652 
653 	return 0;
654 }
655 
656 /*
657  * EPP/EPB display strings corresponding to EPP index in the
658  * energy_perf_strings[]
659  *	index		String
660  *-------------------------------------
661  *	0		default
662  *	1		performance
663  *	2		balance_performance
664  *	3		balance_power
665  *	4		power
666  */
667 static const char * const energy_perf_strings[] = {
668 	"default",
669 	"performance",
670 	"balance_performance",
671 	"balance_power",
672 	"power",
673 	NULL
674 };
675 static const unsigned int epp_values[] = {
676 	HWP_EPP_PERFORMANCE,
677 	HWP_EPP_BALANCE_PERFORMANCE,
678 	HWP_EPP_BALANCE_POWERSAVE,
679 	HWP_EPP_POWERSAVE
680 };
681 
682 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
683 {
684 	s16 epp;
685 	int index = -EINVAL;
686 
687 	*raw_epp = 0;
688 	epp = intel_pstate_get_epp(cpu_data, 0);
689 	if (epp < 0)
690 		return epp;
691 
692 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
693 		if (epp == HWP_EPP_PERFORMANCE)
694 			return 1;
695 		if (epp == HWP_EPP_BALANCE_PERFORMANCE)
696 			return 2;
697 		if (epp == HWP_EPP_BALANCE_POWERSAVE)
698 			return 3;
699 		if (epp == HWP_EPP_POWERSAVE)
700 			return 4;
701 		*raw_epp = epp;
702 		return 0;
703 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
704 		/*
705 		 * Range:
706 		 *	0x00-0x03	:	Performance
707 		 *	0x04-0x07	:	Balance performance
708 		 *	0x08-0x0B	:	Balance power
709 		 *	0x0C-0x0F	:	Power
710 		 * The EPB is a 4 bit value, but our ranges restrict the
711 		 * value which can be set. Here only using top two bits
712 		 * effectively.
713 		 */
714 		index = (epp >> 2) + 1;
715 	}
716 
717 	return index;
718 }
719 
720 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
721 {
722 	int ret;
723 
724 	/*
725 	 * Use the cached HWP Request MSR value, because in the active mode the
726 	 * register itself may be updated by intel_pstate_hwp_boost_up() or
727 	 * intel_pstate_hwp_boost_down() at any time.
728 	 */
729 	u64 value = READ_ONCE(cpu->hwp_req_cached);
730 
731 	value &= ~GENMASK_ULL(31, 24);
732 	value |= (u64)epp << 24;
733 	/*
734 	 * The only other updater of hwp_req_cached in the active mode,
735 	 * intel_pstate_hwp_set(), is called under the same lock as this
736 	 * function, so it cannot run in parallel with the update below.
737 	 */
738 	WRITE_ONCE(cpu->hwp_req_cached, value);
739 	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
740 	if (!ret)
741 		cpu->epp_cached = epp;
742 
743 	return ret;
744 }
745 
746 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
747 					      int pref_index, bool use_raw,
748 					      u32 raw_epp)
749 {
750 	int epp = -EINVAL;
751 	int ret;
752 
753 	if (!pref_index)
754 		epp = cpu_data->epp_default;
755 
756 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
757 		if (use_raw)
758 			epp = raw_epp;
759 		else if (epp == -EINVAL)
760 			epp = epp_values[pref_index - 1];
761 
762 		/*
763 		 * To avoid confusion, refuse to set EPP to any values different
764 		 * from 0 (performance) if the current policy is "performance",
765 		 * because those values would be overridden.
766 		 */
767 		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
768 			return -EBUSY;
769 
770 		ret = intel_pstate_set_epp(cpu_data, epp);
771 	} else {
772 		if (epp == -EINVAL)
773 			epp = (pref_index - 1) << 2;
774 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
775 	}
776 
777 	return ret;
778 }
779 
780 static ssize_t show_energy_performance_available_preferences(
781 				struct cpufreq_policy *policy, char *buf)
782 {
783 	int i = 0;
784 	int ret = 0;
785 
786 	while (energy_perf_strings[i] != NULL)
787 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
788 
789 	ret += sprintf(&buf[ret], "\n");
790 
791 	return ret;
792 }
793 
794 cpufreq_freq_attr_ro(energy_performance_available_preferences);
795 
796 static struct cpufreq_driver intel_pstate;
797 
798 static ssize_t store_energy_performance_preference(
799 		struct cpufreq_policy *policy, const char *buf, size_t count)
800 {
801 	struct cpudata *cpu = all_cpu_data[policy->cpu];
802 	char str_preference[21];
803 	bool raw = false;
804 	ssize_t ret;
805 	u32 epp = 0;
806 
807 	ret = sscanf(buf, "%20s", str_preference);
808 	if (ret != 1)
809 		return -EINVAL;
810 
811 	ret = match_string(energy_perf_strings, -1, str_preference);
812 	if (ret < 0) {
813 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
814 			return ret;
815 
816 		ret = kstrtouint(buf, 10, &epp);
817 		if (ret)
818 			return ret;
819 
820 		if (epp > 255)
821 			return -EINVAL;
822 
823 		raw = true;
824 	}
825 
826 	/*
827 	 * This function runs with the policy R/W semaphore held, which
828 	 * guarantees that the driver pointer will not change while it is
829 	 * running.
830 	 */
831 	if (!intel_pstate_driver)
832 		return -EAGAIN;
833 
834 	mutex_lock(&intel_pstate_limits_lock);
835 
836 	if (intel_pstate_driver == &intel_pstate) {
837 		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
838 	} else {
839 		/*
840 		 * In the passive mode the governor needs to be stopped on the
841 		 * target CPU before the EPP update and restarted after it,
842 		 * which is super-heavy-weight, so make sure it is worth doing
843 		 * upfront.
844 		 */
845 		if (!raw)
846 			epp = ret ? epp_values[ret - 1] : cpu->epp_default;
847 
848 		if (cpu->epp_cached != epp) {
849 			int err;
850 
851 			cpufreq_stop_governor(policy);
852 			ret = intel_pstate_set_epp(cpu, epp);
853 			err = cpufreq_start_governor(policy);
854 			if (!ret)
855 				ret = err;
856 		}
857 	}
858 
859 	mutex_unlock(&intel_pstate_limits_lock);
860 
861 	return ret ?: count;
862 }
863 
864 static ssize_t show_energy_performance_preference(
865 				struct cpufreq_policy *policy, char *buf)
866 {
867 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
868 	int preference, raw_epp;
869 
870 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
871 	if (preference < 0)
872 		return preference;
873 
874 	if (raw_epp)
875 		return  sprintf(buf, "%d\n", raw_epp);
876 	else
877 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
878 }
879 
880 cpufreq_freq_attr_rw(energy_performance_preference);
881 
882 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
883 {
884 	struct cpudata *cpu = all_cpu_data[policy->cpu];
885 	int ratio, freq;
886 
887 	ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
888 	if (ratio <= 0) {
889 		u64 cap;
890 
891 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
892 		ratio = HWP_GUARANTEED_PERF(cap);
893 	}
894 
895 	freq = ratio * cpu->pstate.scaling;
896 	if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
897 		freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
898 
899 	return sprintf(buf, "%d\n", freq);
900 }
901 
902 cpufreq_freq_attr_ro(base_frequency);
903 
904 static struct freq_attr *hwp_cpufreq_attrs[] = {
905 	&energy_performance_preference,
906 	&energy_performance_available_preferences,
907 	&base_frequency,
908 	NULL,
909 };
910 
911 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
912 {
913 	u64 cap;
914 
915 	rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
916 	WRITE_ONCE(cpu->hwp_cap_cached, cap);
917 	cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
918 	cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
919 }
920 
921 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
922 {
923 	int scaling = cpu->pstate.scaling;
924 
925 	__intel_pstate_get_hwp_cap(cpu);
926 
927 	cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
928 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
929 	if (scaling != cpu->pstate.perf_ctl_scaling) {
930 		int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
931 
932 		cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
933 						 perf_ctl_scaling);
934 		cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
935 						   perf_ctl_scaling);
936 	}
937 }
938 
939 static void intel_pstate_hwp_set(unsigned int cpu)
940 {
941 	struct cpudata *cpu_data = all_cpu_data[cpu];
942 	int max, min;
943 	u64 value;
944 	s16 epp;
945 
946 	max = cpu_data->max_perf_ratio;
947 	min = cpu_data->min_perf_ratio;
948 
949 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
950 		min = max;
951 
952 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
953 
954 	value &= ~HWP_MIN_PERF(~0L);
955 	value |= HWP_MIN_PERF(min);
956 
957 	value &= ~HWP_MAX_PERF(~0L);
958 	value |= HWP_MAX_PERF(max);
959 
960 	if (cpu_data->epp_policy == cpu_data->policy)
961 		goto skip_epp;
962 
963 	cpu_data->epp_policy = cpu_data->policy;
964 
965 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
966 		epp = intel_pstate_get_epp(cpu_data, value);
967 		cpu_data->epp_powersave = epp;
968 		/* If EPP read was failed, then don't try to write */
969 		if (epp < 0)
970 			goto skip_epp;
971 
972 		epp = 0;
973 	} else {
974 		/* skip setting EPP, when saved value is invalid */
975 		if (cpu_data->epp_powersave < 0)
976 			goto skip_epp;
977 
978 		/*
979 		 * No need to restore EPP when it is not zero. This
980 		 * means:
981 		 *  - Policy is not changed
982 		 *  - user has manually changed
983 		 *  - Error reading EPB
984 		 */
985 		epp = intel_pstate_get_epp(cpu_data, value);
986 		if (epp)
987 			goto skip_epp;
988 
989 		epp = cpu_data->epp_powersave;
990 	}
991 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
992 		value &= ~GENMASK_ULL(31, 24);
993 		value |= (u64)epp << 24;
994 	} else {
995 		intel_pstate_set_epb(cpu, epp);
996 	}
997 skip_epp:
998 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
999 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1000 }
1001 
1002 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1003 
1004 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1005 {
1006 	u64 value = READ_ONCE(cpu->hwp_req_cached);
1007 	int min_perf;
1008 
1009 	intel_pstate_disable_hwp_interrupt(cpu);
1010 
1011 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1012 		/*
1013 		 * In case the EPP has been set to "performance" by the
1014 		 * active mode "performance" scaling algorithm, replace that
1015 		 * temporary value with the cached EPP one.
1016 		 */
1017 		value &= ~GENMASK_ULL(31, 24);
1018 		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1019 		/*
1020 		 * However, make sure that EPP will be set to "performance" when
1021 		 * the CPU is brought back online again and the "performance"
1022 		 * scaling algorithm is still in effect.
1023 		 */
1024 		cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1025 	}
1026 
1027 	/*
1028 	 * Clear the desired perf field in the cached HWP request value to
1029 	 * prevent nonzero desired values from being leaked into the active
1030 	 * mode.
1031 	 */
1032 	value &= ~HWP_DESIRED_PERF(~0L);
1033 	WRITE_ONCE(cpu->hwp_req_cached, value);
1034 
1035 	value &= ~GENMASK_ULL(31, 0);
1036 	min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1037 
1038 	/* Set hwp_max = hwp_min */
1039 	value |= HWP_MAX_PERF(min_perf);
1040 	value |= HWP_MIN_PERF(min_perf);
1041 
1042 	/* Set EPP to min */
1043 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1044 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1045 
1046 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1047 }
1048 
1049 #define POWER_CTL_EE_ENABLE	1
1050 #define POWER_CTL_EE_DISABLE	2
1051 
1052 static int power_ctl_ee_state;
1053 
1054 static void set_power_ctl_ee_state(bool input)
1055 {
1056 	u64 power_ctl;
1057 
1058 	mutex_lock(&intel_pstate_driver_lock);
1059 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1060 	if (input) {
1061 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1062 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1063 	} else {
1064 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1065 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1066 	}
1067 	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1068 	mutex_unlock(&intel_pstate_driver_lock);
1069 }
1070 
1071 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1072 
1073 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1074 {
1075 	intel_pstate_hwp_enable(cpu);
1076 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1077 }
1078 
1079 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1080 {
1081 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1082 
1083 	pr_debug("CPU %d suspending\n", cpu->cpu);
1084 
1085 	cpu->suspended = true;
1086 
1087 	/* disable HWP interrupt and cancel any pending work */
1088 	intel_pstate_disable_hwp_interrupt(cpu);
1089 
1090 	return 0;
1091 }
1092 
1093 static int intel_pstate_resume(struct cpufreq_policy *policy)
1094 {
1095 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1096 
1097 	pr_debug("CPU %d resuming\n", cpu->cpu);
1098 
1099 	/* Only restore if the system default is changed */
1100 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1101 		set_power_ctl_ee_state(true);
1102 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1103 		set_power_ctl_ee_state(false);
1104 
1105 	if (cpu->suspended && hwp_active) {
1106 		mutex_lock(&intel_pstate_limits_lock);
1107 
1108 		/* Re-enable HWP, because "online" has not done that. */
1109 		intel_pstate_hwp_reenable(cpu);
1110 
1111 		mutex_unlock(&intel_pstate_limits_lock);
1112 	}
1113 
1114 	cpu->suspended = false;
1115 
1116 	return 0;
1117 }
1118 
1119 static void intel_pstate_update_policies(void)
1120 {
1121 	int cpu;
1122 
1123 	for_each_possible_cpu(cpu)
1124 		cpufreq_update_policy(cpu);
1125 }
1126 
1127 static void intel_pstate_update_max_freq(unsigned int cpu)
1128 {
1129 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1130 	struct cpudata *cpudata;
1131 
1132 	if (!policy)
1133 		return;
1134 
1135 	cpudata = all_cpu_data[cpu];
1136 	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1137 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1138 
1139 	refresh_frequency_limits(policy);
1140 
1141 	cpufreq_cpu_release(policy);
1142 }
1143 
1144 static void intel_pstate_update_limits(unsigned int cpu)
1145 {
1146 	mutex_lock(&intel_pstate_driver_lock);
1147 
1148 	update_turbo_state();
1149 	/*
1150 	 * If turbo has been turned on or off globally, policy limits for
1151 	 * all CPUs need to be updated to reflect that.
1152 	 */
1153 	if (global.turbo_disabled_mf != global.turbo_disabled) {
1154 		global.turbo_disabled_mf = global.turbo_disabled;
1155 		arch_set_max_freq_ratio(global.turbo_disabled);
1156 		for_each_possible_cpu(cpu)
1157 			intel_pstate_update_max_freq(cpu);
1158 	} else {
1159 		cpufreq_update_policy(cpu);
1160 	}
1161 
1162 	mutex_unlock(&intel_pstate_driver_lock);
1163 }
1164 
1165 /************************** sysfs begin ************************/
1166 #define show_one(file_name, object)					\
1167 	static ssize_t show_##file_name					\
1168 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1169 	{								\
1170 		return sprintf(buf, "%u\n", global.object);		\
1171 	}
1172 
1173 static ssize_t intel_pstate_show_status(char *buf);
1174 static int intel_pstate_update_status(const char *buf, size_t size);
1175 
1176 static ssize_t show_status(struct kobject *kobj,
1177 			   struct kobj_attribute *attr, char *buf)
1178 {
1179 	ssize_t ret;
1180 
1181 	mutex_lock(&intel_pstate_driver_lock);
1182 	ret = intel_pstate_show_status(buf);
1183 	mutex_unlock(&intel_pstate_driver_lock);
1184 
1185 	return ret;
1186 }
1187 
1188 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1189 			    const char *buf, size_t count)
1190 {
1191 	char *p = memchr(buf, '\n', count);
1192 	int ret;
1193 
1194 	mutex_lock(&intel_pstate_driver_lock);
1195 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1196 	mutex_unlock(&intel_pstate_driver_lock);
1197 
1198 	return ret < 0 ? ret : count;
1199 }
1200 
1201 static ssize_t show_turbo_pct(struct kobject *kobj,
1202 				struct kobj_attribute *attr, char *buf)
1203 {
1204 	struct cpudata *cpu;
1205 	int total, no_turbo, turbo_pct;
1206 	uint32_t turbo_fp;
1207 
1208 	mutex_lock(&intel_pstate_driver_lock);
1209 
1210 	if (!intel_pstate_driver) {
1211 		mutex_unlock(&intel_pstate_driver_lock);
1212 		return -EAGAIN;
1213 	}
1214 
1215 	cpu = all_cpu_data[0];
1216 
1217 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1218 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1219 	turbo_fp = div_fp(no_turbo, total);
1220 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1221 
1222 	mutex_unlock(&intel_pstate_driver_lock);
1223 
1224 	return sprintf(buf, "%u\n", turbo_pct);
1225 }
1226 
1227 static ssize_t show_num_pstates(struct kobject *kobj,
1228 				struct kobj_attribute *attr, char *buf)
1229 {
1230 	struct cpudata *cpu;
1231 	int total;
1232 
1233 	mutex_lock(&intel_pstate_driver_lock);
1234 
1235 	if (!intel_pstate_driver) {
1236 		mutex_unlock(&intel_pstate_driver_lock);
1237 		return -EAGAIN;
1238 	}
1239 
1240 	cpu = all_cpu_data[0];
1241 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1242 
1243 	mutex_unlock(&intel_pstate_driver_lock);
1244 
1245 	return sprintf(buf, "%u\n", total);
1246 }
1247 
1248 static ssize_t show_no_turbo(struct kobject *kobj,
1249 			     struct kobj_attribute *attr, char *buf)
1250 {
1251 	ssize_t ret;
1252 
1253 	mutex_lock(&intel_pstate_driver_lock);
1254 
1255 	if (!intel_pstate_driver) {
1256 		mutex_unlock(&intel_pstate_driver_lock);
1257 		return -EAGAIN;
1258 	}
1259 
1260 	update_turbo_state();
1261 	if (global.turbo_disabled)
1262 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1263 	else
1264 		ret = sprintf(buf, "%u\n", global.no_turbo);
1265 
1266 	mutex_unlock(&intel_pstate_driver_lock);
1267 
1268 	return ret;
1269 }
1270 
1271 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1272 			      const char *buf, size_t count)
1273 {
1274 	unsigned int input;
1275 	int ret;
1276 
1277 	ret = sscanf(buf, "%u", &input);
1278 	if (ret != 1)
1279 		return -EINVAL;
1280 
1281 	mutex_lock(&intel_pstate_driver_lock);
1282 
1283 	if (!intel_pstate_driver) {
1284 		mutex_unlock(&intel_pstate_driver_lock);
1285 		return -EAGAIN;
1286 	}
1287 
1288 	mutex_lock(&intel_pstate_limits_lock);
1289 
1290 	update_turbo_state();
1291 	if (global.turbo_disabled) {
1292 		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1293 		mutex_unlock(&intel_pstate_limits_lock);
1294 		mutex_unlock(&intel_pstate_driver_lock);
1295 		return -EPERM;
1296 	}
1297 
1298 	global.no_turbo = clamp_t(int, input, 0, 1);
1299 
1300 	if (global.no_turbo) {
1301 		struct cpudata *cpu = all_cpu_data[0];
1302 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1303 
1304 		/* Squash the global minimum into the permitted range. */
1305 		if (global.min_perf_pct > pct)
1306 			global.min_perf_pct = pct;
1307 	}
1308 
1309 	mutex_unlock(&intel_pstate_limits_lock);
1310 
1311 	intel_pstate_update_policies();
1312 
1313 	mutex_unlock(&intel_pstate_driver_lock);
1314 
1315 	return count;
1316 }
1317 
1318 static void update_qos_request(enum freq_qos_req_type type)
1319 {
1320 	struct freq_qos_request *req;
1321 	struct cpufreq_policy *policy;
1322 	int i;
1323 
1324 	for_each_possible_cpu(i) {
1325 		struct cpudata *cpu = all_cpu_data[i];
1326 		unsigned int freq, perf_pct;
1327 
1328 		policy = cpufreq_cpu_get(i);
1329 		if (!policy)
1330 			continue;
1331 
1332 		req = policy->driver_data;
1333 		cpufreq_cpu_put(policy);
1334 
1335 		if (!req)
1336 			continue;
1337 
1338 		if (hwp_active)
1339 			intel_pstate_get_hwp_cap(cpu);
1340 
1341 		if (type == FREQ_QOS_MIN) {
1342 			perf_pct = global.min_perf_pct;
1343 		} else {
1344 			req++;
1345 			perf_pct = global.max_perf_pct;
1346 		}
1347 
1348 		freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1349 
1350 		if (freq_qos_update_request(req, freq) < 0)
1351 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1352 	}
1353 }
1354 
1355 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1356 				  const char *buf, size_t count)
1357 {
1358 	unsigned int input;
1359 	int ret;
1360 
1361 	ret = sscanf(buf, "%u", &input);
1362 	if (ret != 1)
1363 		return -EINVAL;
1364 
1365 	mutex_lock(&intel_pstate_driver_lock);
1366 
1367 	if (!intel_pstate_driver) {
1368 		mutex_unlock(&intel_pstate_driver_lock);
1369 		return -EAGAIN;
1370 	}
1371 
1372 	mutex_lock(&intel_pstate_limits_lock);
1373 
1374 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1375 
1376 	mutex_unlock(&intel_pstate_limits_lock);
1377 
1378 	if (intel_pstate_driver == &intel_pstate)
1379 		intel_pstate_update_policies();
1380 	else
1381 		update_qos_request(FREQ_QOS_MAX);
1382 
1383 	mutex_unlock(&intel_pstate_driver_lock);
1384 
1385 	return count;
1386 }
1387 
1388 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1389 				  const char *buf, size_t count)
1390 {
1391 	unsigned int input;
1392 	int ret;
1393 
1394 	ret = sscanf(buf, "%u", &input);
1395 	if (ret != 1)
1396 		return -EINVAL;
1397 
1398 	mutex_lock(&intel_pstate_driver_lock);
1399 
1400 	if (!intel_pstate_driver) {
1401 		mutex_unlock(&intel_pstate_driver_lock);
1402 		return -EAGAIN;
1403 	}
1404 
1405 	mutex_lock(&intel_pstate_limits_lock);
1406 
1407 	global.min_perf_pct = clamp_t(int, input,
1408 				      min_perf_pct_min(), global.max_perf_pct);
1409 
1410 	mutex_unlock(&intel_pstate_limits_lock);
1411 
1412 	if (intel_pstate_driver == &intel_pstate)
1413 		intel_pstate_update_policies();
1414 	else
1415 		update_qos_request(FREQ_QOS_MIN);
1416 
1417 	mutex_unlock(&intel_pstate_driver_lock);
1418 
1419 	return count;
1420 }
1421 
1422 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1423 				struct kobj_attribute *attr, char *buf)
1424 {
1425 	return sprintf(buf, "%u\n", hwp_boost);
1426 }
1427 
1428 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1429 				       struct kobj_attribute *b,
1430 				       const char *buf, size_t count)
1431 {
1432 	unsigned int input;
1433 	int ret;
1434 
1435 	ret = kstrtouint(buf, 10, &input);
1436 	if (ret)
1437 		return ret;
1438 
1439 	mutex_lock(&intel_pstate_driver_lock);
1440 	hwp_boost = !!input;
1441 	intel_pstate_update_policies();
1442 	mutex_unlock(&intel_pstate_driver_lock);
1443 
1444 	return count;
1445 }
1446 
1447 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1448 				      char *buf)
1449 {
1450 	u64 power_ctl;
1451 	int enable;
1452 
1453 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1454 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1455 	return sprintf(buf, "%d\n", !enable);
1456 }
1457 
1458 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1459 				       const char *buf, size_t count)
1460 {
1461 	bool input;
1462 	int ret;
1463 
1464 	ret = kstrtobool(buf, &input);
1465 	if (ret)
1466 		return ret;
1467 
1468 	set_power_ctl_ee_state(input);
1469 
1470 	return count;
1471 }
1472 
1473 show_one(max_perf_pct, max_perf_pct);
1474 show_one(min_perf_pct, min_perf_pct);
1475 
1476 define_one_global_rw(status);
1477 define_one_global_rw(no_turbo);
1478 define_one_global_rw(max_perf_pct);
1479 define_one_global_rw(min_perf_pct);
1480 define_one_global_ro(turbo_pct);
1481 define_one_global_ro(num_pstates);
1482 define_one_global_rw(hwp_dynamic_boost);
1483 define_one_global_rw(energy_efficiency);
1484 
1485 static struct attribute *intel_pstate_attributes[] = {
1486 	&status.attr,
1487 	&no_turbo.attr,
1488 	NULL
1489 };
1490 
1491 static const struct attribute_group intel_pstate_attr_group = {
1492 	.attrs = intel_pstate_attributes,
1493 };
1494 
1495 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1496 
1497 static struct kobject *intel_pstate_kobject;
1498 
1499 static void __init intel_pstate_sysfs_expose_params(void)
1500 {
1501 	int rc;
1502 
1503 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1504 						&cpu_subsys.dev_root->kobj);
1505 	if (WARN_ON(!intel_pstate_kobject))
1506 		return;
1507 
1508 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1509 	if (WARN_ON(rc))
1510 		return;
1511 
1512 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1513 		rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1514 		WARN_ON(rc);
1515 
1516 		rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1517 		WARN_ON(rc);
1518 	}
1519 
1520 	/*
1521 	 * If per cpu limits are enforced there are no global limits, so
1522 	 * return without creating max/min_perf_pct attributes
1523 	 */
1524 	if (per_cpu_limits)
1525 		return;
1526 
1527 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1528 	WARN_ON(rc);
1529 
1530 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1531 	WARN_ON(rc);
1532 
1533 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1534 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1535 		WARN_ON(rc);
1536 	}
1537 }
1538 
1539 static void __init intel_pstate_sysfs_remove(void)
1540 {
1541 	if (!intel_pstate_kobject)
1542 		return;
1543 
1544 	sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1545 
1546 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1547 		sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1548 		sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1549 	}
1550 
1551 	if (!per_cpu_limits) {
1552 		sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1553 		sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1554 
1555 		if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1556 			sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1557 	}
1558 
1559 	kobject_put(intel_pstate_kobject);
1560 }
1561 
1562 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1563 {
1564 	int rc;
1565 
1566 	if (!hwp_active)
1567 		return;
1568 
1569 	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1570 	WARN_ON_ONCE(rc);
1571 }
1572 
1573 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1574 {
1575 	if (!hwp_active)
1576 		return;
1577 
1578 	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1579 }
1580 
1581 /************************** sysfs end ************************/
1582 
1583 static void intel_pstate_notify_work(struct work_struct *work)
1584 {
1585 	struct cpudata *cpudata =
1586 		container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1587 
1588 	cpufreq_update_policy(cpudata->cpu);
1589 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1590 }
1591 
1592 static DEFINE_SPINLOCK(hwp_notify_lock);
1593 static cpumask_t hwp_intr_enable_mask;
1594 
1595 void notify_hwp_interrupt(void)
1596 {
1597 	unsigned int this_cpu = smp_processor_id();
1598 	struct cpudata *cpudata;
1599 	unsigned long flags;
1600 	u64 value;
1601 
1602 	if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1603 		return;
1604 
1605 	rdmsrl_safe(MSR_HWP_STATUS, &value);
1606 	if (!(value & 0x01))
1607 		return;
1608 
1609 	spin_lock_irqsave(&hwp_notify_lock, flags);
1610 
1611 	if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1612 		goto ack_intr;
1613 
1614 	/*
1615 	 * Currently we never free all_cpu_data. And we can't reach here
1616 	 * without this allocated. But for safety for future changes, added
1617 	 * check.
1618 	 */
1619 	if (unlikely(!READ_ONCE(all_cpu_data)))
1620 		goto ack_intr;
1621 
1622 	/*
1623 	 * The free is done during cleanup, when cpufreq registry is failed.
1624 	 * We wouldn't be here if it fails on init or switch status. But for
1625 	 * future changes, added check.
1626 	 */
1627 	cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1628 	if (unlikely(!cpudata))
1629 		goto ack_intr;
1630 
1631 	schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1632 
1633 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1634 
1635 	return;
1636 
1637 ack_intr:
1638 	wrmsrl_safe(MSR_HWP_STATUS, 0);
1639 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1640 }
1641 
1642 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1643 {
1644 	unsigned long flags;
1645 
1646 	if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1647 		return;
1648 
1649 	/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1650 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1651 
1652 	spin_lock_irqsave(&hwp_notify_lock, flags);
1653 	if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1654 		cancel_delayed_work(&cpudata->hwp_notify_work);
1655 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1656 }
1657 
1658 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1659 {
1660 	/* Enable HWP notification interrupt for guaranteed performance change */
1661 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1662 		unsigned long flags;
1663 
1664 		spin_lock_irqsave(&hwp_notify_lock, flags);
1665 		INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1666 		cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1667 		spin_unlock_irqrestore(&hwp_notify_lock, flags);
1668 
1669 		/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1670 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1671 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1672 	}
1673 }
1674 
1675 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1676 {
1677 	/* First disable HWP notification interrupt till we activate again */
1678 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1679 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1680 
1681 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1682 	if (cpudata->epp_default == -EINVAL)
1683 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1684 
1685 	intel_pstate_enable_hwp_interrupt(cpudata);
1686 }
1687 
1688 static int atom_get_min_pstate(void)
1689 {
1690 	u64 value;
1691 
1692 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1693 	return (value >> 8) & 0x7F;
1694 }
1695 
1696 static int atom_get_max_pstate(void)
1697 {
1698 	u64 value;
1699 
1700 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1701 	return (value >> 16) & 0x7F;
1702 }
1703 
1704 static int atom_get_turbo_pstate(void)
1705 {
1706 	u64 value;
1707 
1708 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1709 	return value & 0x7F;
1710 }
1711 
1712 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1713 {
1714 	u64 val;
1715 	int32_t vid_fp;
1716 	u32 vid;
1717 
1718 	val = (u64)pstate << 8;
1719 	if (global.no_turbo && !global.turbo_disabled)
1720 		val |= (u64)1 << 32;
1721 
1722 	vid_fp = cpudata->vid.min + mul_fp(
1723 		int_tofp(pstate - cpudata->pstate.min_pstate),
1724 		cpudata->vid.ratio);
1725 
1726 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1727 	vid = ceiling_fp(vid_fp);
1728 
1729 	if (pstate > cpudata->pstate.max_pstate)
1730 		vid = cpudata->vid.turbo;
1731 
1732 	return val | vid;
1733 }
1734 
1735 static int silvermont_get_scaling(void)
1736 {
1737 	u64 value;
1738 	int i;
1739 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1740 	static int silvermont_freq_table[] = {
1741 		83300, 100000, 133300, 116700, 80000};
1742 
1743 	rdmsrl(MSR_FSB_FREQ, value);
1744 	i = value & 0x7;
1745 	WARN_ON(i > 4);
1746 
1747 	return silvermont_freq_table[i];
1748 }
1749 
1750 static int airmont_get_scaling(void)
1751 {
1752 	u64 value;
1753 	int i;
1754 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1755 	static int airmont_freq_table[] = {
1756 		83300, 100000, 133300, 116700, 80000,
1757 		93300, 90000, 88900, 87500};
1758 
1759 	rdmsrl(MSR_FSB_FREQ, value);
1760 	i = value & 0xF;
1761 	WARN_ON(i > 8);
1762 
1763 	return airmont_freq_table[i];
1764 }
1765 
1766 static void atom_get_vid(struct cpudata *cpudata)
1767 {
1768 	u64 value;
1769 
1770 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1771 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1772 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1773 	cpudata->vid.ratio = div_fp(
1774 		cpudata->vid.max - cpudata->vid.min,
1775 		int_tofp(cpudata->pstate.max_pstate -
1776 			cpudata->pstate.min_pstate));
1777 
1778 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1779 	cpudata->vid.turbo = value & 0x7f;
1780 }
1781 
1782 static int core_get_min_pstate(void)
1783 {
1784 	u64 value;
1785 
1786 	rdmsrl(MSR_PLATFORM_INFO, value);
1787 	return (value >> 40) & 0xFF;
1788 }
1789 
1790 static int core_get_max_pstate_physical(void)
1791 {
1792 	u64 value;
1793 
1794 	rdmsrl(MSR_PLATFORM_INFO, value);
1795 	return (value >> 8) & 0xFF;
1796 }
1797 
1798 static int core_get_tdp_ratio(u64 plat_info)
1799 {
1800 	/* Check how many TDP levels present */
1801 	if (plat_info & 0x600000000) {
1802 		u64 tdp_ctrl;
1803 		u64 tdp_ratio;
1804 		int tdp_msr;
1805 		int err;
1806 
1807 		/* Get the TDP level (0, 1, 2) to get ratios */
1808 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1809 		if (err)
1810 			return err;
1811 
1812 		/* TDP MSR are continuous starting at 0x648 */
1813 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1814 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1815 		if (err)
1816 			return err;
1817 
1818 		/* For level 1 and 2, bits[23:16] contain the ratio */
1819 		if (tdp_ctrl & 0x03)
1820 			tdp_ratio >>= 16;
1821 
1822 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1823 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1824 
1825 		return (int)tdp_ratio;
1826 	}
1827 
1828 	return -ENXIO;
1829 }
1830 
1831 static int core_get_max_pstate(void)
1832 {
1833 	u64 tar;
1834 	u64 plat_info;
1835 	int max_pstate;
1836 	int tdp_ratio;
1837 	int err;
1838 
1839 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1840 	max_pstate = (plat_info >> 8) & 0xFF;
1841 
1842 	tdp_ratio = core_get_tdp_ratio(plat_info);
1843 	if (tdp_ratio <= 0)
1844 		return max_pstate;
1845 
1846 	if (hwp_active) {
1847 		/* Turbo activation ratio is not used on HWP platforms */
1848 		return tdp_ratio;
1849 	}
1850 
1851 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1852 	if (!err) {
1853 		int tar_levels;
1854 
1855 		/* Do some sanity checking for safety */
1856 		tar_levels = tar & 0xff;
1857 		if (tdp_ratio - 1 == tar_levels) {
1858 			max_pstate = tar_levels;
1859 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1860 		}
1861 	}
1862 
1863 	return max_pstate;
1864 }
1865 
1866 static int core_get_turbo_pstate(void)
1867 {
1868 	u64 value;
1869 	int nont, ret;
1870 
1871 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1872 	nont = core_get_max_pstate();
1873 	ret = (value) & 255;
1874 	if (ret <= nont)
1875 		ret = nont;
1876 	return ret;
1877 }
1878 
1879 static inline int core_get_scaling(void)
1880 {
1881 	return 100000;
1882 }
1883 
1884 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1885 {
1886 	u64 val;
1887 
1888 	val = (u64)pstate << 8;
1889 	if (global.no_turbo && !global.turbo_disabled)
1890 		val |= (u64)1 << 32;
1891 
1892 	return val;
1893 }
1894 
1895 static int knl_get_aperf_mperf_shift(void)
1896 {
1897 	return 10;
1898 }
1899 
1900 static int knl_get_turbo_pstate(void)
1901 {
1902 	u64 value;
1903 	int nont, ret;
1904 
1905 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1906 	nont = core_get_max_pstate();
1907 	ret = (((value) >> 8) & 0xFF);
1908 	if (ret <= nont)
1909 		ret = nont;
1910 	return ret;
1911 }
1912 
1913 #ifdef CONFIG_ACPI_CPPC_LIB
1914 static u32 hybrid_ref_perf;
1915 
1916 static int hybrid_get_cpu_scaling(int cpu)
1917 {
1918 	return DIV_ROUND_UP(core_get_scaling() * hybrid_ref_perf,
1919 			    intel_pstate_cppc_nominal(cpu));
1920 }
1921 
1922 static void intel_pstate_cppc_set_cpu_scaling(void)
1923 {
1924 	u32 min_nominal_perf = U32_MAX;
1925 	int cpu;
1926 
1927 	for_each_present_cpu(cpu) {
1928 		u32 nominal_perf = intel_pstate_cppc_nominal(cpu);
1929 
1930 		if (nominal_perf && nominal_perf < min_nominal_perf)
1931 			min_nominal_perf = nominal_perf;
1932 	}
1933 
1934 	if (min_nominal_perf < U32_MAX) {
1935 		hybrid_ref_perf = min_nominal_perf;
1936 		pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
1937 	}
1938 }
1939 #else
1940 static inline void intel_pstate_cppc_set_cpu_scaling(void)
1941 {
1942 }
1943 #endif /* CONFIG_ACPI_CPPC_LIB */
1944 
1945 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1946 {
1947 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1948 	cpu->pstate.current_pstate = pstate;
1949 	/*
1950 	 * Generally, there is no guarantee that this code will always run on
1951 	 * the CPU being updated, so force the register update to run on the
1952 	 * right CPU.
1953 	 */
1954 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1955 		      pstate_funcs.get_val(cpu, pstate));
1956 }
1957 
1958 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1959 {
1960 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1961 }
1962 
1963 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1964 {
1965 	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1966 
1967 	update_turbo_state();
1968 	intel_pstate_set_pstate(cpu, pstate);
1969 }
1970 
1971 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1972 {
1973 	int perf_ctl_max_phys = pstate_funcs.get_max_physical();
1974 	int perf_ctl_scaling = pstate_funcs.get_scaling();
1975 
1976 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1977 	cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
1978 	cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
1979 
1980 	if (hwp_active && !hwp_mode_bdw) {
1981 		__intel_pstate_get_hwp_cap(cpu);
1982 
1983 		if (pstate_funcs.get_cpu_scaling) {
1984 			cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
1985 			if (cpu->pstate.scaling != perf_ctl_scaling)
1986 				intel_pstate_hybrid_hwp_adjust(cpu);
1987 		} else {
1988 			cpu->pstate.scaling = perf_ctl_scaling;
1989 		}
1990 	} else {
1991 		cpu->pstate.scaling = perf_ctl_scaling;
1992 		cpu->pstate.max_pstate = pstate_funcs.get_max();
1993 		cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1994 	}
1995 
1996 	if (cpu->pstate.scaling == perf_ctl_scaling) {
1997 		cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
1998 		cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
1999 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2000 	}
2001 
2002 	if (pstate_funcs.get_aperf_mperf_shift)
2003 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2004 
2005 	if (pstate_funcs.get_vid)
2006 		pstate_funcs.get_vid(cpu);
2007 
2008 	intel_pstate_set_min_pstate(cpu);
2009 }
2010 
2011 /*
2012  * Long hold time will keep high perf limits for long time,
2013  * which negatively impacts perf/watt for some workloads,
2014  * like specpower. 3ms is based on experiements on some
2015  * workoads.
2016  */
2017 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2018 
2019 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2020 {
2021 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2022 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2023 	u32 max_limit = (hwp_req & 0xff00) >> 8;
2024 	u32 min_limit = (hwp_req & 0xff);
2025 	u32 boost_level1;
2026 
2027 	/*
2028 	 * Cases to consider (User changes via sysfs or boot time):
2029 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2030 	 *	No boost, return.
2031 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2032 	 *     Should result in one level boost only for P0.
2033 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2034 	 *     Should result in two level boost:
2035 	 *         (min + p1)/2 and P1.
2036 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2037 	 *     Should result in three level boost:
2038 	 *        (min + p1)/2, P1 and P0.
2039 	 */
2040 
2041 	/* If max and min are equal or already at max, nothing to boost */
2042 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2043 		return;
2044 
2045 	if (!cpu->hwp_boost_min)
2046 		cpu->hwp_boost_min = min_limit;
2047 
2048 	/* level at half way mark between min and guranteed */
2049 	boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2050 
2051 	if (cpu->hwp_boost_min < boost_level1)
2052 		cpu->hwp_boost_min = boost_level1;
2053 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2054 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2055 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2056 		 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2057 		cpu->hwp_boost_min = max_limit;
2058 	else
2059 		return;
2060 
2061 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2062 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
2063 	cpu->last_update = cpu->sample.time;
2064 }
2065 
2066 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2067 {
2068 	if (cpu->hwp_boost_min) {
2069 		bool expired;
2070 
2071 		/* Check if we are idle for hold time to boost down */
2072 		expired = time_after64(cpu->sample.time, cpu->last_update +
2073 				       hwp_boost_hold_time_ns);
2074 		if (expired) {
2075 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2076 			cpu->hwp_boost_min = 0;
2077 		}
2078 	}
2079 	cpu->last_update = cpu->sample.time;
2080 }
2081 
2082 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2083 						      u64 time)
2084 {
2085 	cpu->sample.time = time;
2086 
2087 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2088 		bool do_io = false;
2089 
2090 		cpu->sched_flags = 0;
2091 		/*
2092 		 * Set iowait_boost flag and update time. Since IO WAIT flag
2093 		 * is set all the time, we can't just conclude that there is
2094 		 * some IO bound activity is scheduled on this CPU with just
2095 		 * one occurrence. If we receive at least two in two
2096 		 * consecutive ticks, then we treat as boost candidate.
2097 		 */
2098 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2099 			do_io = true;
2100 
2101 		cpu->last_io_update = time;
2102 
2103 		if (do_io)
2104 			intel_pstate_hwp_boost_up(cpu);
2105 
2106 	} else {
2107 		intel_pstate_hwp_boost_down(cpu);
2108 	}
2109 }
2110 
2111 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2112 						u64 time, unsigned int flags)
2113 {
2114 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2115 
2116 	cpu->sched_flags |= flags;
2117 
2118 	if (smp_processor_id() == cpu->cpu)
2119 		intel_pstate_update_util_hwp_local(cpu, time);
2120 }
2121 
2122 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2123 {
2124 	struct sample *sample = &cpu->sample;
2125 
2126 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2127 }
2128 
2129 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2130 {
2131 	u64 aperf, mperf;
2132 	unsigned long flags;
2133 	u64 tsc;
2134 
2135 	local_irq_save(flags);
2136 	rdmsrl(MSR_IA32_APERF, aperf);
2137 	rdmsrl(MSR_IA32_MPERF, mperf);
2138 	tsc = rdtsc();
2139 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2140 		local_irq_restore(flags);
2141 		return false;
2142 	}
2143 	local_irq_restore(flags);
2144 
2145 	cpu->last_sample_time = cpu->sample.time;
2146 	cpu->sample.time = time;
2147 	cpu->sample.aperf = aperf;
2148 	cpu->sample.mperf = mperf;
2149 	cpu->sample.tsc =  tsc;
2150 	cpu->sample.aperf -= cpu->prev_aperf;
2151 	cpu->sample.mperf -= cpu->prev_mperf;
2152 	cpu->sample.tsc -= cpu->prev_tsc;
2153 
2154 	cpu->prev_aperf = aperf;
2155 	cpu->prev_mperf = mperf;
2156 	cpu->prev_tsc = tsc;
2157 	/*
2158 	 * First time this function is invoked in a given cycle, all of the
2159 	 * previous sample data fields are equal to zero or stale and they must
2160 	 * be populated with meaningful numbers for things to work, so assume
2161 	 * that sample.time will always be reset before setting the utilization
2162 	 * update hook and make the caller skip the sample then.
2163 	 */
2164 	if (cpu->last_sample_time) {
2165 		intel_pstate_calc_avg_perf(cpu);
2166 		return true;
2167 	}
2168 	return false;
2169 }
2170 
2171 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2172 {
2173 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2174 }
2175 
2176 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2177 {
2178 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
2179 			  cpu->sample.core_avg_perf);
2180 }
2181 
2182 static inline int32_t get_target_pstate(struct cpudata *cpu)
2183 {
2184 	struct sample *sample = &cpu->sample;
2185 	int32_t busy_frac;
2186 	int target, avg_pstate;
2187 
2188 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2189 			   sample->tsc);
2190 
2191 	if (busy_frac < cpu->iowait_boost)
2192 		busy_frac = cpu->iowait_boost;
2193 
2194 	sample->busy_scaled = busy_frac * 100;
2195 
2196 	target = global.no_turbo || global.turbo_disabled ?
2197 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2198 	target += target >> 2;
2199 	target = mul_fp(target, busy_frac);
2200 	if (target < cpu->pstate.min_pstate)
2201 		target = cpu->pstate.min_pstate;
2202 
2203 	/*
2204 	 * If the average P-state during the previous cycle was higher than the
2205 	 * current target, add 50% of the difference to the target to reduce
2206 	 * possible performance oscillations and offset possible performance
2207 	 * loss related to moving the workload from one CPU to another within
2208 	 * a package/module.
2209 	 */
2210 	avg_pstate = get_avg_pstate(cpu);
2211 	if (avg_pstate > target)
2212 		target += (avg_pstate - target) >> 1;
2213 
2214 	return target;
2215 }
2216 
2217 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2218 {
2219 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2220 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2221 
2222 	return clamp_t(int, pstate, min_pstate, max_pstate);
2223 }
2224 
2225 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2226 {
2227 	if (pstate == cpu->pstate.current_pstate)
2228 		return;
2229 
2230 	cpu->pstate.current_pstate = pstate;
2231 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2232 }
2233 
2234 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2235 {
2236 	int from = cpu->pstate.current_pstate;
2237 	struct sample *sample;
2238 	int target_pstate;
2239 
2240 	update_turbo_state();
2241 
2242 	target_pstate = get_target_pstate(cpu);
2243 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2244 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2245 	intel_pstate_update_pstate(cpu, target_pstate);
2246 
2247 	sample = &cpu->sample;
2248 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2249 		fp_toint(sample->busy_scaled),
2250 		from,
2251 		cpu->pstate.current_pstate,
2252 		sample->mperf,
2253 		sample->aperf,
2254 		sample->tsc,
2255 		get_avg_frequency(cpu),
2256 		fp_toint(cpu->iowait_boost * 100));
2257 }
2258 
2259 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2260 				     unsigned int flags)
2261 {
2262 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2263 	u64 delta_ns;
2264 
2265 	/* Don't allow remote callbacks */
2266 	if (smp_processor_id() != cpu->cpu)
2267 		return;
2268 
2269 	delta_ns = time - cpu->last_update;
2270 	if (flags & SCHED_CPUFREQ_IOWAIT) {
2271 		/* Start over if the CPU may have been idle. */
2272 		if (delta_ns > TICK_NSEC) {
2273 			cpu->iowait_boost = ONE_EIGHTH_FP;
2274 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2275 			cpu->iowait_boost <<= 1;
2276 			if (cpu->iowait_boost > int_tofp(1))
2277 				cpu->iowait_boost = int_tofp(1);
2278 		} else {
2279 			cpu->iowait_boost = ONE_EIGHTH_FP;
2280 		}
2281 	} else if (cpu->iowait_boost) {
2282 		/* Clear iowait_boost if the CPU may have been idle. */
2283 		if (delta_ns > TICK_NSEC)
2284 			cpu->iowait_boost = 0;
2285 		else
2286 			cpu->iowait_boost >>= 1;
2287 	}
2288 	cpu->last_update = time;
2289 	delta_ns = time - cpu->sample.time;
2290 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2291 		return;
2292 
2293 	if (intel_pstate_sample(cpu, time))
2294 		intel_pstate_adjust_pstate(cpu);
2295 }
2296 
2297 static struct pstate_funcs core_funcs = {
2298 	.get_max = core_get_max_pstate,
2299 	.get_max_physical = core_get_max_pstate_physical,
2300 	.get_min = core_get_min_pstate,
2301 	.get_turbo = core_get_turbo_pstate,
2302 	.get_scaling = core_get_scaling,
2303 	.get_val = core_get_val,
2304 };
2305 
2306 static const struct pstate_funcs silvermont_funcs = {
2307 	.get_max = atom_get_max_pstate,
2308 	.get_max_physical = atom_get_max_pstate,
2309 	.get_min = atom_get_min_pstate,
2310 	.get_turbo = atom_get_turbo_pstate,
2311 	.get_val = atom_get_val,
2312 	.get_scaling = silvermont_get_scaling,
2313 	.get_vid = atom_get_vid,
2314 };
2315 
2316 static const struct pstate_funcs airmont_funcs = {
2317 	.get_max = atom_get_max_pstate,
2318 	.get_max_physical = atom_get_max_pstate,
2319 	.get_min = atom_get_min_pstate,
2320 	.get_turbo = atom_get_turbo_pstate,
2321 	.get_val = atom_get_val,
2322 	.get_scaling = airmont_get_scaling,
2323 	.get_vid = atom_get_vid,
2324 };
2325 
2326 static const struct pstate_funcs knl_funcs = {
2327 	.get_max = core_get_max_pstate,
2328 	.get_max_physical = core_get_max_pstate_physical,
2329 	.get_min = core_get_min_pstate,
2330 	.get_turbo = knl_get_turbo_pstate,
2331 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2332 	.get_scaling = core_get_scaling,
2333 	.get_val = core_get_val,
2334 };
2335 
2336 #define X86_MATCH(model, policy)					 \
2337 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2338 					   X86_FEATURE_APERFMPERF, &policy)
2339 
2340 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2341 	X86_MATCH(SANDYBRIDGE,		core_funcs),
2342 	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
2343 	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
2344 	X86_MATCH(IVYBRIDGE,		core_funcs),
2345 	X86_MATCH(HASWELL,		core_funcs),
2346 	X86_MATCH(BROADWELL,		core_funcs),
2347 	X86_MATCH(IVYBRIDGE_X,		core_funcs),
2348 	X86_MATCH(HASWELL_X,		core_funcs),
2349 	X86_MATCH(HASWELL_L,		core_funcs),
2350 	X86_MATCH(HASWELL_G,		core_funcs),
2351 	X86_MATCH(BROADWELL_G,		core_funcs),
2352 	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
2353 	X86_MATCH(SKYLAKE_L,		core_funcs),
2354 	X86_MATCH(BROADWELL_X,		core_funcs),
2355 	X86_MATCH(SKYLAKE,		core_funcs),
2356 	X86_MATCH(BROADWELL_D,		core_funcs),
2357 	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
2358 	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
2359 	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
2360 	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
2361 	X86_MATCH(SKYLAKE_X,		core_funcs),
2362 	X86_MATCH(COMETLAKE,		core_funcs),
2363 	X86_MATCH(ICELAKE_X,		core_funcs),
2364 	{}
2365 };
2366 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2367 
2368 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2369 	X86_MATCH(BROADWELL_D,		core_funcs),
2370 	X86_MATCH(BROADWELL_X,		core_funcs),
2371 	X86_MATCH(SKYLAKE_X,		core_funcs),
2372 	X86_MATCH(ICELAKE_X,		core_funcs),
2373 	{}
2374 };
2375 
2376 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2377 	X86_MATCH(KABYLAKE,		core_funcs),
2378 	{}
2379 };
2380 
2381 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2382 	X86_MATCH(SKYLAKE_X,		core_funcs),
2383 	X86_MATCH(SKYLAKE,		core_funcs),
2384 	{}
2385 };
2386 
2387 static int intel_pstate_init_cpu(unsigned int cpunum)
2388 {
2389 	struct cpudata *cpu;
2390 
2391 	cpu = all_cpu_data[cpunum];
2392 
2393 	if (!cpu) {
2394 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2395 		if (!cpu)
2396 			return -ENOMEM;
2397 
2398 		WRITE_ONCE(all_cpu_data[cpunum], cpu);
2399 
2400 		cpu->cpu = cpunum;
2401 
2402 		cpu->epp_default = -EINVAL;
2403 
2404 		if (hwp_active) {
2405 			const struct x86_cpu_id *id;
2406 
2407 			intel_pstate_hwp_enable(cpu);
2408 
2409 			id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2410 			if (id && intel_pstate_acpi_pm_profile_server())
2411 				hwp_boost = true;
2412 		}
2413 	} else if (hwp_active) {
2414 		/*
2415 		 * Re-enable HWP in case this happens after a resume from ACPI
2416 		 * S3 if the CPU was offline during the whole system/resume
2417 		 * cycle.
2418 		 */
2419 		intel_pstate_hwp_reenable(cpu);
2420 	}
2421 
2422 	cpu->epp_powersave = -EINVAL;
2423 	cpu->epp_policy = 0;
2424 
2425 	intel_pstate_get_cpu_pstates(cpu);
2426 
2427 	pr_debug("controlling: cpu %d\n", cpunum);
2428 
2429 	return 0;
2430 }
2431 
2432 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2433 {
2434 	struct cpudata *cpu = all_cpu_data[cpu_num];
2435 
2436 	if (hwp_active && !hwp_boost)
2437 		return;
2438 
2439 	if (cpu->update_util_set)
2440 		return;
2441 
2442 	/* Prevent intel_pstate_update_util() from using stale data. */
2443 	cpu->sample.time = 0;
2444 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2445 				     (hwp_active ?
2446 				      intel_pstate_update_util_hwp :
2447 				      intel_pstate_update_util));
2448 	cpu->update_util_set = true;
2449 }
2450 
2451 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2452 {
2453 	struct cpudata *cpu_data = all_cpu_data[cpu];
2454 
2455 	if (!cpu_data->update_util_set)
2456 		return;
2457 
2458 	cpufreq_remove_update_util_hook(cpu);
2459 	cpu_data->update_util_set = false;
2460 	synchronize_rcu();
2461 }
2462 
2463 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2464 {
2465 	return global.turbo_disabled || global.no_turbo ?
2466 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2467 }
2468 
2469 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2470 					    unsigned int policy_min,
2471 					    unsigned int policy_max)
2472 {
2473 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2474 	int32_t max_policy_perf, min_policy_perf;
2475 
2476 	max_policy_perf = policy_max / perf_ctl_scaling;
2477 	if (policy_max == policy_min) {
2478 		min_policy_perf = max_policy_perf;
2479 	} else {
2480 		min_policy_perf = policy_min / perf_ctl_scaling;
2481 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2482 					  0, max_policy_perf);
2483 	}
2484 
2485 	/*
2486 	 * HWP needs some special consideration, because HWP_REQUEST uses
2487 	 * abstract values to represent performance rather than pure ratios.
2488 	 */
2489 	if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2490 		int scaling = cpu->pstate.scaling;
2491 		int freq;
2492 
2493 		freq = max_policy_perf * perf_ctl_scaling;
2494 		max_policy_perf = DIV_ROUND_UP(freq, scaling);
2495 		freq = min_policy_perf * perf_ctl_scaling;
2496 		min_policy_perf = DIV_ROUND_UP(freq, scaling);
2497 	}
2498 
2499 	pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2500 		 cpu->cpu, min_policy_perf, max_policy_perf);
2501 
2502 	/* Normalize user input to [min_perf, max_perf] */
2503 	if (per_cpu_limits) {
2504 		cpu->min_perf_ratio = min_policy_perf;
2505 		cpu->max_perf_ratio = max_policy_perf;
2506 	} else {
2507 		int turbo_max = cpu->pstate.turbo_pstate;
2508 		int32_t global_min, global_max;
2509 
2510 		/* Global limits are in percent of the maximum turbo P-state. */
2511 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2512 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2513 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2514 
2515 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2516 			 global_min, global_max);
2517 
2518 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2519 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2520 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2521 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2522 
2523 		/* Make sure min_perf <= max_perf */
2524 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2525 					  cpu->max_perf_ratio);
2526 
2527 	}
2528 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2529 		 cpu->max_perf_ratio,
2530 		 cpu->min_perf_ratio);
2531 }
2532 
2533 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2534 {
2535 	struct cpudata *cpu;
2536 
2537 	if (!policy->cpuinfo.max_freq)
2538 		return -ENODEV;
2539 
2540 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2541 		 policy->cpuinfo.max_freq, policy->max);
2542 
2543 	cpu = all_cpu_data[policy->cpu];
2544 	cpu->policy = policy->policy;
2545 
2546 	mutex_lock(&intel_pstate_limits_lock);
2547 
2548 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2549 
2550 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2551 		/*
2552 		 * NOHZ_FULL CPUs need this as the governor callback may not
2553 		 * be invoked on them.
2554 		 */
2555 		intel_pstate_clear_update_util_hook(policy->cpu);
2556 		intel_pstate_max_within_limits(cpu);
2557 	} else {
2558 		intel_pstate_set_update_util_hook(policy->cpu);
2559 	}
2560 
2561 	if (hwp_active) {
2562 		/*
2563 		 * When hwp_boost was active before and dynamically it
2564 		 * was turned off, in that case we need to clear the
2565 		 * update util hook.
2566 		 */
2567 		if (!hwp_boost)
2568 			intel_pstate_clear_update_util_hook(policy->cpu);
2569 		intel_pstate_hwp_set(policy->cpu);
2570 	}
2571 
2572 	mutex_unlock(&intel_pstate_limits_lock);
2573 
2574 	return 0;
2575 }
2576 
2577 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2578 					   struct cpufreq_policy_data *policy)
2579 {
2580 	if (!hwp_active &&
2581 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2582 	    policy->max < policy->cpuinfo.max_freq &&
2583 	    policy->max > cpu->pstate.max_freq) {
2584 		pr_debug("policy->max > max non turbo frequency\n");
2585 		policy->max = policy->cpuinfo.max_freq;
2586 	}
2587 }
2588 
2589 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2590 					   struct cpufreq_policy_data *policy)
2591 {
2592 	int max_freq;
2593 
2594 	update_turbo_state();
2595 	if (hwp_active) {
2596 		intel_pstate_get_hwp_cap(cpu);
2597 		max_freq = global.no_turbo || global.turbo_disabled ?
2598 				cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2599 	} else {
2600 		max_freq = intel_pstate_get_max_freq(cpu);
2601 	}
2602 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2603 
2604 	intel_pstate_adjust_policy_max(cpu, policy);
2605 }
2606 
2607 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2608 {
2609 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2610 
2611 	return 0;
2612 }
2613 
2614 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2615 {
2616 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2617 
2618 	pr_debug("CPU %d going offline\n", cpu->cpu);
2619 
2620 	if (cpu->suspended)
2621 		return 0;
2622 
2623 	/*
2624 	 * If the CPU is an SMT thread and it goes offline with the performance
2625 	 * settings different from the minimum, it will prevent its sibling
2626 	 * from getting to lower performance levels, so force the minimum
2627 	 * performance on CPU offline to prevent that from happening.
2628 	 */
2629 	if (hwp_active)
2630 		intel_pstate_hwp_offline(cpu);
2631 	else
2632 		intel_pstate_set_min_pstate(cpu);
2633 
2634 	intel_pstate_exit_perf_limits(policy);
2635 
2636 	return 0;
2637 }
2638 
2639 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2640 {
2641 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2642 
2643 	pr_debug("CPU %d going online\n", cpu->cpu);
2644 
2645 	intel_pstate_init_acpi_perf_limits(policy);
2646 
2647 	if (hwp_active) {
2648 		/*
2649 		 * Re-enable HWP and clear the "suspended" flag to let "resume"
2650 		 * know that it need not do that.
2651 		 */
2652 		intel_pstate_hwp_reenable(cpu);
2653 		cpu->suspended = false;
2654 	}
2655 
2656 	return 0;
2657 }
2658 
2659 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2660 {
2661 	intel_pstate_clear_update_util_hook(policy->cpu);
2662 
2663 	return intel_cpufreq_cpu_offline(policy);
2664 }
2665 
2666 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2667 {
2668 	pr_debug("CPU %d exiting\n", policy->cpu);
2669 
2670 	policy->fast_switch_possible = false;
2671 
2672 	return 0;
2673 }
2674 
2675 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2676 {
2677 	struct cpudata *cpu;
2678 	int rc;
2679 
2680 	rc = intel_pstate_init_cpu(policy->cpu);
2681 	if (rc)
2682 		return rc;
2683 
2684 	cpu = all_cpu_data[policy->cpu];
2685 
2686 	cpu->max_perf_ratio = 0xFF;
2687 	cpu->min_perf_ratio = 0;
2688 
2689 	/* cpuinfo and default policy values */
2690 	policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2691 	update_turbo_state();
2692 	global.turbo_disabled_mf = global.turbo_disabled;
2693 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2694 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2695 
2696 	policy->min = policy->cpuinfo.min_freq;
2697 	policy->max = policy->cpuinfo.max_freq;
2698 
2699 	intel_pstate_init_acpi_perf_limits(policy);
2700 
2701 	policy->fast_switch_possible = true;
2702 
2703 	return 0;
2704 }
2705 
2706 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2707 {
2708 	int ret = __intel_pstate_cpu_init(policy);
2709 
2710 	if (ret)
2711 		return ret;
2712 
2713 	/*
2714 	 * Set the policy to powersave to provide a valid fallback value in case
2715 	 * the default cpufreq governor is neither powersave nor performance.
2716 	 */
2717 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2718 
2719 	if (hwp_active) {
2720 		struct cpudata *cpu = all_cpu_data[policy->cpu];
2721 
2722 		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2723 	}
2724 
2725 	return 0;
2726 }
2727 
2728 static struct cpufreq_driver intel_pstate = {
2729 	.flags		= CPUFREQ_CONST_LOOPS,
2730 	.verify		= intel_pstate_verify_policy,
2731 	.setpolicy	= intel_pstate_set_policy,
2732 	.suspend	= intel_pstate_suspend,
2733 	.resume		= intel_pstate_resume,
2734 	.init		= intel_pstate_cpu_init,
2735 	.exit		= intel_pstate_cpu_exit,
2736 	.offline	= intel_pstate_cpu_offline,
2737 	.online		= intel_pstate_cpu_online,
2738 	.update_limits	= intel_pstate_update_limits,
2739 	.name		= "intel_pstate",
2740 };
2741 
2742 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2743 {
2744 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2745 
2746 	intel_pstate_verify_cpu_policy(cpu, policy);
2747 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2748 
2749 	return 0;
2750 }
2751 
2752 /* Use of trace in passive mode:
2753  *
2754  * In passive mode the trace core_busy field (also known as the
2755  * performance field, and lablelled as such on the graphs; also known as
2756  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2757  * driver call was via the normal or fast switch path. Various graphs
2758  * output from the intel_pstate_tracer.py utility that include core_busy
2759  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2760  * so we use 10 to indicate the normal path through the driver, and
2761  * 90 to indicate the fast switch path through the driver.
2762  * The scaled_busy field is not used, and is set to 0.
2763  */
2764 
2765 #define	INTEL_PSTATE_TRACE_TARGET 10
2766 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2767 
2768 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2769 {
2770 	struct sample *sample;
2771 
2772 	if (!trace_pstate_sample_enabled())
2773 		return;
2774 
2775 	if (!intel_pstate_sample(cpu, ktime_get()))
2776 		return;
2777 
2778 	sample = &cpu->sample;
2779 	trace_pstate_sample(trace_type,
2780 		0,
2781 		old_pstate,
2782 		cpu->pstate.current_pstate,
2783 		sample->mperf,
2784 		sample->aperf,
2785 		sample->tsc,
2786 		get_avg_frequency(cpu),
2787 		fp_toint(cpu->iowait_boost * 100));
2788 }
2789 
2790 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2791 				     u32 desired, bool fast_switch)
2792 {
2793 	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2794 
2795 	value &= ~HWP_MIN_PERF(~0L);
2796 	value |= HWP_MIN_PERF(min);
2797 
2798 	value &= ~HWP_MAX_PERF(~0L);
2799 	value |= HWP_MAX_PERF(max);
2800 
2801 	value &= ~HWP_DESIRED_PERF(~0L);
2802 	value |= HWP_DESIRED_PERF(desired);
2803 
2804 	if (value == prev)
2805 		return;
2806 
2807 	WRITE_ONCE(cpu->hwp_req_cached, value);
2808 	if (fast_switch)
2809 		wrmsrl(MSR_HWP_REQUEST, value);
2810 	else
2811 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2812 }
2813 
2814 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2815 					  u32 target_pstate, bool fast_switch)
2816 {
2817 	if (fast_switch)
2818 		wrmsrl(MSR_IA32_PERF_CTL,
2819 		       pstate_funcs.get_val(cpu, target_pstate));
2820 	else
2821 		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2822 			      pstate_funcs.get_val(cpu, target_pstate));
2823 }
2824 
2825 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2826 				       int target_pstate, bool fast_switch)
2827 {
2828 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2829 	int old_pstate = cpu->pstate.current_pstate;
2830 
2831 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2832 	if (hwp_active) {
2833 		int max_pstate = policy->strict_target ?
2834 					target_pstate : cpu->max_perf_ratio;
2835 
2836 		intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2837 					 fast_switch);
2838 	} else if (target_pstate != old_pstate) {
2839 		intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2840 	}
2841 
2842 	cpu->pstate.current_pstate = target_pstate;
2843 
2844 	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2845 			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
2846 
2847 	return target_pstate;
2848 }
2849 
2850 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2851 				unsigned int target_freq,
2852 				unsigned int relation)
2853 {
2854 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2855 	struct cpufreq_freqs freqs;
2856 	int target_pstate;
2857 
2858 	update_turbo_state();
2859 
2860 	freqs.old = policy->cur;
2861 	freqs.new = target_freq;
2862 
2863 	cpufreq_freq_transition_begin(policy, &freqs);
2864 
2865 	switch (relation) {
2866 	case CPUFREQ_RELATION_L:
2867 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2868 		break;
2869 	case CPUFREQ_RELATION_H:
2870 		target_pstate = freqs.new / cpu->pstate.scaling;
2871 		break;
2872 	default:
2873 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2874 		break;
2875 	}
2876 
2877 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2878 
2879 	freqs.new = target_pstate * cpu->pstate.scaling;
2880 
2881 	cpufreq_freq_transition_end(policy, &freqs, false);
2882 
2883 	return 0;
2884 }
2885 
2886 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2887 					      unsigned int target_freq)
2888 {
2889 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2890 	int target_pstate;
2891 
2892 	update_turbo_state();
2893 
2894 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2895 
2896 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2897 
2898 	return target_pstate * cpu->pstate.scaling;
2899 }
2900 
2901 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2902 				      unsigned long min_perf,
2903 				      unsigned long target_perf,
2904 				      unsigned long capacity)
2905 {
2906 	struct cpudata *cpu = all_cpu_data[cpunum];
2907 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2908 	int old_pstate = cpu->pstate.current_pstate;
2909 	int cap_pstate, min_pstate, max_pstate, target_pstate;
2910 
2911 	update_turbo_state();
2912 	cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2913 					     HWP_HIGHEST_PERF(hwp_cap);
2914 
2915 	/* Optimization: Avoid unnecessary divisions. */
2916 
2917 	target_pstate = cap_pstate;
2918 	if (target_perf < capacity)
2919 		target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2920 
2921 	min_pstate = cap_pstate;
2922 	if (min_perf < capacity)
2923 		min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2924 
2925 	if (min_pstate < cpu->pstate.min_pstate)
2926 		min_pstate = cpu->pstate.min_pstate;
2927 
2928 	if (min_pstate < cpu->min_perf_ratio)
2929 		min_pstate = cpu->min_perf_ratio;
2930 
2931 	max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2932 	if (max_pstate < min_pstate)
2933 		max_pstate = min_pstate;
2934 
2935 	target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2936 
2937 	intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2938 
2939 	cpu->pstate.current_pstate = target_pstate;
2940 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2941 }
2942 
2943 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2944 {
2945 	struct freq_qos_request *req;
2946 	struct cpudata *cpu;
2947 	struct device *dev;
2948 	int ret, freq;
2949 
2950 	dev = get_cpu_device(policy->cpu);
2951 	if (!dev)
2952 		return -ENODEV;
2953 
2954 	ret = __intel_pstate_cpu_init(policy);
2955 	if (ret)
2956 		return ret;
2957 
2958 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2959 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2960 	policy->cur = policy->cpuinfo.min_freq;
2961 
2962 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2963 	if (!req) {
2964 		ret = -ENOMEM;
2965 		goto pstate_exit;
2966 	}
2967 
2968 	cpu = all_cpu_data[policy->cpu];
2969 
2970 	if (hwp_active) {
2971 		u64 value;
2972 
2973 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2974 
2975 		intel_pstate_get_hwp_cap(cpu);
2976 
2977 		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2978 		WRITE_ONCE(cpu->hwp_req_cached, value);
2979 
2980 		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2981 	} else {
2982 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2983 	}
2984 
2985 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
2986 
2987 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2988 				   freq);
2989 	if (ret < 0) {
2990 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2991 		goto free_req;
2992 	}
2993 
2994 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
2995 
2996 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2997 				   freq);
2998 	if (ret < 0) {
2999 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3000 		goto remove_min_req;
3001 	}
3002 
3003 	policy->driver_data = req;
3004 
3005 	return 0;
3006 
3007 remove_min_req:
3008 	freq_qos_remove_request(req);
3009 free_req:
3010 	kfree(req);
3011 pstate_exit:
3012 	intel_pstate_exit_perf_limits(policy);
3013 
3014 	return ret;
3015 }
3016 
3017 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3018 {
3019 	struct freq_qos_request *req;
3020 
3021 	req = policy->driver_data;
3022 
3023 	freq_qos_remove_request(req + 1);
3024 	freq_qos_remove_request(req);
3025 	kfree(req);
3026 
3027 	return intel_pstate_cpu_exit(policy);
3028 }
3029 
3030 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3031 {
3032 	intel_pstate_suspend(policy);
3033 
3034 	if (hwp_active) {
3035 		struct cpudata *cpu = all_cpu_data[policy->cpu];
3036 		u64 value = READ_ONCE(cpu->hwp_req_cached);
3037 
3038 		/*
3039 		 * Clear the desired perf field in MSR_HWP_REQUEST in case
3040 		 * intel_cpufreq_adjust_perf() is in use and the last value
3041 		 * written by it may not be suitable.
3042 		 */
3043 		value &= ~HWP_DESIRED_PERF(~0L);
3044 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3045 		WRITE_ONCE(cpu->hwp_req_cached, value);
3046 	}
3047 
3048 	return 0;
3049 }
3050 
3051 static struct cpufreq_driver intel_cpufreq = {
3052 	.flags		= CPUFREQ_CONST_LOOPS,
3053 	.verify		= intel_cpufreq_verify_policy,
3054 	.target		= intel_cpufreq_target,
3055 	.fast_switch	= intel_cpufreq_fast_switch,
3056 	.init		= intel_cpufreq_cpu_init,
3057 	.exit		= intel_cpufreq_cpu_exit,
3058 	.offline	= intel_cpufreq_cpu_offline,
3059 	.online		= intel_pstate_cpu_online,
3060 	.suspend	= intel_cpufreq_suspend,
3061 	.resume		= intel_pstate_resume,
3062 	.update_limits	= intel_pstate_update_limits,
3063 	.name		= "intel_cpufreq",
3064 };
3065 
3066 static struct cpufreq_driver *default_driver;
3067 
3068 static void intel_pstate_driver_cleanup(void)
3069 {
3070 	unsigned int cpu;
3071 
3072 	cpus_read_lock();
3073 	for_each_online_cpu(cpu) {
3074 		if (all_cpu_data[cpu]) {
3075 			if (intel_pstate_driver == &intel_pstate)
3076 				intel_pstate_clear_update_util_hook(cpu);
3077 
3078 			spin_lock(&hwp_notify_lock);
3079 			kfree(all_cpu_data[cpu]);
3080 			WRITE_ONCE(all_cpu_data[cpu], NULL);
3081 			spin_unlock(&hwp_notify_lock);
3082 		}
3083 	}
3084 	cpus_read_unlock();
3085 
3086 	intel_pstate_driver = NULL;
3087 }
3088 
3089 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3090 {
3091 	int ret;
3092 
3093 	if (driver == &intel_pstate)
3094 		intel_pstate_sysfs_expose_hwp_dynamic_boost();
3095 
3096 	memset(&global, 0, sizeof(global));
3097 	global.max_perf_pct = 100;
3098 
3099 	intel_pstate_driver = driver;
3100 	ret = cpufreq_register_driver(intel_pstate_driver);
3101 	if (ret) {
3102 		intel_pstate_driver_cleanup();
3103 		return ret;
3104 	}
3105 
3106 	global.min_perf_pct = min_perf_pct_min();
3107 
3108 	return 0;
3109 }
3110 
3111 static ssize_t intel_pstate_show_status(char *buf)
3112 {
3113 	if (!intel_pstate_driver)
3114 		return sprintf(buf, "off\n");
3115 
3116 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3117 					"active" : "passive");
3118 }
3119 
3120 static int intel_pstate_update_status(const char *buf, size_t size)
3121 {
3122 	if (size == 3 && !strncmp(buf, "off", size)) {
3123 		if (!intel_pstate_driver)
3124 			return -EINVAL;
3125 
3126 		if (hwp_active)
3127 			return -EBUSY;
3128 
3129 		cpufreq_unregister_driver(intel_pstate_driver);
3130 		intel_pstate_driver_cleanup();
3131 		return 0;
3132 	}
3133 
3134 	if (size == 6 && !strncmp(buf, "active", size)) {
3135 		if (intel_pstate_driver) {
3136 			if (intel_pstate_driver == &intel_pstate)
3137 				return 0;
3138 
3139 			cpufreq_unregister_driver(intel_pstate_driver);
3140 		}
3141 
3142 		return intel_pstate_register_driver(&intel_pstate);
3143 	}
3144 
3145 	if (size == 7 && !strncmp(buf, "passive", size)) {
3146 		if (intel_pstate_driver) {
3147 			if (intel_pstate_driver == &intel_cpufreq)
3148 				return 0;
3149 
3150 			cpufreq_unregister_driver(intel_pstate_driver);
3151 			intel_pstate_sysfs_hide_hwp_dynamic_boost();
3152 		}
3153 
3154 		return intel_pstate_register_driver(&intel_cpufreq);
3155 	}
3156 
3157 	return -EINVAL;
3158 }
3159 
3160 static int no_load __initdata;
3161 static int no_hwp __initdata;
3162 static int hwp_only __initdata;
3163 static unsigned int force_load __initdata;
3164 
3165 static int __init intel_pstate_msrs_not_valid(void)
3166 {
3167 	if (!pstate_funcs.get_max() ||
3168 	    !pstate_funcs.get_min() ||
3169 	    !pstate_funcs.get_turbo())
3170 		return -ENODEV;
3171 
3172 	return 0;
3173 }
3174 
3175 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3176 {
3177 	pstate_funcs.get_max   = funcs->get_max;
3178 	pstate_funcs.get_max_physical = funcs->get_max_physical;
3179 	pstate_funcs.get_min   = funcs->get_min;
3180 	pstate_funcs.get_turbo = funcs->get_turbo;
3181 	pstate_funcs.get_scaling = funcs->get_scaling;
3182 	pstate_funcs.get_val   = funcs->get_val;
3183 	pstate_funcs.get_vid   = funcs->get_vid;
3184 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3185 }
3186 
3187 #ifdef CONFIG_ACPI
3188 
3189 static bool __init intel_pstate_no_acpi_pss(void)
3190 {
3191 	int i;
3192 
3193 	for_each_possible_cpu(i) {
3194 		acpi_status status;
3195 		union acpi_object *pss;
3196 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3197 		struct acpi_processor *pr = per_cpu(processors, i);
3198 
3199 		if (!pr)
3200 			continue;
3201 
3202 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3203 		if (ACPI_FAILURE(status))
3204 			continue;
3205 
3206 		pss = buffer.pointer;
3207 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3208 			kfree(pss);
3209 			return false;
3210 		}
3211 
3212 		kfree(pss);
3213 	}
3214 
3215 	pr_debug("ACPI _PSS not found\n");
3216 	return true;
3217 }
3218 
3219 static bool __init intel_pstate_no_acpi_pcch(void)
3220 {
3221 	acpi_status status;
3222 	acpi_handle handle;
3223 
3224 	status = acpi_get_handle(NULL, "\\_SB", &handle);
3225 	if (ACPI_FAILURE(status))
3226 		goto not_found;
3227 
3228 	if (acpi_has_method(handle, "PCCH"))
3229 		return false;
3230 
3231 not_found:
3232 	pr_debug("ACPI PCCH not found\n");
3233 	return true;
3234 }
3235 
3236 static bool __init intel_pstate_has_acpi_ppc(void)
3237 {
3238 	int i;
3239 
3240 	for_each_possible_cpu(i) {
3241 		struct acpi_processor *pr = per_cpu(processors, i);
3242 
3243 		if (!pr)
3244 			continue;
3245 		if (acpi_has_method(pr->handle, "_PPC"))
3246 			return true;
3247 	}
3248 	pr_debug("ACPI _PPC not found\n");
3249 	return false;
3250 }
3251 
3252 enum {
3253 	PSS,
3254 	PPC,
3255 };
3256 
3257 /* Hardware vendor-specific info that has its own power management modes */
3258 static struct acpi_platform_list plat_info[] __initdata = {
3259 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3260 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3261 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3262 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3263 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3264 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3265 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3266 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3267 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3268 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3269 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3270 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3271 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3272 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3273 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3274 	{ } /* End */
3275 };
3276 
3277 #define BITMASK_OOB	(BIT(8) | BIT(18))
3278 
3279 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3280 {
3281 	const struct x86_cpu_id *id;
3282 	u64 misc_pwr;
3283 	int idx;
3284 
3285 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3286 	if (id) {
3287 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3288 		if (misc_pwr & BITMASK_OOB) {
3289 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3290 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3291 			return true;
3292 		}
3293 	}
3294 
3295 	idx = acpi_match_platform_list(plat_info);
3296 	if (idx < 0)
3297 		return false;
3298 
3299 	switch (plat_info[idx].data) {
3300 	case PSS:
3301 		if (!intel_pstate_no_acpi_pss())
3302 			return false;
3303 
3304 		return intel_pstate_no_acpi_pcch();
3305 	case PPC:
3306 		return intel_pstate_has_acpi_ppc() && !force_load;
3307 	}
3308 
3309 	return false;
3310 }
3311 
3312 static void intel_pstate_request_control_from_smm(void)
3313 {
3314 	/*
3315 	 * It may be unsafe to request P-states control from SMM if _PPC support
3316 	 * has not been enabled.
3317 	 */
3318 	if (acpi_ppc)
3319 		acpi_processor_pstate_control();
3320 }
3321 #else /* CONFIG_ACPI not enabled */
3322 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3323 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3324 static inline void intel_pstate_request_control_from_smm(void) {}
3325 #endif /* CONFIG_ACPI */
3326 
3327 #define INTEL_PSTATE_HWP_BROADWELL	0x01
3328 
3329 #define X86_MATCH_HWP(model, hwp_mode)					\
3330 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3331 					   X86_FEATURE_HWP, hwp_mode)
3332 
3333 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3334 	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
3335 	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
3336 	X86_MATCH_HWP(ANY,		0),
3337 	{}
3338 };
3339 
3340 static bool intel_pstate_hwp_is_enabled(void)
3341 {
3342 	u64 value;
3343 
3344 	rdmsrl(MSR_PM_ENABLE, value);
3345 	return !!(value & 0x1);
3346 }
3347 
3348 static int __init intel_pstate_init(void)
3349 {
3350 	static struct cpudata **_all_cpu_data;
3351 	const struct x86_cpu_id *id;
3352 	int rc;
3353 
3354 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3355 		return -ENODEV;
3356 
3357 	id = x86_match_cpu(hwp_support_ids);
3358 	if (id) {
3359 		bool hwp_forced = intel_pstate_hwp_is_enabled();
3360 
3361 		if (hwp_forced)
3362 			pr_info("HWP enabled by BIOS\n");
3363 		else if (no_load)
3364 			return -ENODEV;
3365 
3366 		copy_cpu_funcs(&core_funcs);
3367 		/*
3368 		 * Avoid enabling HWP for processors without EPP support,
3369 		 * because that means incomplete HWP implementation which is a
3370 		 * corner case and supporting it is generally problematic.
3371 		 *
3372 		 * If HWP is enabled already, though, there is no choice but to
3373 		 * deal with it.
3374 		 */
3375 		if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3376 			WRITE_ONCE(hwp_active, 1);
3377 			hwp_mode_bdw = id->driver_data;
3378 			intel_pstate.attr = hwp_cpufreq_attrs;
3379 			intel_cpufreq.attr = hwp_cpufreq_attrs;
3380 			intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3381 			intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3382 			if (!default_driver)
3383 				default_driver = &intel_pstate;
3384 
3385 			if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
3386 				intel_pstate_cppc_set_cpu_scaling();
3387 
3388 			goto hwp_cpu_matched;
3389 		}
3390 		pr_info("HWP not enabled\n");
3391 	} else {
3392 		if (no_load)
3393 			return -ENODEV;
3394 
3395 		id = x86_match_cpu(intel_pstate_cpu_ids);
3396 		if (!id) {
3397 			pr_info("CPU model not supported\n");
3398 			return -ENODEV;
3399 		}
3400 
3401 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3402 	}
3403 
3404 	if (intel_pstate_msrs_not_valid()) {
3405 		pr_info("Invalid MSRs\n");
3406 		return -ENODEV;
3407 	}
3408 	/* Without HWP start in the passive mode. */
3409 	if (!default_driver)
3410 		default_driver = &intel_cpufreq;
3411 
3412 hwp_cpu_matched:
3413 	/*
3414 	 * The Intel pstate driver will be ignored if the platform
3415 	 * firmware has its own power management modes.
3416 	 */
3417 	if (intel_pstate_platform_pwr_mgmt_exists()) {
3418 		pr_info("P-states controlled by the platform\n");
3419 		return -ENODEV;
3420 	}
3421 
3422 	if (!hwp_active && hwp_only)
3423 		return -ENOTSUPP;
3424 
3425 	pr_info("Intel P-state driver initializing\n");
3426 
3427 	_all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3428 	if (!_all_cpu_data)
3429 		return -ENOMEM;
3430 
3431 	WRITE_ONCE(all_cpu_data, _all_cpu_data);
3432 
3433 	intel_pstate_request_control_from_smm();
3434 
3435 	intel_pstate_sysfs_expose_params();
3436 
3437 	mutex_lock(&intel_pstate_driver_lock);
3438 	rc = intel_pstate_register_driver(default_driver);
3439 	mutex_unlock(&intel_pstate_driver_lock);
3440 	if (rc) {
3441 		intel_pstate_sysfs_remove();
3442 		return rc;
3443 	}
3444 
3445 	if (hwp_active) {
3446 		const struct x86_cpu_id *id;
3447 
3448 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3449 		if (id) {
3450 			set_power_ctl_ee_state(false);
3451 			pr_info("Disabling energy efficiency optimization\n");
3452 		}
3453 
3454 		pr_info("HWP enabled\n");
3455 	} else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3456 		pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3457 	}
3458 
3459 	return 0;
3460 }
3461 device_initcall(intel_pstate_init);
3462 
3463 static int __init intel_pstate_setup(char *str)
3464 {
3465 	if (!str)
3466 		return -EINVAL;
3467 
3468 	if (!strcmp(str, "disable"))
3469 		no_load = 1;
3470 	else if (!strcmp(str, "active"))
3471 		default_driver = &intel_pstate;
3472 	else if (!strcmp(str, "passive"))
3473 		default_driver = &intel_cpufreq;
3474 
3475 	if (!strcmp(str, "no_hwp"))
3476 		no_hwp = 1;
3477 
3478 	if (!strcmp(str, "force"))
3479 		force_load = 1;
3480 	if (!strcmp(str, "hwp_only"))
3481 		hwp_only = 1;
3482 	if (!strcmp(str, "per_cpu_perf_limits"))
3483 		per_cpu_limits = true;
3484 
3485 #ifdef CONFIG_ACPI
3486 	if (!strcmp(str, "support_acpi_ppc"))
3487 		acpi_ppc = true;
3488 #endif
3489 
3490 	return 0;
3491 }
3492 early_param("intel_pstate", intel_pstate_setup);
3493 
3494 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3495 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3496 MODULE_LICENSE("GPL");
3497