1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31 
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36 
37 #define BYT_RATIOS		0x66a
38 #define BYT_VIDS		0x66b
39 #define BYT_TURBO_RATIOS	0x66c
40 #define BYT_TURBO_VIDS		0x66d
41 
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45 
46 
47 static inline int32_t mul_fp(int32_t x, int32_t y)
48 {
49 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
50 }
51 
52 static inline int32_t div_fp(s64 x, s64 y)
53 {
54 	return div64_s64((int64_t)x << FRAC_BITS, y);
55 }
56 
57 static inline int ceiling_fp(int32_t x)
58 {
59 	int mask, ret;
60 
61 	ret = fp_toint(x);
62 	mask = (1 << FRAC_BITS) - 1;
63 	if (x & mask)
64 		ret += 1;
65 	return ret;
66 }
67 
68 struct sample {
69 	int32_t core_pct_busy;
70 	u64 aperf;
71 	u64 mperf;
72 	u64 tsc;
73 	int freq;
74 	ktime_t time;
75 };
76 
77 struct pstate_data {
78 	int	current_pstate;
79 	int	min_pstate;
80 	int	max_pstate;
81 	int	scaling;
82 	int	turbo_pstate;
83 };
84 
85 struct vid_data {
86 	int min;
87 	int max;
88 	int turbo;
89 	int32_t ratio;
90 };
91 
92 struct _pid {
93 	int setpoint;
94 	int32_t integral;
95 	int32_t p_gain;
96 	int32_t i_gain;
97 	int32_t d_gain;
98 	int deadband;
99 	int32_t last_err;
100 };
101 
102 struct cpudata {
103 	int cpu;
104 
105 	struct timer_list timer;
106 
107 	struct pstate_data pstate;
108 	struct vid_data vid;
109 	struct _pid pid;
110 
111 	ktime_t last_sample_time;
112 	u64	prev_aperf;
113 	u64	prev_mperf;
114 	u64	prev_tsc;
115 	struct sample sample;
116 };
117 
118 static struct cpudata **all_cpu_data;
119 struct pstate_adjust_policy {
120 	int sample_rate_ms;
121 	int deadband;
122 	int setpoint;
123 	int p_gain_pct;
124 	int d_gain_pct;
125 	int i_gain_pct;
126 };
127 
128 struct pstate_funcs {
129 	int (*get_max)(void);
130 	int (*get_min)(void);
131 	int (*get_turbo)(void);
132 	int (*get_scaling)(void);
133 	void (*set)(struct cpudata*, int pstate);
134 	void (*get_vid)(struct cpudata *);
135 };
136 
137 struct cpu_defaults {
138 	struct pstate_adjust_policy pid_policy;
139 	struct pstate_funcs funcs;
140 };
141 
142 static struct pstate_adjust_policy pid_params;
143 static struct pstate_funcs pstate_funcs;
144 static int hwp_active;
145 
146 struct perf_limits {
147 	int no_turbo;
148 	int turbo_disabled;
149 	int max_perf_pct;
150 	int min_perf_pct;
151 	int32_t max_perf;
152 	int32_t min_perf;
153 	int max_policy_pct;
154 	int max_sysfs_pct;
155 	int min_policy_pct;
156 	int min_sysfs_pct;
157 };
158 
159 static struct perf_limits limits = {
160 	.no_turbo = 0,
161 	.turbo_disabled = 0,
162 	.max_perf_pct = 100,
163 	.max_perf = int_tofp(1),
164 	.min_perf_pct = 0,
165 	.min_perf = 0,
166 	.max_policy_pct = 100,
167 	.max_sysfs_pct = 100,
168 	.min_policy_pct = 0,
169 	.min_sysfs_pct = 0,
170 };
171 
172 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
173 			     int deadband, int integral) {
174 	pid->setpoint = setpoint;
175 	pid->deadband  = deadband;
176 	pid->integral  = int_tofp(integral);
177 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
178 }
179 
180 static inline void pid_p_gain_set(struct _pid *pid, int percent)
181 {
182 	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
183 }
184 
185 static inline void pid_i_gain_set(struct _pid *pid, int percent)
186 {
187 	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
188 }
189 
190 static inline void pid_d_gain_set(struct _pid *pid, int percent)
191 {
192 	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
193 }
194 
195 static signed int pid_calc(struct _pid *pid, int32_t busy)
196 {
197 	signed int result;
198 	int32_t pterm, dterm, fp_error;
199 	int32_t integral_limit;
200 
201 	fp_error = int_tofp(pid->setpoint) - busy;
202 
203 	if (abs(fp_error) <= int_tofp(pid->deadband))
204 		return 0;
205 
206 	pterm = mul_fp(pid->p_gain, fp_error);
207 
208 	pid->integral += fp_error;
209 
210 	/*
211 	 * We limit the integral here so that it will never
212 	 * get higher than 30.  This prevents it from becoming
213 	 * too large an input over long periods of time and allows
214 	 * it to get factored out sooner.
215 	 *
216 	 * The value of 30 was chosen through experimentation.
217 	 */
218 	integral_limit = int_tofp(30);
219 	if (pid->integral > integral_limit)
220 		pid->integral = integral_limit;
221 	if (pid->integral < -integral_limit)
222 		pid->integral = -integral_limit;
223 
224 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
225 	pid->last_err = fp_error;
226 
227 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
228 	result = result + (1 << (FRAC_BITS-1));
229 	return (signed int)fp_toint(result);
230 }
231 
232 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
233 {
234 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
235 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
236 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
237 
238 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
239 }
240 
241 static inline void intel_pstate_reset_all_pid(void)
242 {
243 	unsigned int cpu;
244 
245 	for_each_online_cpu(cpu) {
246 		if (all_cpu_data[cpu])
247 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
248 	}
249 }
250 
251 static inline void update_turbo_state(void)
252 {
253 	u64 misc_en;
254 	struct cpudata *cpu;
255 
256 	cpu = all_cpu_data[0];
257 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
258 	limits.turbo_disabled =
259 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
260 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
261 }
262 
263 #define PCT_TO_HWP(x) (x * 255 / 100)
264 static void intel_pstate_hwp_set(void)
265 {
266 	int min, max, cpu;
267 	u64 value, freq;
268 
269 	get_online_cpus();
270 
271 	for_each_online_cpu(cpu) {
272 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
273 		min = PCT_TO_HWP(limits.min_perf_pct);
274 		value &= ~HWP_MIN_PERF(~0L);
275 		value |= HWP_MIN_PERF(min);
276 
277 		max = PCT_TO_HWP(limits.max_perf_pct);
278 		if (limits.no_turbo) {
279 			rdmsrl( MSR_HWP_CAPABILITIES, freq);
280 			max = HWP_GUARANTEED_PERF(freq);
281 		}
282 
283 		value &= ~HWP_MAX_PERF(~0L);
284 		value |= HWP_MAX_PERF(max);
285 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
286 	}
287 
288 	put_online_cpus();
289 }
290 
291 /************************** debugfs begin ************************/
292 static int pid_param_set(void *data, u64 val)
293 {
294 	*(u32 *)data = val;
295 	intel_pstate_reset_all_pid();
296 	return 0;
297 }
298 
299 static int pid_param_get(void *data, u64 *val)
300 {
301 	*val = *(u32 *)data;
302 	return 0;
303 }
304 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
305 
306 struct pid_param {
307 	char *name;
308 	void *value;
309 };
310 
311 static struct pid_param pid_files[] = {
312 	{"sample_rate_ms", &pid_params.sample_rate_ms},
313 	{"d_gain_pct", &pid_params.d_gain_pct},
314 	{"i_gain_pct", &pid_params.i_gain_pct},
315 	{"deadband", &pid_params.deadband},
316 	{"setpoint", &pid_params.setpoint},
317 	{"p_gain_pct", &pid_params.p_gain_pct},
318 	{NULL, NULL}
319 };
320 
321 static void __init intel_pstate_debug_expose_params(void)
322 {
323 	struct dentry *debugfs_parent;
324 	int i = 0;
325 
326 	if (hwp_active)
327 		return;
328 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
329 	if (IS_ERR_OR_NULL(debugfs_parent))
330 		return;
331 	while (pid_files[i].name) {
332 		debugfs_create_file(pid_files[i].name, 0660,
333 				    debugfs_parent, pid_files[i].value,
334 				    &fops_pid_param);
335 		i++;
336 	}
337 }
338 
339 /************************** debugfs end ************************/
340 
341 /************************** sysfs begin ************************/
342 #define show_one(file_name, object)					\
343 	static ssize_t show_##file_name					\
344 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
345 	{								\
346 		return sprintf(buf, "%u\n", limits.object);		\
347 	}
348 
349 static ssize_t show_turbo_pct(struct kobject *kobj,
350 				struct attribute *attr, char *buf)
351 {
352 	struct cpudata *cpu;
353 	int total, no_turbo, turbo_pct;
354 	uint32_t turbo_fp;
355 
356 	cpu = all_cpu_data[0];
357 
358 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
359 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
360 	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
361 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
362 	return sprintf(buf, "%u\n", turbo_pct);
363 }
364 
365 static ssize_t show_num_pstates(struct kobject *kobj,
366 				struct attribute *attr, char *buf)
367 {
368 	struct cpudata *cpu;
369 	int total;
370 
371 	cpu = all_cpu_data[0];
372 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
373 	return sprintf(buf, "%u\n", total);
374 }
375 
376 static ssize_t show_no_turbo(struct kobject *kobj,
377 			     struct attribute *attr, char *buf)
378 {
379 	ssize_t ret;
380 
381 	update_turbo_state();
382 	if (limits.turbo_disabled)
383 		ret = sprintf(buf, "%u\n", limits.turbo_disabled);
384 	else
385 		ret = sprintf(buf, "%u\n", limits.no_turbo);
386 
387 	return ret;
388 }
389 
390 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
391 			      const char *buf, size_t count)
392 {
393 	unsigned int input;
394 	int ret;
395 
396 	ret = sscanf(buf, "%u", &input);
397 	if (ret != 1)
398 		return -EINVAL;
399 
400 	update_turbo_state();
401 	if (limits.turbo_disabled) {
402 		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
403 		return -EPERM;
404 	}
405 
406 	limits.no_turbo = clamp_t(int, input, 0, 1);
407 
408 	if (hwp_active)
409 		intel_pstate_hwp_set();
410 
411 	return count;
412 }
413 
414 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
415 				  const char *buf, size_t count)
416 {
417 	unsigned int input;
418 	int ret;
419 
420 	ret = sscanf(buf, "%u", &input);
421 	if (ret != 1)
422 		return -EINVAL;
423 
424 	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
425 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
426 	limits.max_perf_pct = max(limits.min_policy_pct, limits.max_perf_pct);
427 	limits.max_perf_pct = max(limits.min_perf_pct, limits.max_perf_pct);
428 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
429 
430 	if (hwp_active)
431 		intel_pstate_hwp_set();
432 	return count;
433 }
434 
435 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
436 				  const char *buf, size_t count)
437 {
438 	unsigned int input;
439 	int ret;
440 
441 	ret = sscanf(buf, "%u", &input);
442 	if (ret != 1)
443 		return -EINVAL;
444 
445 	limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
446 	limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
447 	limits.min_perf_pct = min(limits.max_policy_pct, limits.min_perf_pct);
448 	limits.min_perf_pct = min(limits.max_perf_pct, limits.min_perf_pct);
449 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
450 
451 	if (hwp_active)
452 		intel_pstate_hwp_set();
453 	return count;
454 }
455 
456 show_one(max_perf_pct, max_perf_pct);
457 show_one(min_perf_pct, min_perf_pct);
458 
459 define_one_global_rw(no_turbo);
460 define_one_global_rw(max_perf_pct);
461 define_one_global_rw(min_perf_pct);
462 define_one_global_ro(turbo_pct);
463 define_one_global_ro(num_pstates);
464 
465 static struct attribute *intel_pstate_attributes[] = {
466 	&no_turbo.attr,
467 	&max_perf_pct.attr,
468 	&min_perf_pct.attr,
469 	&turbo_pct.attr,
470 	&num_pstates.attr,
471 	NULL
472 };
473 
474 static struct attribute_group intel_pstate_attr_group = {
475 	.attrs = intel_pstate_attributes,
476 };
477 
478 static void __init intel_pstate_sysfs_expose_params(void)
479 {
480 	struct kobject *intel_pstate_kobject;
481 	int rc;
482 
483 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
484 						&cpu_subsys.dev_root->kobj);
485 	BUG_ON(!intel_pstate_kobject);
486 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
487 	BUG_ON(rc);
488 }
489 /************************** sysfs end ************************/
490 
491 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
492 {
493 	pr_info("intel_pstate: HWP enabled\n");
494 
495 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
496 }
497 
498 static int byt_get_min_pstate(void)
499 {
500 	u64 value;
501 
502 	rdmsrl(BYT_RATIOS, value);
503 	return (value >> 8) & 0x7F;
504 }
505 
506 static int byt_get_max_pstate(void)
507 {
508 	u64 value;
509 
510 	rdmsrl(BYT_RATIOS, value);
511 	return (value >> 16) & 0x7F;
512 }
513 
514 static int byt_get_turbo_pstate(void)
515 {
516 	u64 value;
517 
518 	rdmsrl(BYT_TURBO_RATIOS, value);
519 	return value & 0x7F;
520 }
521 
522 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
523 {
524 	u64 val;
525 	int32_t vid_fp;
526 	u32 vid;
527 
528 	val = (u64)pstate << 8;
529 	if (limits.no_turbo && !limits.turbo_disabled)
530 		val |= (u64)1 << 32;
531 
532 	vid_fp = cpudata->vid.min + mul_fp(
533 		int_tofp(pstate - cpudata->pstate.min_pstate),
534 		cpudata->vid.ratio);
535 
536 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
537 	vid = ceiling_fp(vid_fp);
538 
539 	if (pstate > cpudata->pstate.max_pstate)
540 		vid = cpudata->vid.turbo;
541 
542 	val |= vid;
543 
544 	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
545 }
546 
547 #define BYT_BCLK_FREQS 5
548 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
549 
550 static int byt_get_scaling(void)
551 {
552 	u64 value;
553 	int i;
554 
555 	rdmsrl(MSR_FSB_FREQ, value);
556 	i = value & 0x3;
557 
558 	BUG_ON(i > BYT_BCLK_FREQS);
559 
560 	return byt_freq_table[i] * 100;
561 }
562 
563 static void byt_get_vid(struct cpudata *cpudata)
564 {
565 	u64 value;
566 
567 	rdmsrl(BYT_VIDS, value);
568 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
569 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
570 	cpudata->vid.ratio = div_fp(
571 		cpudata->vid.max - cpudata->vid.min,
572 		int_tofp(cpudata->pstate.max_pstate -
573 			cpudata->pstate.min_pstate));
574 
575 	rdmsrl(BYT_TURBO_VIDS, value);
576 	cpudata->vid.turbo = value & 0x7f;
577 }
578 
579 static int core_get_min_pstate(void)
580 {
581 	u64 value;
582 
583 	rdmsrl(MSR_PLATFORM_INFO, value);
584 	return (value >> 40) & 0xFF;
585 }
586 
587 static int core_get_max_pstate(void)
588 {
589 	u64 value;
590 
591 	rdmsrl(MSR_PLATFORM_INFO, value);
592 	return (value >> 8) & 0xFF;
593 }
594 
595 static int core_get_turbo_pstate(void)
596 {
597 	u64 value;
598 	int nont, ret;
599 
600 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
601 	nont = core_get_max_pstate();
602 	ret = (value) & 255;
603 	if (ret <= nont)
604 		ret = nont;
605 	return ret;
606 }
607 
608 static inline int core_get_scaling(void)
609 {
610 	return 100000;
611 }
612 
613 static void core_set_pstate(struct cpudata *cpudata, int pstate)
614 {
615 	u64 val;
616 
617 	val = (u64)pstate << 8;
618 	if (limits.no_turbo && !limits.turbo_disabled)
619 		val |= (u64)1 << 32;
620 
621 	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
622 }
623 
624 static int knl_get_turbo_pstate(void)
625 {
626 	u64 value;
627 	int nont, ret;
628 
629 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
630 	nont = core_get_max_pstate();
631 	ret = (((value) >> 8) & 0xFF);
632 	if (ret <= nont)
633 		ret = nont;
634 	return ret;
635 }
636 
637 static struct cpu_defaults core_params = {
638 	.pid_policy = {
639 		.sample_rate_ms = 10,
640 		.deadband = 0,
641 		.setpoint = 97,
642 		.p_gain_pct = 20,
643 		.d_gain_pct = 0,
644 		.i_gain_pct = 0,
645 	},
646 	.funcs = {
647 		.get_max = core_get_max_pstate,
648 		.get_min = core_get_min_pstate,
649 		.get_turbo = core_get_turbo_pstate,
650 		.get_scaling = core_get_scaling,
651 		.set = core_set_pstate,
652 	},
653 };
654 
655 static struct cpu_defaults byt_params = {
656 	.pid_policy = {
657 		.sample_rate_ms = 10,
658 		.deadband = 0,
659 		.setpoint = 60,
660 		.p_gain_pct = 14,
661 		.d_gain_pct = 0,
662 		.i_gain_pct = 4,
663 	},
664 	.funcs = {
665 		.get_max = byt_get_max_pstate,
666 		.get_min = byt_get_min_pstate,
667 		.get_turbo = byt_get_turbo_pstate,
668 		.set = byt_set_pstate,
669 		.get_scaling = byt_get_scaling,
670 		.get_vid = byt_get_vid,
671 	},
672 };
673 
674 static struct cpu_defaults knl_params = {
675 	.pid_policy = {
676 		.sample_rate_ms = 10,
677 		.deadband = 0,
678 		.setpoint = 97,
679 		.p_gain_pct = 20,
680 		.d_gain_pct = 0,
681 		.i_gain_pct = 0,
682 	},
683 	.funcs = {
684 		.get_max = core_get_max_pstate,
685 		.get_min = core_get_min_pstate,
686 		.get_turbo = knl_get_turbo_pstate,
687 		.get_scaling = core_get_scaling,
688 		.set = core_set_pstate,
689 	},
690 };
691 
692 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
693 {
694 	int max_perf = cpu->pstate.turbo_pstate;
695 	int max_perf_adj;
696 	int min_perf;
697 
698 	if (limits.no_turbo || limits.turbo_disabled)
699 		max_perf = cpu->pstate.max_pstate;
700 
701 	/*
702 	 * performance can be limited by user through sysfs, by cpufreq
703 	 * policy, or by cpu specific default values determined through
704 	 * experimentation.
705 	 */
706 	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
707 	*max = clamp_t(int, max_perf_adj,
708 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
709 
710 	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
711 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
712 }
713 
714 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
715 {
716 	int max_perf, min_perf;
717 
718 	if (force) {
719 		update_turbo_state();
720 
721 		intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
722 
723 		pstate = clamp_t(int, pstate, min_perf, max_perf);
724 
725 		if (pstate == cpu->pstate.current_pstate)
726 			return;
727 	}
728 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
729 
730 	cpu->pstate.current_pstate = pstate;
731 
732 	pstate_funcs.set(cpu, pstate);
733 }
734 
735 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
736 {
737 	cpu->pstate.min_pstate = pstate_funcs.get_min();
738 	cpu->pstate.max_pstate = pstate_funcs.get_max();
739 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
740 	cpu->pstate.scaling = pstate_funcs.get_scaling();
741 
742 	if (pstate_funcs.get_vid)
743 		pstate_funcs.get_vid(cpu);
744 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
745 }
746 
747 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
748 {
749 	struct sample *sample = &cpu->sample;
750 	int64_t core_pct;
751 
752 	core_pct = int_tofp(sample->aperf) * int_tofp(100);
753 	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
754 
755 	sample->freq = fp_toint(
756 		mul_fp(int_tofp(
757 			cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
758 			core_pct));
759 
760 	sample->core_pct_busy = (int32_t)core_pct;
761 }
762 
763 static inline void intel_pstate_sample(struct cpudata *cpu)
764 {
765 	u64 aperf, mperf;
766 	unsigned long flags;
767 	u64 tsc;
768 
769 	local_irq_save(flags);
770 	rdmsrl(MSR_IA32_APERF, aperf);
771 	rdmsrl(MSR_IA32_MPERF, mperf);
772 	tsc = native_read_tsc();
773 	local_irq_restore(flags);
774 
775 	cpu->last_sample_time = cpu->sample.time;
776 	cpu->sample.time = ktime_get();
777 	cpu->sample.aperf = aperf;
778 	cpu->sample.mperf = mperf;
779 	cpu->sample.tsc =  tsc;
780 	cpu->sample.aperf -= cpu->prev_aperf;
781 	cpu->sample.mperf -= cpu->prev_mperf;
782 	cpu->sample.tsc -= cpu->prev_tsc;
783 
784 	intel_pstate_calc_busy(cpu);
785 
786 	cpu->prev_aperf = aperf;
787 	cpu->prev_mperf = mperf;
788 	cpu->prev_tsc = tsc;
789 }
790 
791 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
792 {
793 	int delay;
794 
795 	delay = msecs_to_jiffies(50);
796 	mod_timer_pinned(&cpu->timer, jiffies + delay);
797 }
798 
799 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
800 {
801 	int delay;
802 
803 	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
804 	mod_timer_pinned(&cpu->timer, jiffies + delay);
805 }
806 
807 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
808 {
809 	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
810 	s64 duration_us;
811 	u32 sample_time;
812 
813 	/*
814 	 * core_busy is the ratio of actual performance to max
815 	 * max_pstate is the max non turbo pstate available
816 	 * current_pstate was the pstate that was requested during
817 	 * 	the last sample period.
818 	 *
819 	 * We normalize core_busy, which was our actual percent
820 	 * performance to what we requested during the last sample
821 	 * period. The result will be a percentage of busy at a
822 	 * specified pstate.
823 	 */
824 	core_busy = cpu->sample.core_pct_busy;
825 	max_pstate = int_tofp(cpu->pstate.max_pstate);
826 	current_pstate = int_tofp(cpu->pstate.current_pstate);
827 	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
828 
829 	/*
830 	 * Since we have a deferred timer, it will not fire unless
831 	 * we are in C0.  So, determine if the actual elapsed time
832 	 * is significantly greater (3x) than our sample interval.  If it
833 	 * is, then we were idle for a long enough period of time
834 	 * to adjust our busyness.
835 	 */
836 	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
837 	duration_us = ktime_us_delta(cpu->sample.time,
838 				     cpu->last_sample_time);
839 	if (duration_us > sample_time * 3) {
840 		sample_ratio = div_fp(int_tofp(sample_time),
841 				      int_tofp(duration_us));
842 		core_busy = mul_fp(core_busy, sample_ratio);
843 	}
844 
845 	return core_busy;
846 }
847 
848 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
849 {
850 	int32_t busy_scaled;
851 	struct _pid *pid;
852 	signed int ctl;
853 	int from;
854 	struct sample *sample;
855 
856 	from = cpu->pstate.current_pstate;
857 
858 	pid = &cpu->pid;
859 	busy_scaled = intel_pstate_get_scaled_busy(cpu);
860 
861 	ctl = pid_calc(pid, busy_scaled);
862 
863 	/* Negative values of ctl increase the pstate and vice versa */
864 	intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
865 
866 	sample = &cpu->sample;
867 	trace_pstate_sample(fp_toint(sample->core_pct_busy),
868 		fp_toint(busy_scaled),
869 		from,
870 		cpu->pstate.current_pstate,
871 		sample->mperf,
872 		sample->aperf,
873 		sample->tsc,
874 		sample->freq);
875 }
876 
877 static void intel_hwp_timer_func(unsigned long __data)
878 {
879 	struct cpudata *cpu = (struct cpudata *) __data;
880 
881 	intel_pstate_sample(cpu);
882 	intel_hwp_set_sample_time(cpu);
883 }
884 
885 static void intel_pstate_timer_func(unsigned long __data)
886 {
887 	struct cpudata *cpu = (struct cpudata *) __data;
888 
889 	intel_pstate_sample(cpu);
890 
891 	intel_pstate_adjust_busy_pstate(cpu);
892 
893 	intel_pstate_set_sample_time(cpu);
894 }
895 
896 #define ICPU(model, policy) \
897 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
898 			(unsigned long)&policy }
899 
900 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
901 	ICPU(0x2a, core_params),
902 	ICPU(0x2d, core_params),
903 	ICPU(0x37, byt_params),
904 	ICPU(0x3a, core_params),
905 	ICPU(0x3c, core_params),
906 	ICPU(0x3d, core_params),
907 	ICPU(0x3e, core_params),
908 	ICPU(0x3f, core_params),
909 	ICPU(0x45, core_params),
910 	ICPU(0x46, core_params),
911 	ICPU(0x47, core_params),
912 	ICPU(0x4c, byt_params),
913 	ICPU(0x4e, core_params),
914 	ICPU(0x4f, core_params),
915 	ICPU(0x5e, core_params),
916 	ICPU(0x56, core_params),
917 	ICPU(0x57, knl_params),
918 	{}
919 };
920 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
921 
922 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
923 	ICPU(0x56, core_params),
924 	{}
925 };
926 
927 static int intel_pstate_init_cpu(unsigned int cpunum)
928 {
929 	struct cpudata *cpu;
930 
931 	if (!all_cpu_data[cpunum])
932 		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
933 					       GFP_KERNEL);
934 	if (!all_cpu_data[cpunum])
935 		return -ENOMEM;
936 
937 	cpu = all_cpu_data[cpunum];
938 
939 	cpu->cpu = cpunum;
940 
941 	if (hwp_active)
942 		intel_pstate_hwp_enable(cpu);
943 
944 	intel_pstate_get_cpu_pstates(cpu);
945 
946 	init_timer_deferrable(&cpu->timer);
947 	cpu->timer.data = (unsigned long)cpu;
948 	cpu->timer.expires = jiffies + HZ/100;
949 
950 	if (!hwp_active)
951 		cpu->timer.function = intel_pstate_timer_func;
952 	else
953 		cpu->timer.function = intel_hwp_timer_func;
954 
955 	intel_pstate_busy_pid_reset(cpu);
956 	intel_pstate_sample(cpu);
957 
958 	add_timer_on(&cpu->timer, cpunum);
959 
960 	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
961 
962 	return 0;
963 }
964 
965 static unsigned int intel_pstate_get(unsigned int cpu_num)
966 {
967 	struct sample *sample;
968 	struct cpudata *cpu;
969 
970 	cpu = all_cpu_data[cpu_num];
971 	if (!cpu)
972 		return 0;
973 	sample = &cpu->sample;
974 	return sample->freq;
975 }
976 
977 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
978 {
979 	if (!policy->cpuinfo.max_freq)
980 		return -ENODEV;
981 
982 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
983 	    policy->max >= policy->cpuinfo.max_freq) {
984 		limits.min_policy_pct = 100;
985 		limits.min_perf_pct = 100;
986 		limits.min_perf = int_tofp(1);
987 		limits.max_policy_pct = 100;
988 		limits.max_perf_pct = 100;
989 		limits.max_perf = int_tofp(1);
990 		limits.no_turbo = 0;
991 		return 0;
992 	}
993 
994 	limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
995 	limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
996 	limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
997 	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
998 
999 	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1000 	limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
1001 	limits.min_perf_pct = min(limits.max_policy_pct, limits.min_perf_pct);
1002 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
1003 	limits.max_perf_pct = max(limits.min_policy_pct, limits.max_perf_pct);
1004 
1005 	/* Make sure min_perf_pct <= max_perf_pct */
1006 	limits.min_perf_pct = min(limits.max_perf_pct, limits.min_perf_pct);
1007 
1008 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
1009 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
1010 
1011 	if (hwp_active)
1012 		intel_pstate_hwp_set();
1013 
1014 	return 0;
1015 }
1016 
1017 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1018 {
1019 	cpufreq_verify_within_cpu_limits(policy);
1020 
1021 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1022 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1023 		return -EINVAL;
1024 
1025 	return 0;
1026 }
1027 
1028 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1029 {
1030 	int cpu_num = policy->cpu;
1031 	struct cpudata *cpu = all_cpu_data[cpu_num];
1032 
1033 	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1034 
1035 	del_timer_sync(&all_cpu_data[cpu_num]->timer);
1036 	if (hwp_active)
1037 		return;
1038 
1039 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1040 }
1041 
1042 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1043 {
1044 	struct cpudata *cpu;
1045 	int rc;
1046 
1047 	rc = intel_pstate_init_cpu(policy->cpu);
1048 	if (rc)
1049 		return rc;
1050 
1051 	cpu = all_cpu_data[policy->cpu];
1052 
1053 	if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1054 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1055 	else
1056 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1057 
1058 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1059 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1060 
1061 	/* cpuinfo and default policy values */
1062 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1063 	policy->cpuinfo.max_freq =
1064 		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1065 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1066 	cpumask_set_cpu(policy->cpu, policy->cpus);
1067 
1068 	return 0;
1069 }
1070 
1071 static struct cpufreq_driver intel_pstate_driver = {
1072 	.flags		= CPUFREQ_CONST_LOOPS,
1073 	.verify		= intel_pstate_verify_policy,
1074 	.setpolicy	= intel_pstate_set_policy,
1075 	.get		= intel_pstate_get,
1076 	.init		= intel_pstate_cpu_init,
1077 	.stop_cpu	= intel_pstate_stop_cpu,
1078 	.name		= "intel_pstate",
1079 };
1080 
1081 static int __initdata no_load;
1082 static int __initdata no_hwp;
1083 static int __initdata hwp_only;
1084 static unsigned int force_load;
1085 
1086 static int intel_pstate_msrs_not_valid(void)
1087 {
1088 	if (!pstate_funcs.get_max() ||
1089 	    !pstate_funcs.get_min() ||
1090 	    !pstate_funcs.get_turbo())
1091 		return -ENODEV;
1092 
1093 	return 0;
1094 }
1095 
1096 static void copy_pid_params(struct pstate_adjust_policy *policy)
1097 {
1098 	pid_params.sample_rate_ms = policy->sample_rate_ms;
1099 	pid_params.p_gain_pct = policy->p_gain_pct;
1100 	pid_params.i_gain_pct = policy->i_gain_pct;
1101 	pid_params.d_gain_pct = policy->d_gain_pct;
1102 	pid_params.deadband = policy->deadband;
1103 	pid_params.setpoint = policy->setpoint;
1104 }
1105 
1106 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1107 {
1108 	pstate_funcs.get_max   = funcs->get_max;
1109 	pstate_funcs.get_min   = funcs->get_min;
1110 	pstate_funcs.get_turbo = funcs->get_turbo;
1111 	pstate_funcs.get_scaling = funcs->get_scaling;
1112 	pstate_funcs.set       = funcs->set;
1113 	pstate_funcs.get_vid   = funcs->get_vid;
1114 }
1115 
1116 #if IS_ENABLED(CONFIG_ACPI)
1117 #include <acpi/processor.h>
1118 
1119 static bool intel_pstate_no_acpi_pss(void)
1120 {
1121 	int i;
1122 
1123 	for_each_possible_cpu(i) {
1124 		acpi_status status;
1125 		union acpi_object *pss;
1126 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1127 		struct acpi_processor *pr = per_cpu(processors, i);
1128 
1129 		if (!pr)
1130 			continue;
1131 
1132 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1133 		if (ACPI_FAILURE(status))
1134 			continue;
1135 
1136 		pss = buffer.pointer;
1137 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1138 			kfree(pss);
1139 			return false;
1140 		}
1141 
1142 		kfree(pss);
1143 	}
1144 
1145 	return true;
1146 }
1147 
1148 static bool intel_pstate_has_acpi_ppc(void)
1149 {
1150 	int i;
1151 
1152 	for_each_possible_cpu(i) {
1153 		struct acpi_processor *pr = per_cpu(processors, i);
1154 
1155 		if (!pr)
1156 			continue;
1157 		if (acpi_has_method(pr->handle, "_PPC"))
1158 			return true;
1159 	}
1160 	return false;
1161 }
1162 
1163 enum {
1164 	PSS,
1165 	PPC,
1166 };
1167 
1168 struct hw_vendor_info {
1169 	u16  valid;
1170 	char oem_id[ACPI_OEM_ID_SIZE];
1171 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1172 	int  oem_pwr_table;
1173 };
1174 
1175 /* Hardware vendor-specific info that has its own power management modes */
1176 static struct hw_vendor_info vendor_info[] = {
1177 	{1, "HP    ", "ProLiant", PSS},
1178 	{1, "ORACLE", "X4-2    ", PPC},
1179 	{1, "ORACLE", "X4-2L   ", PPC},
1180 	{1, "ORACLE", "X4-2B   ", PPC},
1181 	{1, "ORACLE", "X3-2    ", PPC},
1182 	{1, "ORACLE", "X3-2L   ", PPC},
1183 	{1, "ORACLE", "X3-2B   ", PPC},
1184 	{1, "ORACLE", "X4470M2 ", PPC},
1185 	{1, "ORACLE", "X4270M3 ", PPC},
1186 	{1, "ORACLE", "X4270M2 ", PPC},
1187 	{1, "ORACLE", "X4170M2 ", PPC},
1188 	{1, "ORACLE", "X4170 M3", PPC},
1189 	{1, "ORACLE", "X4275 M3", PPC},
1190 	{1, "ORACLE", "X6-2    ", PPC},
1191 	{1, "ORACLE", "Sudbury ", PPC},
1192 	{0, "", ""},
1193 };
1194 
1195 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1196 {
1197 	struct acpi_table_header hdr;
1198 	struct hw_vendor_info *v_info;
1199 	const struct x86_cpu_id *id;
1200 	u64 misc_pwr;
1201 
1202 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1203 	if (id) {
1204 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1205 		if ( misc_pwr & (1 << 8))
1206 			return true;
1207 	}
1208 
1209 	if (acpi_disabled ||
1210 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1211 		return false;
1212 
1213 	for (v_info = vendor_info; v_info->valid; v_info++) {
1214 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1215 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1216 						ACPI_OEM_TABLE_ID_SIZE))
1217 			switch (v_info->oem_pwr_table) {
1218 			case PSS:
1219 				return intel_pstate_no_acpi_pss();
1220 			case PPC:
1221 				return intel_pstate_has_acpi_ppc() &&
1222 					(!force_load);
1223 			}
1224 	}
1225 
1226 	return false;
1227 }
1228 #else /* CONFIG_ACPI not enabled */
1229 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1230 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1231 #endif /* CONFIG_ACPI */
1232 
1233 static int __init intel_pstate_init(void)
1234 {
1235 	int cpu, rc = 0;
1236 	const struct x86_cpu_id *id;
1237 	struct cpu_defaults *cpu_def;
1238 
1239 	if (no_load)
1240 		return -ENODEV;
1241 
1242 	id = x86_match_cpu(intel_pstate_cpu_ids);
1243 	if (!id)
1244 		return -ENODEV;
1245 
1246 	/*
1247 	 * The Intel pstate driver will be ignored if the platform
1248 	 * firmware has its own power management modes.
1249 	 */
1250 	if (intel_pstate_platform_pwr_mgmt_exists())
1251 		return -ENODEV;
1252 
1253 	cpu_def = (struct cpu_defaults *)id->driver_data;
1254 
1255 	copy_pid_params(&cpu_def->pid_policy);
1256 	copy_cpu_funcs(&cpu_def->funcs);
1257 
1258 	if (intel_pstate_msrs_not_valid())
1259 		return -ENODEV;
1260 
1261 	pr_info("Intel P-state driver initializing.\n");
1262 
1263 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1264 	if (!all_cpu_data)
1265 		return -ENOMEM;
1266 
1267 	if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1268 		hwp_active++;
1269 
1270 	if (!hwp_active && hwp_only)
1271 		goto out;
1272 
1273 	rc = cpufreq_register_driver(&intel_pstate_driver);
1274 	if (rc)
1275 		goto out;
1276 
1277 	intel_pstate_debug_expose_params();
1278 	intel_pstate_sysfs_expose_params();
1279 
1280 	return rc;
1281 out:
1282 	get_online_cpus();
1283 	for_each_online_cpu(cpu) {
1284 		if (all_cpu_data[cpu]) {
1285 			del_timer_sync(&all_cpu_data[cpu]->timer);
1286 			kfree(all_cpu_data[cpu]);
1287 		}
1288 	}
1289 
1290 	put_online_cpus();
1291 	vfree(all_cpu_data);
1292 	return -ENODEV;
1293 }
1294 device_initcall(intel_pstate_init);
1295 
1296 static int __init intel_pstate_setup(char *str)
1297 {
1298 	if (!str)
1299 		return -EINVAL;
1300 
1301 	if (!strcmp(str, "disable"))
1302 		no_load = 1;
1303 	if (!strcmp(str, "no_hwp"))
1304 		no_hwp = 1;
1305 	if (!strcmp(str, "force"))
1306 		force_load = 1;
1307 	if (!strcmp(str, "hwp_only"))
1308 		hwp_only = 1;
1309 	return 0;
1310 }
1311 early_param("intel_pstate", intel_pstate_setup);
1312 
1313 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1314 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1315 MODULE_LICENSE("GPL");
1316