1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29 
30 #include <asm/cpu.h>
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 #include <asm/cpufeature.h>
35 #include <asm/intel-family.h>
36 #include "../drivers/thermal/intel/thermal_interrupt.h"
37 
38 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
39 
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
43 
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48 
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52 
53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54 
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59 
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64 
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67 	return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69 
70 static inline int ceiling_fp(int32_t x)
71 {
72 	int mask, ret;
73 
74 	ret = fp_toint(x);
75 	mask = (1 << FRAC_BITS) - 1;
76 	if (x & mask)
77 		ret += 1;
78 	return ret;
79 }
80 
81 static inline u64 mul_ext_fp(u64 x, u64 y)
82 {
83 	return (x * y) >> EXT_FRAC_BITS;
84 }
85 
86 static inline u64 div_ext_fp(u64 x, u64 y)
87 {
88 	return div64_u64(x << EXT_FRAC_BITS, y);
89 }
90 
91 /**
92  * struct sample -	Store performance sample
93  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
94  *			performance during last sample period
95  * @busy_scaled:	Scaled busy value which is used to calculate next
96  *			P state. This can be different than core_avg_perf
97  *			to account for cpu idle period
98  * @aperf:		Difference of actual performance frequency clock count
99  *			read from APERF MSR between last and current sample
100  * @mperf:		Difference of maximum performance frequency clock count
101  *			read from MPERF MSR between last and current sample
102  * @tsc:		Difference of time stamp counter between last and
103  *			current sample
104  * @time:		Current time from scheduler
105  *
106  * This structure is used in the cpudata structure to store performance sample
107  * data for choosing next P State.
108  */
109 struct sample {
110 	int32_t core_avg_perf;
111 	int32_t busy_scaled;
112 	u64 aperf;
113 	u64 mperf;
114 	u64 tsc;
115 	u64 time;
116 };
117 
118 /**
119  * struct pstate_data - Store P state data
120  * @current_pstate:	Current requested P state
121  * @min_pstate:		Min P state possible for this platform
122  * @max_pstate:		Max P state possible for this platform
123  * @max_pstate_physical:This is physical Max P state for a processor
124  *			This can be higher than the max_pstate which can
125  *			be limited by platform thermal design power limits
126  * @perf_ctl_scaling:	PERF_CTL P-state to frequency scaling factor
127  * @scaling:		Scaling factor between performance and frequency
128  * @turbo_pstate:	Max Turbo P state possible for this platform
129  * @min_freq:		@min_pstate frequency in cpufreq units
130  * @max_freq:		@max_pstate frequency in cpufreq units
131  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132  *
133  * Stores the per cpu model P state limits and current P state.
134  */
135 struct pstate_data {
136 	int	current_pstate;
137 	int	min_pstate;
138 	int	max_pstate;
139 	int	max_pstate_physical;
140 	int	perf_ctl_scaling;
141 	int	scaling;
142 	int	turbo_pstate;
143 	unsigned int min_freq;
144 	unsigned int max_freq;
145 	unsigned int turbo_freq;
146 };
147 
148 /**
149  * struct vid_data -	Stores voltage information data
150  * @min:		VID data for this platform corresponding to
151  *			the lowest P state
152  * @max:		VID data corresponding to the highest P State.
153  * @turbo:		VID data for turbo P state
154  * @ratio:		Ratio of (vid max - vid min) /
155  *			(max P state - Min P State)
156  *
157  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
158  * This data is used in Atom platforms, where in addition to target P state,
159  * the voltage data needs to be specified to select next P State.
160  */
161 struct vid_data {
162 	int min;
163 	int max;
164 	int turbo;
165 	int32_t ratio;
166 };
167 
168 /**
169  * struct global_params - Global parameters, mostly tunable via sysfs.
170  * @no_turbo:		Whether or not to use turbo P-states.
171  * @turbo_disabled:	Whether or not turbo P-states are available at all,
172  *			based on the MSR_IA32_MISC_ENABLE value and whether or
173  *			not the maximum reported turbo P-state is different from
174  *			the maximum reported non-turbo one.
175  * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
176  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
177  *			P-state capacity.
178  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
179  *			P-state capacity.
180  */
181 struct global_params {
182 	bool no_turbo;
183 	bool turbo_disabled;
184 	bool turbo_disabled_mf;
185 	int max_perf_pct;
186 	int min_perf_pct;
187 };
188 
189 /**
190  * struct cpudata -	Per CPU instance data storage
191  * @cpu:		CPU number for this instance data
192  * @policy:		CPUFreq policy value
193  * @update_util:	CPUFreq utility callback information
194  * @update_util_set:	CPUFreq utility callback is set
195  * @iowait_boost:	iowait-related boost fraction
196  * @last_update:	Time of the last update.
197  * @pstate:		Stores P state limits for this CPU
198  * @vid:		Stores VID limits for this CPU
199  * @last_sample_time:	Last Sample time
200  * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
201  * @prev_aperf:		Last APERF value read from APERF MSR
202  * @prev_mperf:		Last MPERF value read from MPERF MSR
203  * @prev_tsc:		Last timestamp counter (TSC) value
204  * @prev_cummulative_iowait: IO Wait time difference from last and
205  *			current sample
206  * @sample:		Storage for storing last Sample data
207  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
208  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
209  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
210  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
211  * @epp_powersave:	Last saved HWP energy performance preference
212  *			(EPP) or energy performance bias (EPB),
213  *			when policy switched to performance
214  * @epp_policy:		Last saved policy used to set EPP/EPB
215  * @epp_default:	Power on default HWP energy performance
216  *			preference/bias
217  * @epp_cached		Cached HWP energy-performance preference value
218  * @hwp_req_cached:	Cached value of the last HWP Request MSR
219  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
220  * @last_io_update:	Last time when IO wake flag was set
221  * @sched_flags:	Store scheduler flags for possible cross CPU update
222  * @hwp_boost_min:	Last HWP boosted min performance
223  * @suspended:		Whether or not the driver has been suspended.
224  * @hwp_notify_work:	workqueue for HWP notifications.
225  *
226  * This structure stores per CPU instance data for all CPUs.
227  */
228 struct cpudata {
229 	int cpu;
230 
231 	unsigned int policy;
232 	struct update_util_data update_util;
233 	bool   update_util_set;
234 
235 	struct pstate_data pstate;
236 	struct vid_data vid;
237 
238 	u64	last_update;
239 	u64	last_sample_time;
240 	u64	aperf_mperf_shift;
241 	u64	prev_aperf;
242 	u64	prev_mperf;
243 	u64	prev_tsc;
244 	u64	prev_cummulative_iowait;
245 	struct sample sample;
246 	int32_t	min_perf_ratio;
247 	int32_t	max_perf_ratio;
248 #ifdef CONFIG_ACPI
249 	struct acpi_processor_performance acpi_perf_data;
250 	bool valid_pss_table;
251 #endif
252 	unsigned int iowait_boost;
253 	s16 epp_powersave;
254 	s16 epp_policy;
255 	s16 epp_default;
256 	s16 epp_cached;
257 	u64 hwp_req_cached;
258 	u64 hwp_cap_cached;
259 	u64 last_io_update;
260 	unsigned int sched_flags;
261 	u32 hwp_boost_min;
262 	bool suspended;
263 	struct delayed_work hwp_notify_work;
264 };
265 
266 static struct cpudata **all_cpu_data;
267 
268 /**
269  * struct pstate_funcs - Per CPU model specific callbacks
270  * @get_max:		Callback to get maximum non turbo effective P state
271  * @get_max_physical:	Callback to get maximum non turbo physical P state
272  * @get_min:		Callback to get minimum P state
273  * @get_turbo:		Callback to get turbo P state
274  * @get_scaling:	Callback to get frequency scaling factor
275  * @get_cpu_scaling:	Get frequency scaling factor for a given cpu
276  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
277  * @get_val:		Callback to convert P state to actual MSR write value
278  * @get_vid:		Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284 	int (*get_max)(int cpu);
285 	int (*get_max_physical)(int cpu);
286 	int (*get_min)(int cpu);
287 	int (*get_turbo)(int cpu);
288 	int (*get_scaling)(void);
289 	int (*get_cpu_scaling)(int cpu);
290 	int (*get_aperf_mperf_shift)(void);
291 	u64 (*get_val)(struct cpudata*, int pstate);
292 	void (*get_vid)(struct cpudata *);
293 };
294 
295 static struct pstate_funcs pstate_funcs __read_mostly;
296 
297 static int hwp_active __read_mostly;
298 static int hwp_mode_bdw __read_mostly;
299 static bool per_cpu_limits __read_mostly;
300 static bool hwp_boost __read_mostly;
301 static bool hwp_forced __read_mostly;
302 
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304 
305 #define HYBRID_SCALING_FACTOR	78741
306 
307 static inline int core_get_scaling(void)
308 {
309 	return 100000;
310 }
311 
312 #ifdef CONFIG_ACPI
313 static bool acpi_ppc;
314 #endif
315 
316 static struct global_params global;
317 
318 static DEFINE_MUTEX(intel_pstate_driver_lock);
319 static DEFINE_MUTEX(intel_pstate_limits_lock);
320 
321 #ifdef CONFIG_ACPI
322 
323 static bool intel_pstate_acpi_pm_profile_server(void)
324 {
325 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
326 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
327 		return true;
328 
329 	return false;
330 }
331 
332 static bool intel_pstate_get_ppc_enable_status(void)
333 {
334 	if (intel_pstate_acpi_pm_profile_server())
335 		return true;
336 
337 	return acpi_ppc;
338 }
339 
340 #ifdef CONFIG_ACPI_CPPC_LIB
341 
342 /* The work item is needed to avoid CPU hotplug locking issues */
343 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
344 {
345 	sched_set_itmt_support();
346 }
347 
348 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
349 
350 #define CPPC_MAX_PERF	U8_MAX
351 
352 static void intel_pstate_set_itmt_prio(int cpu)
353 {
354 	struct cppc_perf_caps cppc_perf;
355 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
356 	int ret;
357 
358 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
359 	/*
360 	 * If CPPC is not available, fall back to MSR_HWP_CAPABILITIES bits [8:0].
361 	 *
362 	 * Also, on some systems with overclocking enabled, CPPC.highest_perf is
363 	 * hardcoded to 0xff, so CPPC.highest_perf cannot be used to enable ITMT.
364 	 * Fall back to MSR_HWP_CAPABILITIES then too.
365 	 */
366 	if (ret || cppc_perf.highest_perf == CPPC_MAX_PERF)
367 		cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
368 
369 	/*
370 	 * The priorities can be set regardless of whether or not
371 	 * sched_set_itmt_support(true) has been called and it is valid to
372 	 * update them at any time after it has been called.
373 	 */
374 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
375 
376 	if (max_highest_perf <= min_highest_perf) {
377 		if (cppc_perf.highest_perf > max_highest_perf)
378 			max_highest_perf = cppc_perf.highest_perf;
379 
380 		if (cppc_perf.highest_perf < min_highest_perf)
381 			min_highest_perf = cppc_perf.highest_perf;
382 
383 		if (max_highest_perf > min_highest_perf) {
384 			/*
385 			 * This code can be run during CPU online under the
386 			 * CPU hotplug locks, so sched_set_itmt_support()
387 			 * cannot be called from here.  Queue up a work item
388 			 * to invoke it.
389 			 */
390 			schedule_work(&sched_itmt_work);
391 		}
392 	}
393 }
394 
395 static int intel_pstate_get_cppc_guaranteed(int cpu)
396 {
397 	struct cppc_perf_caps cppc_perf;
398 	int ret;
399 
400 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
401 	if (ret)
402 		return ret;
403 
404 	if (cppc_perf.guaranteed_perf)
405 		return cppc_perf.guaranteed_perf;
406 
407 	return cppc_perf.nominal_perf;
408 }
409 
410 static int intel_pstate_cppc_get_scaling(int cpu)
411 {
412 	struct cppc_perf_caps cppc_perf;
413 	int ret;
414 
415 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
416 
417 	/*
418 	 * If the nominal frequency and the nominal performance are not
419 	 * zero and the ratio between them is not 100, return the hybrid
420 	 * scaling factor.
421 	 */
422 	if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq &&
423 	    cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq)
424 		return HYBRID_SCALING_FACTOR;
425 
426 	return core_get_scaling();
427 }
428 
429 #else /* CONFIG_ACPI_CPPC_LIB */
430 static inline void intel_pstate_set_itmt_prio(int cpu)
431 {
432 }
433 #endif /* CONFIG_ACPI_CPPC_LIB */
434 
435 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
436 {
437 	struct cpudata *cpu;
438 	int ret;
439 	int i;
440 
441 	if (hwp_active) {
442 		intel_pstate_set_itmt_prio(policy->cpu);
443 		return;
444 	}
445 
446 	if (!intel_pstate_get_ppc_enable_status())
447 		return;
448 
449 	cpu = all_cpu_data[policy->cpu];
450 
451 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
452 						  policy->cpu);
453 	if (ret)
454 		return;
455 
456 	/*
457 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
458 	 * guarantee that the states returned by it map to the states in our
459 	 * list directly.
460 	 */
461 	if (cpu->acpi_perf_data.control_register.space_id !=
462 						ACPI_ADR_SPACE_FIXED_HARDWARE)
463 		goto err;
464 
465 	/*
466 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
467 	 * usual without taking _PSS into account
468 	 */
469 	if (cpu->acpi_perf_data.state_count < 2)
470 		goto err;
471 
472 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
473 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
474 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
475 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
476 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
477 			 (u32) cpu->acpi_perf_data.states[i].power,
478 			 (u32) cpu->acpi_perf_data.states[i].control);
479 	}
480 
481 	cpu->valid_pss_table = true;
482 	pr_debug("_PPC limits will be enforced\n");
483 
484 	return;
485 
486  err:
487 	cpu->valid_pss_table = false;
488 	acpi_processor_unregister_performance(policy->cpu);
489 }
490 
491 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
492 {
493 	struct cpudata *cpu;
494 
495 	cpu = all_cpu_data[policy->cpu];
496 	if (!cpu->valid_pss_table)
497 		return;
498 
499 	acpi_processor_unregister_performance(policy->cpu);
500 }
501 #else /* CONFIG_ACPI */
502 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
503 {
504 }
505 
506 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
507 {
508 }
509 
510 static inline bool intel_pstate_acpi_pm_profile_server(void)
511 {
512 	return false;
513 }
514 #endif /* CONFIG_ACPI */
515 
516 #ifndef CONFIG_ACPI_CPPC_LIB
517 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
518 {
519 	return -ENOTSUPP;
520 }
521 
522 static int intel_pstate_cppc_get_scaling(int cpu)
523 {
524 	return core_get_scaling();
525 }
526 #endif /* CONFIG_ACPI_CPPC_LIB */
527 
528 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq,
529 					unsigned int relation)
530 {
531 	if (freq == cpu->pstate.turbo_freq)
532 		return cpu->pstate.turbo_pstate;
533 
534 	if (freq == cpu->pstate.max_freq)
535 		return cpu->pstate.max_pstate;
536 
537 	switch (relation) {
538 	case CPUFREQ_RELATION_H:
539 		return freq / cpu->pstate.scaling;
540 	case CPUFREQ_RELATION_C:
541 		return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling);
542 	}
543 
544 	return DIV_ROUND_UP(freq, cpu->pstate.scaling);
545 }
546 
547 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq)
548 {
549 	return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L);
550 }
551 
552 /**
553  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
554  * @cpu: Target CPU.
555  *
556  * On hybrid processors, HWP may expose more performance levels than there are
557  * P-states accessible through the PERF_CTL interface.  If that happens, the
558  * scaling factor between HWP performance levels and CPU frequency will be less
559  * than the scaling factor between P-state values and CPU frequency.
560  *
561  * In that case, adjust the CPU parameters used in computations accordingly.
562  */
563 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
564 {
565 	int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
566 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
567 	int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
568 	int scaling = cpu->pstate.scaling;
569 	int freq;
570 
571 	pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
572 	pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
573 	pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
574 	pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
575 	pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
576 	pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
577 
578 	cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
579 					   perf_ctl_scaling);
580 	cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
581 					 perf_ctl_scaling);
582 
583 	freq = perf_ctl_max_phys * perf_ctl_scaling;
584 	cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq);
585 
586 	freq = cpu->pstate.min_pstate * perf_ctl_scaling;
587 	cpu->pstate.min_freq = freq;
588 	/*
589 	 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
590 	 * the effective range of HWP performance levels.
591 	 */
592 	cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq);
593 }
594 
595 static inline void update_turbo_state(void)
596 {
597 	u64 misc_en;
598 	struct cpudata *cpu;
599 
600 	cpu = all_cpu_data[0];
601 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
602 	global.turbo_disabled =
603 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
604 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
605 }
606 
607 static int min_perf_pct_min(void)
608 {
609 	struct cpudata *cpu = all_cpu_data[0];
610 	int turbo_pstate = cpu->pstate.turbo_pstate;
611 
612 	return turbo_pstate ?
613 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
614 }
615 
616 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
617 {
618 	u64 epb;
619 	int ret;
620 
621 	if (!boot_cpu_has(X86_FEATURE_EPB))
622 		return -ENXIO;
623 
624 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
625 	if (ret)
626 		return (s16)ret;
627 
628 	return (s16)(epb & 0x0f);
629 }
630 
631 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
632 {
633 	s16 epp;
634 
635 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
636 		/*
637 		 * When hwp_req_data is 0, means that caller didn't read
638 		 * MSR_HWP_REQUEST, so need to read and get EPP.
639 		 */
640 		if (!hwp_req_data) {
641 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
642 					    &hwp_req_data);
643 			if (epp)
644 				return epp;
645 		}
646 		epp = (hwp_req_data >> 24) & 0xff;
647 	} else {
648 		/* When there is no EPP present, HWP uses EPB settings */
649 		epp = intel_pstate_get_epb(cpu_data);
650 	}
651 
652 	return epp;
653 }
654 
655 static int intel_pstate_set_epb(int cpu, s16 pref)
656 {
657 	u64 epb;
658 	int ret;
659 
660 	if (!boot_cpu_has(X86_FEATURE_EPB))
661 		return -ENXIO;
662 
663 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
664 	if (ret)
665 		return ret;
666 
667 	epb = (epb & ~0x0f) | pref;
668 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
669 
670 	return 0;
671 }
672 
673 /*
674  * EPP/EPB display strings corresponding to EPP index in the
675  * energy_perf_strings[]
676  *	index		String
677  *-------------------------------------
678  *	0		default
679  *	1		performance
680  *	2		balance_performance
681  *	3		balance_power
682  *	4		power
683  */
684 
685 enum energy_perf_value_index {
686 	EPP_INDEX_DEFAULT = 0,
687 	EPP_INDEX_PERFORMANCE,
688 	EPP_INDEX_BALANCE_PERFORMANCE,
689 	EPP_INDEX_BALANCE_POWERSAVE,
690 	EPP_INDEX_POWERSAVE,
691 };
692 
693 static const char * const energy_perf_strings[] = {
694 	[EPP_INDEX_DEFAULT] = "default",
695 	[EPP_INDEX_PERFORMANCE] = "performance",
696 	[EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
697 	[EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
698 	[EPP_INDEX_POWERSAVE] = "power",
699 	NULL
700 };
701 static unsigned int epp_values[] = {
702 	[EPP_INDEX_DEFAULT] = 0, /* Unused index */
703 	[EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
704 	[EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
705 	[EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
706 	[EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
707 };
708 
709 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
710 {
711 	s16 epp;
712 	int index = -EINVAL;
713 
714 	*raw_epp = 0;
715 	epp = intel_pstate_get_epp(cpu_data, 0);
716 	if (epp < 0)
717 		return epp;
718 
719 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
720 		if (epp == epp_values[EPP_INDEX_PERFORMANCE])
721 			return EPP_INDEX_PERFORMANCE;
722 		if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
723 			return EPP_INDEX_BALANCE_PERFORMANCE;
724 		if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
725 			return EPP_INDEX_BALANCE_POWERSAVE;
726 		if (epp == epp_values[EPP_INDEX_POWERSAVE])
727 			return EPP_INDEX_POWERSAVE;
728 		*raw_epp = epp;
729 		return 0;
730 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
731 		/*
732 		 * Range:
733 		 *	0x00-0x03	:	Performance
734 		 *	0x04-0x07	:	Balance performance
735 		 *	0x08-0x0B	:	Balance power
736 		 *	0x0C-0x0F	:	Power
737 		 * The EPB is a 4 bit value, but our ranges restrict the
738 		 * value which can be set. Here only using top two bits
739 		 * effectively.
740 		 */
741 		index = (epp >> 2) + 1;
742 	}
743 
744 	return index;
745 }
746 
747 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
748 {
749 	int ret;
750 
751 	/*
752 	 * Use the cached HWP Request MSR value, because in the active mode the
753 	 * register itself may be updated by intel_pstate_hwp_boost_up() or
754 	 * intel_pstate_hwp_boost_down() at any time.
755 	 */
756 	u64 value = READ_ONCE(cpu->hwp_req_cached);
757 
758 	value &= ~GENMASK_ULL(31, 24);
759 	value |= (u64)epp << 24;
760 	/*
761 	 * The only other updater of hwp_req_cached in the active mode,
762 	 * intel_pstate_hwp_set(), is called under the same lock as this
763 	 * function, so it cannot run in parallel with the update below.
764 	 */
765 	WRITE_ONCE(cpu->hwp_req_cached, value);
766 	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
767 	if (!ret)
768 		cpu->epp_cached = epp;
769 
770 	return ret;
771 }
772 
773 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
774 					      int pref_index, bool use_raw,
775 					      u32 raw_epp)
776 {
777 	int epp = -EINVAL;
778 	int ret;
779 
780 	if (!pref_index)
781 		epp = cpu_data->epp_default;
782 
783 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
784 		if (use_raw)
785 			epp = raw_epp;
786 		else if (epp == -EINVAL)
787 			epp = epp_values[pref_index];
788 
789 		/*
790 		 * To avoid confusion, refuse to set EPP to any values different
791 		 * from 0 (performance) if the current policy is "performance",
792 		 * because those values would be overridden.
793 		 */
794 		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
795 			return -EBUSY;
796 
797 		ret = intel_pstate_set_epp(cpu_data, epp);
798 	} else {
799 		if (epp == -EINVAL)
800 			epp = (pref_index - 1) << 2;
801 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
802 	}
803 
804 	return ret;
805 }
806 
807 static ssize_t show_energy_performance_available_preferences(
808 				struct cpufreq_policy *policy, char *buf)
809 {
810 	int i = 0;
811 	int ret = 0;
812 
813 	while (energy_perf_strings[i] != NULL)
814 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
815 
816 	ret += sprintf(&buf[ret], "\n");
817 
818 	return ret;
819 }
820 
821 cpufreq_freq_attr_ro(energy_performance_available_preferences);
822 
823 static struct cpufreq_driver intel_pstate;
824 
825 static ssize_t store_energy_performance_preference(
826 		struct cpufreq_policy *policy, const char *buf, size_t count)
827 {
828 	struct cpudata *cpu = all_cpu_data[policy->cpu];
829 	char str_preference[21];
830 	bool raw = false;
831 	ssize_t ret;
832 	u32 epp = 0;
833 
834 	ret = sscanf(buf, "%20s", str_preference);
835 	if (ret != 1)
836 		return -EINVAL;
837 
838 	ret = match_string(energy_perf_strings, -1, str_preference);
839 	if (ret < 0) {
840 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
841 			return ret;
842 
843 		ret = kstrtouint(buf, 10, &epp);
844 		if (ret)
845 			return ret;
846 
847 		if (epp > 255)
848 			return -EINVAL;
849 
850 		raw = true;
851 	}
852 
853 	/*
854 	 * This function runs with the policy R/W semaphore held, which
855 	 * guarantees that the driver pointer will not change while it is
856 	 * running.
857 	 */
858 	if (!intel_pstate_driver)
859 		return -EAGAIN;
860 
861 	mutex_lock(&intel_pstate_limits_lock);
862 
863 	if (intel_pstate_driver == &intel_pstate) {
864 		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
865 	} else {
866 		/*
867 		 * In the passive mode the governor needs to be stopped on the
868 		 * target CPU before the EPP update and restarted after it,
869 		 * which is super-heavy-weight, so make sure it is worth doing
870 		 * upfront.
871 		 */
872 		if (!raw)
873 			epp = ret ? epp_values[ret] : cpu->epp_default;
874 
875 		if (cpu->epp_cached != epp) {
876 			int err;
877 
878 			cpufreq_stop_governor(policy);
879 			ret = intel_pstate_set_epp(cpu, epp);
880 			err = cpufreq_start_governor(policy);
881 			if (!ret)
882 				ret = err;
883 		} else {
884 			ret = 0;
885 		}
886 	}
887 
888 	mutex_unlock(&intel_pstate_limits_lock);
889 
890 	return ret ?: count;
891 }
892 
893 static ssize_t show_energy_performance_preference(
894 				struct cpufreq_policy *policy, char *buf)
895 {
896 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
897 	int preference, raw_epp;
898 
899 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
900 	if (preference < 0)
901 		return preference;
902 
903 	if (raw_epp)
904 		return  sprintf(buf, "%d\n", raw_epp);
905 	else
906 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
907 }
908 
909 cpufreq_freq_attr_rw(energy_performance_preference);
910 
911 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
912 {
913 	struct cpudata *cpu = all_cpu_data[policy->cpu];
914 	int ratio, freq;
915 
916 	ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
917 	if (ratio <= 0) {
918 		u64 cap;
919 
920 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
921 		ratio = HWP_GUARANTEED_PERF(cap);
922 	}
923 
924 	freq = ratio * cpu->pstate.scaling;
925 	if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
926 		freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
927 
928 	return sprintf(buf, "%d\n", freq);
929 }
930 
931 cpufreq_freq_attr_ro(base_frequency);
932 
933 static struct freq_attr *hwp_cpufreq_attrs[] = {
934 	&energy_performance_preference,
935 	&energy_performance_available_preferences,
936 	&base_frequency,
937 	NULL,
938 };
939 
940 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
941 {
942 	u64 cap;
943 
944 	rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
945 	WRITE_ONCE(cpu->hwp_cap_cached, cap);
946 	cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
947 	cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
948 }
949 
950 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
951 {
952 	int scaling = cpu->pstate.scaling;
953 
954 	__intel_pstate_get_hwp_cap(cpu);
955 
956 	cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
957 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
958 	if (scaling != cpu->pstate.perf_ctl_scaling) {
959 		int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
960 
961 		cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
962 						 perf_ctl_scaling);
963 		cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
964 						   perf_ctl_scaling);
965 	}
966 }
967 
968 static void intel_pstate_hwp_set(unsigned int cpu)
969 {
970 	struct cpudata *cpu_data = all_cpu_data[cpu];
971 	int max, min;
972 	u64 value;
973 	s16 epp;
974 
975 	max = cpu_data->max_perf_ratio;
976 	min = cpu_data->min_perf_ratio;
977 
978 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
979 		min = max;
980 
981 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
982 
983 	value &= ~HWP_MIN_PERF(~0L);
984 	value |= HWP_MIN_PERF(min);
985 
986 	value &= ~HWP_MAX_PERF(~0L);
987 	value |= HWP_MAX_PERF(max);
988 
989 	if (cpu_data->epp_policy == cpu_data->policy)
990 		goto skip_epp;
991 
992 	cpu_data->epp_policy = cpu_data->policy;
993 
994 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
995 		epp = intel_pstate_get_epp(cpu_data, value);
996 		cpu_data->epp_powersave = epp;
997 		/* If EPP read was failed, then don't try to write */
998 		if (epp < 0)
999 			goto skip_epp;
1000 
1001 		epp = 0;
1002 	} else {
1003 		/* skip setting EPP, when saved value is invalid */
1004 		if (cpu_data->epp_powersave < 0)
1005 			goto skip_epp;
1006 
1007 		/*
1008 		 * No need to restore EPP when it is not zero. This
1009 		 * means:
1010 		 *  - Policy is not changed
1011 		 *  - user has manually changed
1012 		 *  - Error reading EPB
1013 		 */
1014 		epp = intel_pstate_get_epp(cpu_data, value);
1015 		if (epp)
1016 			goto skip_epp;
1017 
1018 		epp = cpu_data->epp_powersave;
1019 	}
1020 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1021 		value &= ~GENMASK_ULL(31, 24);
1022 		value |= (u64)epp << 24;
1023 	} else {
1024 		intel_pstate_set_epb(cpu, epp);
1025 	}
1026 skip_epp:
1027 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
1028 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1029 }
1030 
1031 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1032 
1033 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1034 {
1035 	u64 value = READ_ONCE(cpu->hwp_req_cached);
1036 	int min_perf;
1037 
1038 	intel_pstate_disable_hwp_interrupt(cpu);
1039 
1040 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1041 		/*
1042 		 * In case the EPP has been set to "performance" by the
1043 		 * active mode "performance" scaling algorithm, replace that
1044 		 * temporary value with the cached EPP one.
1045 		 */
1046 		value &= ~GENMASK_ULL(31, 24);
1047 		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1048 		/*
1049 		 * However, make sure that EPP will be set to "performance" when
1050 		 * the CPU is brought back online again and the "performance"
1051 		 * scaling algorithm is still in effect.
1052 		 */
1053 		cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1054 	}
1055 
1056 	/*
1057 	 * Clear the desired perf field in the cached HWP request value to
1058 	 * prevent nonzero desired values from being leaked into the active
1059 	 * mode.
1060 	 */
1061 	value &= ~HWP_DESIRED_PERF(~0L);
1062 	WRITE_ONCE(cpu->hwp_req_cached, value);
1063 
1064 	value &= ~GENMASK_ULL(31, 0);
1065 	min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1066 
1067 	/* Set hwp_max = hwp_min */
1068 	value |= HWP_MAX_PERF(min_perf);
1069 	value |= HWP_MIN_PERF(min_perf);
1070 
1071 	/* Set EPP to min */
1072 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1073 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1074 
1075 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1076 }
1077 
1078 #define POWER_CTL_EE_ENABLE	1
1079 #define POWER_CTL_EE_DISABLE	2
1080 
1081 static int power_ctl_ee_state;
1082 
1083 static void set_power_ctl_ee_state(bool input)
1084 {
1085 	u64 power_ctl;
1086 
1087 	mutex_lock(&intel_pstate_driver_lock);
1088 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1089 	if (input) {
1090 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1091 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1092 	} else {
1093 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1094 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1095 	}
1096 	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1097 	mutex_unlock(&intel_pstate_driver_lock);
1098 }
1099 
1100 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1101 
1102 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1103 {
1104 	intel_pstate_hwp_enable(cpu);
1105 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1106 }
1107 
1108 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1109 {
1110 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1111 
1112 	pr_debug("CPU %d suspending\n", cpu->cpu);
1113 
1114 	cpu->suspended = true;
1115 
1116 	/* disable HWP interrupt and cancel any pending work */
1117 	intel_pstate_disable_hwp_interrupt(cpu);
1118 
1119 	return 0;
1120 }
1121 
1122 static int intel_pstate_resume(struct cpufreq_policy *policy)
1123 {
1124 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1125 
1126 	pr_debug("CPU %d resuming\n", cpu->cpu);
1127 
1128 	/* Only restore if the system default is changed */
1129 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1130 		set_power_ctl_ee_state(true);
1131 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1132 		set_power_ctl_ee_state(false);
1133 
1134 	if (cpu->suspended && hwp_active) {
1135 		mutex_lock(&intel_pstate_limits_lock);
1136 
1137 		/* Re-enable HWP, because "online" has not done that. */
1138 		intel_pstate_hwp_reenable(cpu);
1139 
1140 		mutex_unlock(&intel_pstate_limits_lock);
1141 	}
1142 
1143 	cpu->suspended = false;
1144 
1145 	return 0;
1146 }
1147 
1148 static void intel_pstate_update_policies(void)
1149 {
1150 	int cpu;
1151 
1152 	for_each_possible_cpu(cpu)
1153 		cpufreq_update_policy(cpu);
1154 }
1155 
1156 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1157 					   struct cpufreq_policy *policy)
1158 {
1159 	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1160 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1161 	refresh_frequency_limits(policy);
1162 }
1163 
1164 static void intel_pstate_update_max_freq(unsigned int cpu)
1165 {
1166 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1167 
1168 	if (!policy)
1169 		return;
1170 
1171 	__intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1172 
1173 	cpufreq_cpu_release(policy);
1174 }
1175 
1176 static void intel_pstate_update_limits(unsigned int cpu)
1177 {
1178 	mutex_lock(&intel_pstate_driver_lock);
1179 
1180 	update_turbo_state();
1181 	/*
1182 	 * If turbo has been turned on or off globally, policy limits for
1183 	 * all CPUs need to be updated to reflect that.
1184 	 */
1185 	if (global.turbo_disabled_mf != global.turbo_disabled) {
1186 		global.turbo_disabled_mf = global.turbo_disabled;
1187 		arch_set_max_freq_ratio(global.turbo_disabled);
1188 		for_each_possible_cpu(cpu)
1189 			intel_pstate_update_max_freq(cpu);
1190 	} else {
1191 		cpufreq_update_policy(cpu);
1192 	}
1193 
1194 	mutex_unlock(&intel_pstate_driver_lock);
1195 }
1196 
1197 /************************** sysfs begin ************************/
1198 #define show_one(file_name, object)					\
1199 	static ssize_t show_##file_name					\
1200 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1201 	{								\
1202 		return sprintf(buf, "%u\n", global.object);		\
1203 	}
1204 
1205 static ssize_t intel_pstate_show_status(char *buf);
1206 static int intel_pstate_update_status(const char *buf, size_t size);
1207 
1208 static ssize_t show_status(struct kobject *kobj,
1209 			   struct kobj_attribute *attr, char *buf)
1210 {
1211 	ssize_t ret;
1212 
1213 	mutex_lock(&intel_pstate_driver_lock);
1214 	ret = intel_pstate_show_status(buf);
1215 	mutex_unlock(&intel_pstate_driver_lock);
1216 
1217 	return ret;
1218 }
1219 
1220 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1221 			    const char *buf, size_t count)
1222 {
1223 	char *p = memchr(buf, '\n', count);
1224 	int ret;
1225 
1226 	mutex_lock(&intel_pstate_driver_lock);
1227 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1228 	mutex_unlock(&intel_pstate_driver_lock);
1229 
1230 	return ret < 0 ? ret : count;
1231 }
1232 
1233 static ssize_t show_turbo_pct(struct kobject *kobj,
1234 				struct kobj_attribute *attr, char *buf)
1235 {
1236 	struct cpudata *cpu;
1237 	int total, no_turbo, turbo_pct;
1238 	uint32_t turbo_fp;
1239 
1240 	mutex_lock(&intel_pstate_driver_lock);
1241 
1242 	if (!intel_pstate_driver) {
1243 		mutex_unlock(&intel_pstate_driver_lock);
1244 		return -EAGAIN;
1245 	}
1246 
1247 	cpu = all_cpu_data[0];
1248 
1249 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1250 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1251 	turbo_fp = div_fp(no_turbo, total);
1252 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1253 
1254 	mutex_unlock(&intel_pstate_driver_lock);
1255 
1256 	return sprintf(buf, "%u\n", turbo_pct);
1257 }
1258 
1259 static ssize_t show_num_pstates(struct kobject *kobj,
1260 				struct kobj_attribute *attr, char *buf)
1261 {
1262 	struct cpudata *cpu;
1263 	int total;
1264 
1265 	mutex_lock(&intel_pstate_driver_lock);
1266 
1267 	if (!intel_pstate_driver) {
1268 		mutex_unlock(&intel_pstate_driver_lock);
1269 		return -EAGAIN;
1270 	}
1271 
1272 	cpu = all_cpu_data[0];
1273 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1274 
1275 	mutex_unlock(&intel_pstate_driver_lock);
1276 
1277 	return sprintf(buf, "%u\n", total);
1278 }
1279 
1280 static ssize_t show_no_turbo(struct kobject *kobj,
1281 			     struct kobj_attribute *attr, char *buf)
1282 {
1283 	ssize_t ret;
1284 
1285 	mutex_lock(&intel_pstate_driver_lock);
1286 
1287 	if (!intel_pstate_driver) {
1288 		mutex_unlock(&intel_pstate_driver_lock);
1289 		return -EAGAIN;
1290 	}
1291 
1292 	update_turbo_state();
1293 	if (global.turbo_disabled)
1294 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1295 	else
1296 		ret = sprintf(buf, "%u\n", global.no_turbo);
1297 
1298 	mutex_unlock(&intel_pstate_driver_lock);
1299 
1300 	return ret;
1301 }
1302 
1303 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1304 			      const char *buf, size_t count)
1305 {
1306 	unsigned int input;
1307 	int ret;
1308 
1309 	ret = sscanf(buf, "%u", &input);
1310 	if (ret != 1)
1311 		return -EINVAL;
1312 
1313 	mutex_lock(&intel_pstate_driver_lock);
1314 
1315 	if (!intel_pstate_driver) {
1316 		mutex_unlock(&intel_pstate_driver_lock);
1317 		return -EAGAIN;
1318 	}
1319 
1320 	mutex_lock(&intel_pstate_limits_lock);
1321 
1322 	update_turbo_state();
1323 	if (global.turbo_disabled) {
1324 		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1325 		mutex_unlock(&intel_pstate_limits_lock);
1326 		mutex_unlock(&intel_pstate_driver_lock);
1327 		return -EPERM;
1328 	}
1329 
1330 	global.no_turbo = clamp_t(int, input, 0, 1);
1331 
1332 	if (global.no_turbo) {
1333 		struct cpudata *cpu = all_cpu_data[0];
1334 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1335 
1336 		/* Squash the global minimum into the permitted range. */
1337 		if (global.min_perf_pct > pct)
1338 			global.min_perf_pct = pct;
1339 	}
1340 
1341 	mutex_unlock(&intel_pstate_limits_lock);
1342 
1343 	intel_pstate_update_policies();
1344 	arch_set_max_freq_ratio(global.no_turbo);
1345 
1346 	mutex_unlock(&intel_pstate_driver_lock);
1347 
1348 	return count;
1349 }
1350 
1351 static void update_qos_request(enum freq_qos_req_type type)
1352 {
1353 	struct freq_qos_request *req;
1354 	struct cpufreq_policy *policy;
1355 	int i;
1356 
1357 	for_each_possible_cpu(i) {
1358 		struct cpudata *cpu = all_cpu_data[i];
1359 		unsigned int freq, perf_pct;
1360 
1361 		policy = cpufreq_cpu_get(i);
1362 		if (!policy)
1363 			continue;
1364 
1365 		req = policy->driver_data;
1366 		cpufreq_cpu_put(policy);
1367 
1368 		if (!req)
1369 			continue;
1370 
1371 		if (hwp_active)
1372 			intel_pstate_get_hwp_cap(cpu);
1373 
1374 		if (type == FREQ_QOS_MIN) {
1375 			perf_pct = global.min_perf_pct;
1376 		} else {
1377 			req++;
1378 			perf_pct = global.max_perf_pct;
1379 		}
1380 
1381 		freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1382 
1383 		if (freq_qos_update_request(req, freq) < 0)
1384 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1385 	}
1386 }
1387 
1388 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1389 				  const char *buf, size_t count)
1390 {
1391 	unsigned int input;
1392 	int ret;
1393 
1394 	ret = sscanf(buf, "%u", &input);
1395 	if (ret != 1)
1396 		return -EINVAL;
1397 
1398 	mutex_lock(&intel_pstate_driver_lock);
1399 
1400 	if (!intel_pstate_driver) {
1401 		mutex_unlock(&intel_pstate_driver_lock);
1402 		return -EAGAIN;
1403 	}
1404 
1405 	mutex_lock(&intel_pstate_limits_lock);
1406 
1407 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1408 
1409 	mutex_unlock(&intel_pstate_limits_lock);
1410 
1411 	if (intel_pstate_driver == &intel_pstate)
1412 		intel_pstate_update_policies();
1413 	else
1414 		update_qos_request(FREQ_QOS_MAX);
1415 
1416 	mutex_unlock(&intel_pstate_driver_lock);
1417 
1418 	return count;
1419 }
1420 
1421 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1422 				  const char *buf, size_t count)
1423 {
1424 	unsigned int input;
1425 	int ret;
1426 
1427 	ret = sscanf(buf, "%u", &input);
1428 	if (ret != 1)
1429 		return -EINVAL;
1430 
1431 	mutex_lock(&intel_pstate_driver_lock);
1432 
1433 	if (!intel_pstate_driver) {
1434 		mutex_unlock(&intel_pstate_driver_lock);
1435 		return -EAGAIN;
1436 	}
1437 
1438 	mutex_lock(&intel_pstate_limits_lock);
1439 
1440 	global.min_perf_pct = clamp_t(int, input,
1441 				      min_perf_pct_min(), global.max_perf_pct);
1442 
1443 	mutex_unlock(&intel_pstate_limits_lock);
1444 
1445 	if (intel_pstate_driver == &intel_pstate)
1446 		intel_pstate_update_policies();
1447 	else
1448 		update_qos_request(FREQ_QOS_MIN);
1449 
1450 	mutex_unlock(&intel_pstate_driver_lock);
1451 
1452 	return count;
1453 }
1454 
1455 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1456 				struct kobj_attribute *attr, char *buf)
1457 {
1458 	return sprintf(buf, "%u\n", hwp_boost);
1459 }
1460 
1461 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1462 				       struct kobj_attribute *b,
1463 				       const char *buf, size_t count)
1464 {
1465 	unsigned int input;
1466 	int ret;
1467 
1468 	ret = kstrtouint(buf, 10, &input);
1469 	if (ret)
1470 		return ret;
1471 
1472 	mutex_lock(&intel_pstate_driver_lock);
1473 	hwp_boost = !!input;
1474 	intel_pstate_update_policies();
1475 	mutex_unlock(&intel_pstate_driver_lock);
1476 
1477 	return count;
1478 }
1479 
1480 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1481 				      char *buf)
1482 {
1483 	u64 power_ctl;
1484 	int enable;
1485 
1486 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1487 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1488 	return sprintf(buf, "%d\n", !enable);
1489 }
1490 
1491 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1492 				       const char *buf, size_t count)
1493 {
1494 	bool input;
1495 	int ret;
1496 
1497 	ret = kstrtobool(buf, &input);
1498 	if (ret)
1499 		return ret;
1500 
1501 	set_power_ctl_ee_state(input);
1502 
1503 	return count;
1504 }
1505 
1506 show_one(max_perf_pct, max_perf_pct);
1507 show_one(min_perf_pct, min_perf_pct);
1508 
1509 define_one_global_rw(status);
1510 define_one_global_rw(no_turbo);
1511 define_one_global_rw(max_perf_pct);
1512 define_one_global_rw(min_perf_pct);
1513 define_one_global_ro(turbo_pct);
1514 define_one_global_ro(num_pstates);
1515 define_one_global_rw(hwp_dynamic_boost);
1516 define_one_global_rw(energy_efficiency);
1517 
1518 static struct attribute *intel_pstate_attributes[] = {
1519 	&status.attr,
1520 	&no_turbo.attr,
1521 	NULL
1522 };
1523 
1524 static const struct attribute_group intel_pstate_attr_group = {
1525 	.attrs = intel_pstate_attributes,
1526 };
1527 
1528 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1529 
1530 static struct kobject *intel_pstate_kobject;
1531 
1532 static void __init intel_pstate_sysfs_expose_params(void)
1533 {
1534 	struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1535 	int rc;
1536 
1537 	if (dev_root) {
1538 		intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1539 		put_device(dev_root);
1540 	}
1541 	if (WARN_ON(!intel_pstate_kobject))
1542 		return;
1543 
1544 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1545 	if (WARN_ON(rc))
1546 		return;
1547 
1548 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1549 		rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1550 		WARN_ON(rc);
1551 
1552 		rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1553 		WARN_ON(rc);
1554 	}
1555 
1556 	/*
1557 	 * If per cpu limits are enforced there are no global limits, so
1558 	 * return without creating max/min_perf_pct attributes
1559 	 */
1560 	if (per_cpu_limits)
1561 		return;
1562 
1563 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1564 	WARN_ON(rc);
1565 
1566 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1567 	WARN_ON(rc);
1568 
1569 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1570 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1571 		WARN_ON(rc);
1572 	}
1573 }
1574 
1575 static void __init intel_pstate_sysfs_remove(void)
1576 {
1577 	if (!intel_pstate_kobject)
1578 		return;
1579 
1580 	sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1581 
1582 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1583 		sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1584 		sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1585 	}
1586 
1587 	if (!per_cpu_limits) {
1588 		sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1589 		sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1590 
1591 		if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1592 			sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1593 	}
1594 
1595 	kobject_put(intel_pstate_kobject);
1596 }
1597 
1598 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1599 {
1600 	int rc;
1601 
1602 	if (!hwp_active)
1603 		return;
1604 
1605 	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1606 	WARN_ON_ONCE(rc);
1607 }
1608 
1609 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1610 {
1611 	if (!hwp_active)
1612 		return;
1613 
1614 	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1615 }
1616 
1617 /************************** sysfs end ************************/
1618 
1619 static void intel_pstate_notify_work(struct work_struct *work)
1620 {
1621 	struct cpudata *cpudata =
1622 		container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1623 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1624 
1625 	if (policy) {
1626 		intel_pstate_get_hwp_cap(cpudata);
1627 		__intel_pstate_update_max_freq(cpudata, policy);
1628 
1629 		cpufreq_cpu_release(policy);
1630 	}
1631 
1632 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1633 }
1634 
1635 static DEFINE_RAW_SPINLOCK(hwp_notify_lock);
1636 static cpumask_t hwp_intr_enable_mask;
1637 
1638 void notify_hwp_interrupt(void)
1639 {
1640 	unsigned int this_cpu = smp_processor_id();
1641 	struct cpudata *cpudata;
1642 	unsigned long flags;
1643 	u64 value;
1644 
1645 	if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1646 		return;
1647 
1648 	rdmsrl_safe(MSR_HWP_STATUS, &value);
1649 	if (!(value & 0x01))
1650 		return;
1651 
1652 	raw_spin_lock_irqsave(&hwp_notify_lock, flags);
1653 
1654 	if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1655 		goto ack_intr;
1656 
1657 	/*
1658 	 * Currently we never free all_cpu_data. And we can't reach here
1659 	 * without this allocated. But for safety for future changes, added
1660 	 * check.
1661 	 */
1662 	if (unlikely(!READ_ONCE(all_cpu_data)))
1663 		goto ack_intr;
1664 
1665 	/*
1666 	 * The free is done during cleanup, when cpufreq registry is failed.
1667 	 * We wouldn't be here if it fails on init or switch status. But for
1668 	 * future changes, added check.
1669 	 */
1670 	cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1671 	if (unlikely(!cpudata))
1672 		goto ack_intr;
1673 
1674 	schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1675 
1676 	raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1677 
1678 	return;
1679 
1680 ack_intr:
1681 	wrmsrl_safe(MSR_HWP_STATUS, 0);
1682 	raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1683 }
1684 
1685 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1686 {
1687 	unsigned long flags;
1688 
1689 	if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1690 		return;
1691 
1692 	/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1693 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1694 
1695 	raw_spin_lock_irqsave(&hwp_notify_lock, flags);
1696 	if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1697 		cancel_delayed_work(&cpudata->hwp_notify_work);
1698 	raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1699 }
1700 
1701 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1702 {
1703 	/* Enable HWP notification interrupt for guaranteed performance change */
1704 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1705 		unsigned long flags;
1706 
1707 		raw_spin_lock_irqsave(&hwp_notify_lock, flags);
1708 		INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1709 		cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1710 		raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1711 
1712 		/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1713 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1714 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1715 	}
1716 }
1717 
1718 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1719 {
1720 	cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1721 
1722 	/*
1723 	 * If this CPU gen doesn't call for change in balance_perf
1724 	 * EPP return.
1725 	 */
1726 	if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1727 		return;
1728 
1729 	/*
1730 	 * If the EPP is set by firmware, which means that firmware enabled HWP
1731 	 * - Is equal or less than 0x80 (default balance_perf EPP)
1732 	 * - But less performance oriented than performance EPP
1733 	 *   then use this as new balance_perf EPP.
1734 	 */
1735 	if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1736 	    cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1737 		epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1738 		return;
1739 	}
1740 
1741 	/*
1742 	 * Use hard coded value per gen to update the balance_perf
1743 	 * and default EPP.
1744 	 */
1745 	cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1746 	intel_pstate_set_epp(cpudata, cpudata->epp_default);
1747 }
1748 
1749 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1750 {
1751 	/* First disable HWP notification interrupt till we activate again */
1752 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1753 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1754 
1755 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1756 
1757 	intel_pstate_enable_hwp_interrupt(cpudata);
1758 
1759 	if (cpudata->epp_default >= 0)
1760 		return;
1761 
1762 	intel_pstate_update_epp_defaults(cpudata);
1763 }
1764 
1765 static int atom_get_min_pstate(int not_used)
1766 {
1767 	u64 value;
1768 
1769 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1770 	return (value >> 8) & 0x7F;
1771 }
1772 
1773 static int atom_get_max_pstate(int not_used)
1774 {
1775 	u64 value;
1776 
1777 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1778 	return (value >> 16) & 0x7F;
1779 }
1780 
1781 static int atom_get_turbo_pstate(int not_used)
1782 {
1783 	u64 value;
1784 
1785 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1786 	return value & 0x7F;
1787 }
1788 
1789 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1790 {
1791 	u64 val;
1792 	int32_t vid_fp;
1793 	u32 vid;
1794 
1795 	val = (u64)pstate << 8;
1796 	if (global.no_turbo && !global.turbo_disabled)
1797 		val |= (u64)1 << 32;
1798 
1799 	vid_fp = cpudata->vid.min + mul_fp(
1800 		int_tofp(pstate - cpudata->pstate.min_pstate),
1801 		cpudata->vid.ratio);
1802 
1803 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1804 	vid = ceiling_fp(vid_fp);
1805 
1806 	if (pstate > cpudata->pstate.max_pstate)
1807 		vid = cpudata->vid.turbo;
1808 
1809 	return val | vid;
1810 }
1811 
1812 static int silvermont_get_scaling(void)
1813 {
1814 	u64 value;
1815 	int i;
1816 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1817 	static int silvermont_freq_table[] = {
1818 		83300, 100000, 133300, 116700, 80000};
1819 
1820 	rdmsrl(MSR_FSB_FREQ, value);
1821 	i = value & 0x7;
1822 	WARN_ON(i > 4);
1823 
1824 	return silvermont_freq_table[i];
1825 }
1826 
1827 static int airmont_get_scaling(void)
1828 {
1829 	u64 value;
1830 	int i;
1831 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1832 	static int airmont_freq_table[] = {
1833 		83300, 100000, 133300, 116700, 80000,
1834 		93300, 90000, 88900, 87500};
1835 
1836 	rdmsrl(MSR_FSB_FREQ, value);
1837 	i = value & 0xF;
1838 	WARN_ON(i > 8);
1839 
1840 	return airmont_freq_table[i];
1841 }
1842 
1843 static void atom_get_vid(struct cpudata *cpudata)
1844 {
1845 	u64 value;
1846 
1847 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1848 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1849 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1850 	cpudata->vid.ratio = div_fp(
1851 		cpudata->vid.max - cpudata->vid.min,
1852 		int_tofp(cpudata->pstate.max_pstate -
1853 			cpudata->pstate.min_pstate));
1854 
1855 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1856 	cpudata->vid.turbo = value & 0x7f;
1857 }
1858 
1859 static int core_get_min_pstate(int cpu)
1860 {
1861 	u64 value;
1862 
1863 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1864 	return (value >> 40) & 0xFF;
1865 }
1866 
1867 static int core_get_max_pstate_physical(int cpu)
1868 {
1869 	u64 value;
1870 
1871 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1872 	return (value >> 8) & 0xFF;
1873 }
1874 
1875 static int core_get_tdp_ratio(int cpu, u64 plat_info)
1876 {
1877 	/* Check how many TDP levels present */
1878 	if (plat_info & 0x600000000) {
1879 		u64 tdp_ctrl;
1880 		u64 tdp_ratio;
1881 		int tdp_msr;
1882 		int err;
1883 
1884 		/* Get the TDP level (0, 1, 2) to get ratios */
1885 		err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1886 		if (err)
1887 			return err;
1888 
1889 		/* TDP MSR are continuous starting at 0x648 */
1890 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1891 		err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
1892 		if (err)
1893 			return err;
1894 
1895 		/* For level 1 and 2, bits[23:16] contain the ratio */
1896 		if (tdp_ctrl & 0x03)
1897 			tdp_ratio >>= 16;
1898 
1899 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1900 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1901 
1902 		return (int)tdp_ratio;
1903 	}
1904 
1905 	return -ENXIO;
1906 }
1907 
1908 static int core_get_max_pstate(int cpu)
1909 {
1910 	u64 tar;
1911 	u64 plat_info;
1912 	int max_pstate;
1913 	int tdp_ratio;
1914 	int err;
1915 
1916 	rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
1917 	max_pstate = (plat_info >> 8) & 0xFF;
1918 
1919 	tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
1920 	if (tdp_ratio <= 0)
1921 		return max_pstate;
1922 
1923 	if (hwp_active) {
1924 		/* Turbo activation ratio is not used on HWP platforms */
1925 		return tdp_ratio;
1926 	}
1927 
1928 	err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
1929 	if (!err) {
1930 		int tar_levels;
1931 
1932 		/* Do some sanity checking for safety */
1933 		tar_levels = tar & 0xff;
1934 		if (tdp_ratio - 1 == tar_levels) {
1935 			max_pstate = tar_levels;
1936 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1937 		}
1938 	}
1939 
1940 	return max_pstate;
1941 }
1942 
1943 static int core_get_turbo_pstate(int cpu)
1944 {
1945 	u64 value;
1946 	int nont, ret;
1947 
1948 	rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1949 	nont = core_get_max_pstate(cpu);
1950 	ret = (value) & 255;
1951 	if (ret <= nont)
1952 		ret = nont;
1953 	return ret;
1954 }
1955 
1956 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1957 {
1958 	u64 val;
1959 
1960 	val = (u64)pstate << 8;
1961 	if (global.no_turbo && !global.turbo_disabled)
1962 		val |= (u64)1 << 32;
1963 
1964 	return val;
1965 }
1966 
1967 static int knl_get_aperf_mperf_shift(void)
1968 {
1969 	return 10;
1970 }
1971 
1972 static int knl_get_turbo_pstate(int cpu)
1973 {
1974 	u64 value;
1975 	int nont, ret;
1976 
1977 	rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1978 	nont = core_get_max_pstate(cpu);
1979 	ret = (((value) >> 8) & 0xFF);
1980 	if (ret <= nont)
1981 		ret = nont;
1982 	return ret;
1983 }
1984 
1985 static void hybrid_get_type(void *data)
1986 {
1987 	u8 *cpu_type = data;
1988 
1989 	*cpu_type = get_this_hybrid_cpu_type();
1990 }
1991 
1992 static int hwp_get_cpu_scaling(int cpu)
1993 {
1994 	u8 cpu_type = 0;
1995 
1996 	smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
1997 	/* P-cores have a smaller perf level-to-freqency scaling factor. */
1998 	if (cpu_type == 0x40)
1999 		return HYBRID_SCALING_FACTOR;
2000 
2001 	/* Use default core scaling for E-cores */
2002 	if (cpu_type == 0x20)
2003 		return core_get_scaling();
2004 
2005 	/*
2006 	 * If reached here, this system is either non-hybrid (like Tiger
2007 	 * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with
2008 	 * no E cores (in which case CPUID for hybrid support is 0).
2009 	 *
2010 	 * The CPPC nominal_frequency field is 0 for non-hybrid systems,
2011 	 * so the default core scaling will be used for them.
2012 	 */
2013 	return intel_pstate_cppc_get_scaling(cpu);
2014 }
2015 
2016 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
2017 {
2018 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
2019 	cpu->pstate.current_pstate = pstate;
2020 	/*
2021 	 * Generally, there is no guarantee that this code will always run on
2022 	 * the CPU being updated, so force the register update to run on the
2023 	 * right CPU.
2024 	 */
2025 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2026 		      pstate_funcs.get_val(cpu, pstate));
2027 }
2028 
2029 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2030 {
2031 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2032 }
2033 
2034 static void intel_pstate_max_within_limits(struct cpudata *cpu)
2035 {
2036 	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2037 
2038 	update_turbo_state();
2039 	intel_pstate_set_pstate(cpu, pstate);
2040 }
2041 
2042 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2043 {
2044 	int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2045 	int perf_ctl_scaling = pstate_funcs.get_scaling();
2046 
2047 	cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2048 	cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2049 	cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2050 
2051 	if (hwp_active && !hwp_mode_bdw) {
2052 		__intel_pstate_get_hwp_cap(cpu);
2053 
2054 		if (pstate_funcs.get_cpu_scaling) {
2055 			cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2056 			if (cpu->pstate.scaling != perf_ctl_scaling)
2057 				intel_pstate_hybrid_hwp_adjust(cpu);
2058 		} else {
2059 			cpu->pstate.scaling = perf_ctl_scaling;
2060 		}
2061 	} else {
2062 		cpu->pstate.scaling = perf_ctl_scaling;
2063 		cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2064 		cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2065 	}
2066 
2067 	if (cpu->pstate.scaling == perf_ctl_scaling) {
2068 		cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2069 		cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2070 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2071 	}
2072 
2073 	if (pstate_funcs.get_aperf_mperf_shift)
2074 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2075 
2076 	if (pstate_funcs.get_vid)
2077 		pstate_funcs.get_vid(cpu);
2078 
2079 	intel_pstate_set_min_pstate(cpu);
2080 }
2081 
2082 /*
2083  * Long hold time will keep high perf limits for long time,
2084  * which negatively impacts perf/watt for some workloads,
2085  * like specpower. 3ms is based on experiements on some
2086  * workoads.
2087  */
2088 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2089 
2090 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2091 {
2092 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2093 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2094 	u32 max_limit = (hwp_req & 0xff00) >> 8;
2095 	u32 min_limit = (hwp_req & 0xff);
2096 	u32 boost_level1;
2097 
2098 	/*
2099 	 * Cases to consider (User changes via sysfs or boot time):
2100 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2101 	 *	No boost, return.
2102 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2103 	 *     Should result in one level boost only for P0.
2104 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2105 	 *     Should result in two level boost:
2106 	 *         (min + p1)/2 and P1.
2107 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2108 	 *     Should result in three level boost:
2109 	 *        (min + p1)/2, P1 and P0.
2110 	 */
2111 
2112 	/* If max and min are equal or already at max, nothing to boost */
2113 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2114 		return;
2115 
2116 	if (!cpu->hwp_boost_min)
2117 		cpu->hwp_boost_min = min_limit;
2118 
2119 	/* level at half way mark between min and guranteed */
2120 	boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2121 
2122 	if (cpu->hwp_boost_min < boost_level1)
2123 		cpu->hwp_boost_min = boost_level1;
2124 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2125 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2126 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2127 		 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2128 		cpu->hwp_boost_min = max_limit;
2129 	else
2130 		return;
2131 
2132 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2133 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
2134 	cpu->last_update = cpu->sample.time;
2135 }
2136 
2137 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2138 {
2139 	if (cpu->hwp_boost_min) {
2140 		bool expired;
2141 
2142 		/* Check if we are idle for hold time to boost down */
2143 		expired = time_after64(cpu->sample.time, cpu->last_update +
2144 				       hwp_boost_hold_time_ns);
2145 		if (expired) {
2146 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2147 			cpu->hwp_boost_min = 0;
2148 		}
2149 	}
2150 	cpu->last_update = cpu->sample.time;
2151 }
2152 
2153 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2154 						      u64 time)
2155 {
2156 	cpu->sample.time = time;
2157 
2158 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2159 		bool do_io = false;
2160 
2161 		cpu->sched_flags = 0;
2162 		/*
2163 		 * Set iowait_boost flag and update time. Since IO WAIT flag
2164 		 * is set all the time, we can't just conclude that there is
2165 		 * some IO bound activity is scheduled on this CPU with just
2166 		 * one occurrence. If we receive at least two in two
2167 		 * consecutive ticks, then we treat as boost candidate.
2168 		 */
2169 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2170 			do_io = true;
2171 
2172 		cpu->last_io_update = time;
2173 
2174 		if (do_io)
2175 			intel_pstate_hwp_boost_up(cpu);
2176 
2177 	} else {
2178 		intel_pstate_hwp_boost_down(cpu);
2179 	}
2180 }
2181 
2182 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2183 						u64 time, unsigned int flags)
2184 {
2185 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2186 
2187 	cpu->sched_flags |= flags;
2188 
2189 	if (smp_processor_id() == cpu->cpu)
2190 		intel_pstate_update_util_hwp_local(cpu, time);
2191 }
2192 
2193 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2194 {
2195 	struct sample *sample = &cpu->sample;
2196 
2197 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2198 }
2199 
2200 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2201 {
2202 	u64 aperf, mperf;
2203 	unsigned long flags;
2204 	u64 tsc;
2205 
2206 	local_irq_save(flags);
2207 	rdmsrl(MSR_IA32_APERF, aperf);
2208 	rdmsrl(MSR_IA32_MPERF, mperf);
2209 	tsc = rdtsc();
2210 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2211 		local_irq_restore(flags);
2212 		return false;
2213 	}
2214 	local_irq_restore(flags);
2215 
2216 	cpu->last_sample_time = cpu->sample.time;
2217 	cpu->sample.time = time;
2218 	cpu->sample.aperf = aperf;
2219 	cpu->sample.mperf = mperf;
2220 	cpu->sample.tsc =  tsc;
2221 	cpu->sample.aperf -= cpu->prev_aperf;
2222 	cpu->sample.mperf -= cpu->prev_mperf;
2223 	cpu->sample.tsc -= cpu->prev_tsc;
2224 
2225 	cpu->prev_aperf = aperf;
2226 	cpu->prev_mperf = mperf;
2227 	cpu->prev_tsc = tsc;
2228 	/*
2229 	 * First time this function is invoked in a given cycle, all of the
2230 	 * previous sample data fields are equal to zero or stale and they must
2231 	 * be populated with meaningful numbers for things to work, so assume
2232 	 * that sample.time will always be reset before setting the utilization
2233 	 * update hook and make the caller skip the sample then.
2234 	 */
2235 	if (cpu->last_sample_time) {
2236 		intel_pstate_calc_avg_perf(cpu);
2237 		return true;
2238 	}
2239 	return false;
2240 }
2241 
2242 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2243 {
2244 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2245 }
2246 
2247 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2248 {
2249 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
2250 			  cpu->sample.core_avg_perf);
2251 }
2252 
2253 static inline int32_t get_target_pstate(struct cpudata *cpu)
2254 {
2255 	struct sample *sample = &cpu->sample;
2256 	int32_t busy_frac;
2257 	int target, avg_pstate;
2258 
2259 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2260 			   sample->tsc);
2261 
2262 	if (busy_frac < cpu->iowait_boost)
2263 		busy_frac = cpu->iowait_boost;
2264 
2265 	sample->busy_scaled = busy_frac * 100;
2266 
2267 	target = global.no_turbo || global.turbo_disabled ?
2268 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2269 	target += target >> 2;
2270 	target = mul_fp(target, busy_frac);
2271 	if (target < cpu->pstate.min_pstate)
2272 		target = cpu->pstate.min_pstate;
2273 
2274 	/*
2275 	 * If the average P-state during the previous cycle was higher than the
2276 	 * current target, add 50% of the difference to the target to reduce
2277 	 * possible performance oscillations and offset possible performance
2278 	 * loss related to moving the workload from one CPU to another within
2279 	 * a package/module.
2280 	 */
2281 	avg_pstate = get_avg_pstate(cpu);
2282 	if (avg_pstate > target)
2283 		target += (avg_pstate - target) >> 1;
2284 
2285 	return target;
2286 }
2287 
2288 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2289 {
2290 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2291 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2292 
2293 	return clamp_t(int, pstate, min_pstate, max_pstate);
2294 }
2295 
2296 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2297 {
2298 	if (pstate == cpu->pstate.current_pstate)
2299 		return;
2300 
2301 	cpu->pstate.current_pstate = pstate;
2302 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2303 }
2304 
2305 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2306 {
2307 	int from = cpu->pstate.current_pstate;
2308 	struct sample *sample;
2309 	int target_pstate;
2310 
2311 	update_turbo_state();
2312 
2313 	target_pstate = get_target_pstate(cpu);
2314 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2315 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2316 	intel_pstate_update_pstate(cpu, target_pstate);
2317 
2318 	sample = &cpu->sample;
2319 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2320 		fp_toint(sample->busy_scaled),
2321 		from,
2322 		cpu->pstate.current_pstate,
2323 		sample->mperf,
2324 		sample->aperf,
2325 		sample->tsc,
2326 		get_avg_frequency(cpu),
2327 		fp_toint(cpu->iowait_boost * 100));
2328 }
2329 
2330 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2331 				     unsigned int flags)
2332 {
2333 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2334 	u64 delta_ns;
2335 
2336 	/* Don't allow remote callbacks */
2337 	if (smp_processor_id() != cpu->cpu)
2338 		return;
2339 
2340 	delta_ns = time - cpu->last_update;
2341 	if (flags & SCHED_CPUFREQ_IOWAIT) {
2342 		/* Start over if the CPU may have been idle. */
2343 		if (delta_ns > TICK_NSEC) {
2344 			cpu->iowait_boost = ONE_EIGHTH_FP;
2345 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2346 			cpu->iowait_boost <<= 1;
2347 			if (cpu->iowait_boost > int_tofp(1))
2348 				cpu->iowait_boost = int_tofp(1);
2349 		} else {
2350 			cpu->iowait_boost = ONE_EIGHTH_FP;
2351 		}
2352 	} else if (cpu->iowait_boost) {
2353 		/* Clear iowait_boost if the CPU may have been idle. */
2354 		if (delta_ns > TICK_NSEC)
2355 			cpu->iowait_boost = 0;
2356 		else
2357 			cpu->iowait_boost >>= 1;
2358 	}
2359 	cpu->last_update = time;
2360 	delta_ns = time - cpu->sample.time;
2361 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2362 		return;
2363 
2364 	if (intel_pstate_sample(cpu, time))
2365 		intel_pstate_adjust_pstate(cpu);
2366 }
2367 
2368 static struct pstate_funcs core_funcs = {
2369 	.get_max = core_get_max_pstate,
2370 	.get_max_physical = core_get_max_pstate_physical,
2371 	.get_min = core_get_min_pstate,
2372 	.get_turbo = core_get_turbo_pstate,
2373 	.get_scaling = core_get_scaling,
2374 	.get_val = core_get_val,
2375 };
2376 
2377 static const struct pstate_funcs silvermont_funcs = {
2378 	.get_max = atom_get_max_pstate,
2379 	.get_max_physical = atom_get_max_pstate,
2380 	.get_min = atom_get_min_pstate,
2381 	.get_turbo = atom_get_turbo_pstate,
2382 	.get_val = atom_get_val,
2383 	.get_scaling = silvermont_get_scaling,
2384 	.get_vid = atom_get_vid,
2385 };
2386 
2387 static const struct pstate_funcs airmont_funcs = {
2388 	.get_max = atom_get_max_pstate,
2389 	.get_max_physical = atom_get_max_pstate,
2390 	.get_min = atom_get_min_pstate,
2391 	.get_turbo = atom_get_turbo_pstate,
2392 	.get_val = atom_get_val,
2393 	.get_scaling = airmont_get_scaling,
2394 	.get_vid = atom_get_vid,
2395 };
2396 
2397 static const struct pstate_funcs knl_funcs = {
2398 	.get_max = core_get_max_pstate,
2399 	.get_max_physical = core_get_max_pstate_physical,
2400 	.get_min = core_get_min_pstate,
2401 	.get_turbo = knl_get_turbo_pstate,
2402 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2403 	.get_scaling = core_get_scaling,
2404 	.get_val = core_get_val,
2405 };
2406 
2407 #define X86_MATCH(model, policy)					 \
2408 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2409 					   X86_FEATURE_APERFMPERF, &policy)
2410 
2411 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2412 	X86_MATCH(SANDYBRIDGE,		core_funcs),
2413 	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
2414 	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
2415 	X86_MATCH(IVYBRIDGE,		core_funcs),
2416 	X86_MATCH(HASWELL,		core_funcs),
2417 	X86_MATCH(BROADWELL,		core_funcs),
2418 	X86_MATCH(IVYBRIDGE_X,		core_funcs),
2419 	X86_MATCH(HASWELL_X,		core_funcs),
2420 	X86_MATCH(HASWELL_L,		core_funcs),
2421 	X86_MATCH(HASWELL_G,		core_funcs),
2422 	X86_MATCH(BROADWELL_G,		core_funcs),
2423 	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
2424 	X86_MATCH(SKYLAKE_L,		core_funcs),
2425 	X86_MATCH(BROADWELL_X,		core_funcs),
2426 	X86_MATCH(SKYLAKE,		core_funcs),
2427 	X86_MATCH(BROADWELL_D,		core_funcs),
2428 	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
2429 	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
2430 	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
2431 	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
2432 	X86_MATCH(SKYLAKE_X,		core_funcs),
2433 	X86_MATCH(COMETLAKE,		core_funcs),
2434 	X86_MATCH(ICELAKE_X,		core_funcs),
2435 	X86_MATCH(TIGERLAKE,		core_funcs),
2436 	X86_MATCH(SAPPHIRERAPIDS_X,	core_funcs),
2437 	{}
2438 };
2439 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2440 
2441 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2442 	X86_MATCH(BROADWELL_D,		core_funcs),
2443 	X86_MATCH(BROADWELL_X,		core_funcs),
2444 	X86_MATCH(SKYLAKE_X,		core_funcs),
2445 	X86_MATCH(ICELAKE_X,		core_funcs),
2446 	X86_MATCH(SAPPHIRERAPIDS_X,	core_funcs),
2447 	{}
2448 };
2449 
2450 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2451 	X86_MATCH(KABYLAKE,		core_funcs),
2452 	{}
2453 };
2454 
2455 static int intel_pstate_init_cpu(unsigned int cpunum)
2456 {
2457 	struct cpudata *cpu;
2458 
2459 	cpu = all_cpu_data[cpunum];
2460 
2461 	if (!cpu) {
2462 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2463 		if (!cpu)
2464 			return -ENOMEM;
2465 
2466 		WRITE_ONCE(all_cpu_data[cpunum], cpu);
2467 
2468 		cpu->cpu = cpunum;
2469 
2470 		cpu->epp_default = -EINVAL;
2471 
2472 		if (hwp_active) {
2473 			intel_pstate_hwp_enable(cpu);
2474 
2475 			if (intel_pstate_acpi_pm_profile_server())
2476 				hwp_boost = true;
2477 		}
2478 	} else if (hwp_active) {
2479 		/*
2480 		 * Re-enable HWP in case this happens after a resume from ACPI
2481 		 * S3 if the CPU was offline during the whole system/resume
2482 		 * cycle.
2483 		 */
2484 		intel_pstate_hwp_reenable(cpu);
2485 	}
2486 
2487 	cpu->epp_powersave = -EINVAL;
2488 	cpu->epp_policy = 0;
2489 
2490 	intel_pstate_get_cpu_pstates(cpu);
2491 
2492 	pr_debug("controlling: cpu %d\n", cpunum);
2493 
2494 	return 0;
2495 }
2496 
2497 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2498 {
2499 	struct cpudata *cpu = all_cpu_data[cpu_num];
2500 
2501 	if (hwp_active && !hwp_boost)
2502 		return;
2503 
2504 	if (cpu->update_util_set)
2505 		return;
2506 
2507 	/* Prevent intel_pstate_update_util() from using stale data. */
2508 	cpu->sample.time = 0;
2509 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2510 				     (hwp_active ?
2511 				      intel_pstate_update_util_hwp :
2512 				      intel_pstate_update_util));
2513 	cpu->update_util_set = true;
2514 }
2515 
2516 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2517 {
2518 	struct cpudata *cpu_data = all_cpu_data[cpu];
2519 
2520 	if (!cpu_data->update_util_set)
2521 		return;
2522 
2523 	cpufreq_remove_update_util_hook(cpu);
2524 	cpu_data->update_util_set = false;
2525 	synchronize_rcu();
2526 }
2527 
2528 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2529 {
2530 	return global.turbo_disabled || global.no_turbo ?
2531 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2532 }
2533 
2534 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2535 					    unsigned int policy_min,
2536 					    unsigned int policy_max)
2537 {
2538 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2539 	int32_t max_policy_perf, min_policy_perf;
2540 
2541 	max_policy_perf = policy_max / perf_ctl_scaling;
2542 	if (policy_max == policy_min) {
2543 		min_policy_perf = max_policy_perf;
2544 	} else {
2545 		min_policy_perf = policy_min / perf_ctl_scaling;
2546 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2547 					  0, max_policy_perf);
2548 	}
2549 
2550 	/*
2551 	 * HWP needs some special consideration, because HWP_REQUEST uses
2552 	 * abstract values to represent performance rather than pure ratios.
2553 	 */
2554 	if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2555 		int freq;
2556 
2557 		freq = max_policy_perf * perf_ctl_scaling;
2558 		max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2559 		freq = min_policy_perf * perf_ctl_scaling;
2560 		min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2561 	}
2562 
2563 	pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2564 		 cpu->cpu, min_policy_perf, max_policy_perf);
2565 
2566 	/* Normalize user input to [min_perf, max_perf] */
2567 	if (per_cpu_limits) {
2568 		cpu->min_perf_ratio = min_policy_perf;
2569 		cpu->max_perf_ratio = max_policy_perf;
2570 	} else {
2571 		int turbo_max = cpu->pstate.turbo_pstate;
2572 		int32_t global_min, global_max;
2573 
2574 		/* Global limits are in percent of the maximum turbo P-state. */
2575 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2576 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2577 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2578 
2579 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2580 			 global_min, global_max);
2581 
2582 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2583 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2584 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2585 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2586 
2587 		/* Make sure min_perf <= max_perf */
2588 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2589 					  cpu->max_perf_ratio);
2590 
2591 	}
2592 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2593 		 cpu->max_perf_ratio,
2594 		 cpu->min_perf_ratio);
2595 }
2596 
2597 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2598 {
2599 	struct cpudata *cpu;
2600 
2601 	if (!policy->cpuinfo.max_freq)
2602 		return -ENODEV;
2603 
2604 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2605 		 policy->cpuinfo.max_freq, policy->max);
2606 
2607 	cpu = all_cpu_data[policy->cpu];
2608 	cpu->policy = policy->policy;
2609 
2610 	mutex_lock(&intel_pstate_limits_lock);
2611 
2612 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2613 
2614 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2615 		/*
2616 		 * NOHZ_FULL CPUs need this as the governor callback may not
2617 		 * be invoked on them.
2618 		 */
2619 		intel_pstate_clear_update_util_hook(policy->cpu);
2620 		intel_pstate_max_within_limits(cpu);
2621 	} else {
2622 		intel_pstate_set_update_util_hook(policy->cpu);
2623 	}
2624 
2625 	if (hwp_active) {
2626 		/*
2627 		 * When hwp_boost was active before and dynamically it
2628 		 * was turned off, in that case we need to clear the
2629 		 * update util hook.
2630 		 */
2631 		if (!hwp_boost)
2632 			intel_pstate_clear_update_util_hook(policy->cpu);
2633 		intel_pstate_hwp_set(policy->cpu);
2634 	}
2635 	/*
2636 	 * policy->cur is never updated with the intel_pstate driver, but it
2637 	 * is used as a stale frequency value. So, keep it within limits.
2638 	 */
2639 	policy->cur = policy->min;
2640 
2641 	mutex_unlock(&intel_pstate_limits_lock);
2642 
2643 	return 0;
2644 }
2645 
2646 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2647 					   struct cpufreq_policy_data *policy)
2648 {
2649 	if (!hwp_active &&
2650 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2651 	    policy->max < policy->cpuinfo.max_freq &&
2652 	    policy->max > cpu->pstate.max_freq) {
2653 		pr_debug("policy->max > max non turbo frequency\n");
2654 		policy->max = policy->cpuinfo.max_freq;
2655 	}
2656 }
2657 
2658 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2659 					   struct cpufreq_policy_data *policy)
2660 {
2661 	int max_freq;
2662 
2663 	update_turbo_state();
2664 	if (hwp_active) {
2665 		intel_pstate_get_hwp_cap(cpu);
2666 		max_freq = global.no_turbo || global.turbo_disabled ?
2667 				cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2668 	} else {
2669 		max_freq = intel_pstate_get_max_freq(cpu);
2670 	}
2671 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2672 
2673 	intel_pstate_adjust_policy_max(cpu, policy);
2674 }
2675 
2676 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2677 {
2678 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2679 
2680 	return 0;
2681 }
2682 
2683 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2684 {
2685 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2686 
2687 	pr_debug("CPU %d going offline\n", cpu->cpu);
2688 
2689 	if (cpu->suspended)
2690 		return 0;
2691 
2692 	/*
2693 	 * If the CPU is an SMT thread and it goes offline with the performance
2694 	 * settings different from the minimum, it will prevent its sibling
2695 	 * from getting to lower performance levels, so force the minimum
2696 	 * performance on CPU offline to prevent that from happening.
2697 	 */
2698 	if (hwp_active)
2699 		intel_pstate_hwp_offline(cpu);
2700 	else
2701 		intel_pstate_set_min_pstate(cpu);
2702 
2703 	intel_pstate_exit_perf_limits(policy);
2704 
2705 	return 0;
2706 }
2707 
2708 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2709 {
2710 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2711 
2712 	pr_debug("CPU %d going online\n", cpu->cpu);
2713 
2714 	intel_pstate_init_acpi_perf_limits(policy);
2715 
2716 	if (hwp_active) {
2717 		/*
2718 		 * Re-enable HWP and clear the "suspended" flag to let "resume"
2719 		 * know that it need not do that.
2720 		 */
2721 		intel_pstate_hwp_reenable(cpu);
2722 		cpu->suspended = false;
2723 	}
2724 
2725 	return 0;
2726 }
2727 
2728 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2729 {
2730 	intel_pstate_clear_update_util_hook(policy->cpu);
2731 
2732 	return intel_cpufreq_cpu_offline(policy);
2733 }
2734 
2735 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2736 {
2737 	pr_debug("CPU %d exiting\n", policy->cpu);
2738 
2739 	policy->fast_switch_possible = false;
2740 
2741 	return 0;
2742 }
2743 
2744 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2745 {
2746 	struct cpudata *cpu;
2747 	int rc;
2748 
2749 	rc = intel_pstate_init_cpu(policy->cpu);
2750 	if (rc)
2751 		return rc;
2752 
2753 	cpu = all_cpu_data[policy->cpu];
2754 
2755 	cpu->max_perf_ratio = 0xFF;
2756 	cpu->min_perf_ratio = 0;
2757 
2758 	/* cpuinfo and default policy values */
2759 	policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2760 	update_turbo_state();
2761 	global.turbo_disabled_mf = global.turbo_disabled;
2762 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2763 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2764 
2765 	policy->min = policy->cpuinfo.min_freq;
2766 	policy->max = policy->cpuinfo.max_freq;
2767 
2768 	intel_pstate_init_acpi_perf_limits(policy);
2769 
2770 	policy->fast_switch_possible = true;
2771 
2772 	return 0;
2773 }
2774 
2775 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2776 {
2777 	int ret = __intel_pstate_cpu_init(policy);
2778 
2779 	if (ret)
2780 		return ret;
2781 
2782 	/*
2783 	 * Set the policy to powersave to provide a valid fallback value in case
2784 	 * the default cpufreq governor is neither powersave nor performance.
2785 	 */
2786 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2787 
2788 	if (hwp_active) {
2789 		struct cpudata *cpu = all_cpu_data[policy->cpu];
2790 
2791 		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2792 	}
2793 
2794 	return 0;
2795 }
2796 
2797 static struct cpufreq_driver intel_pstate = {
2798 	.flags		= CPUFREQ_CONST_LOOPS,
2799 	.verify		= intel_pstate_verify_policy,
2800 	.setpolicy	= intel_pstate_set_policy,
2801 	.suspend	= intel_pstate_suspend,
2802 	.resume		= intel_pstate_resume,
2803 	.init		= intel_pstate_cpu_init,
2804 	.exit		= intel_pstate_cpu_exit,
2805 	.offline	= intel_pstate_cpu_offline,
2806 	.online		= intel_pstate_cpu_online,
2807 	.update_limits	= intel_pstate_update_limits,
2808 	.name		= "intel_pstate",
2809 };
2810 
2811 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2812 {
2813 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2814 
2815 	intel_pstate_verify_cpu_policy(cpu, policy);
2816 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2817 
2818 	return 0;
2819 }
2820 
2821 /* Use of trace in passive mode:
2822  *
2823  * In passive mode the trace core_busy field (also known as the
2824  * performance field, and lablelled as such on the graphs; also known as
2825  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2826  * driver call was via the normal or fast switch path. Various graphs
2827  * output from the intel_pstate_tracer.py utility that include core_busy
2828  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2829  * so we use 10 to indicate the normal path through the driver, and
2830  * 90 to indicate the fast switch path through the driver.
2831  * The scaled_busy field is not used, and is set to 0.
2832  */
2833 
2834 #define	INTEL_PSTATE_TRACE_TARGET 10
2835 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2836 
2837 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2838 {
2839 	struct sample *sample;
2840 
2841 	if (!trace_pstate_sample_enabled())
2842 		return;
2843 
2844 	if (!intel_pstate_sample(cpu, ktime_get()))
2845 		return;
2846 
2847 	sample = &cpu->sample;
2848 	trace_pstate_sample(trace_type,
2849 		0,
2850 		old_pstate,
2851 		cpu->pstate.current_pstate,
2852 		sample->mperf,
2853 		sample->aperf,
2854 		sample->tsc,
2855 		get_avg_frequency(cpu),
2856 		fp_toint(cpu->iowait_boost * 100));
2857 }
2858 
2859 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2860 				     u32 desired, bool fast_switch)
2861 {
2862 	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2863 
2864 	value &= ~HWP_MIN_PERF(~0L);
2865 	value |= HWP_MIN_PERF(min);
2866 
2867 	value &= ~HWP_MAX_PERF(~0L);
2868 	value |= HWP_MAX_PERF(max);
2869 
2870 	value &= ~HWP_DESIRED_PERF(~0L);
2871 	value |= HWP_DESIRED_PERF(desired);
2872 
2873 	if (value == prev)
2874 		return;
2875 
2876 	WRITE_ONCE(cpu->hwp_req_cached, value);
2877 	if (fast_switch)
2878 		wrmsrl(MSR_HWP_REQUEST, value);
2879 	else
2880 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2881 }
2882 
2883 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2884 					  u32 target_pstate, bool fast_switch)
2885 {
2886 	if (fast_switch)
2887 		wrmsrl(MSR_IA32_PERF_CTL,
2888 		       pstate_funcs.get_val(cpu, target_pstate));
2889 	else
2890 		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2891 			      pstate_funcs.get_val(cpu, target_pstate));
2892 }
2893 
2894 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2895 				       int target_pstate, bool fast_switch)
2896 {
2897 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2898 	int old_pstate = cpu->pstate.current_pstate;
2899 
2900 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2901 	if (hwp_active) {
2902 		int max_pstate = policy->strict_target ?
2903 					target_pstate : cpu->max_perf_ratio;
2904 
2905 		intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2906 					 fast_switch);
2907 	} else if (target_pstate != old_pstate) {
2908 		intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2909 	}
2910 
2911 	cpu->pstate.current_pstate = target_pstate;
2912 
2913 	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2914 			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
2915 
2916 	return target_pstate;
2917 }
2918 
2919 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2920 				unsigned int target_freq,
2921 				unsigned int relation)
2922 {
2923 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2924 	struct cpufreq_freqs freqs;
2925 	int target_pstate;
2926 
2927 	update_turbo_state();
2928 
2929 	freqs.old = policy->cur;
2930 	freqs.new = target_freq;
2931 
2932 	cpufreq_freq_transition_begin(policy, &freqs);
2933 
2934 	target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation);
2935 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2936 
2937 	freqs.new = target_pstate * cpu->pstate.scaling;
2938 
2939 	cpufreq_freq_transition_end(policy, &freqs, false);
2940 
2941 	return 0;
2942 }
2943 
2944 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2945 					      unsigned int target_freq)
2946 {
2947 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2948 	int target_pstate;
2949 
2950 	update_turbo_state();
2951 
2952 	target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq);
2953 
2954 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2955 
2956 	return target_pstate * cpu->pstate.scaling;
2957 }
2958 
2959 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2960 				      unsigned long min_perf,
2961 				      unsigned long target_perf,
2962 				      unsigned long capacity)
2963 {
2964 	struct cpudata *cpu = all_cpu_data[cpunum];
2965 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2966 	int old_pstate = cpu->pstate.current_pstate;
2967 	int cap_pstate, min_pstate, max_pstate, target_pstate;
2968 
2969 	update_turbo_state();
2970 	cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2971 					     HWP_HIGHEST_PERF(hwp_cap);
2972 
2973 	/* Optimization: Avoid unnecessary divisions. */
2974 
2975 	target_pstate = cap_pstate;
2976 	if (target_perf < capacity)
2977 		target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2978 
2979 	min_pstate = cap_pstate;
2980 	if (min_perf < capacity)
2981 		min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2982 
2983 	if (min_pstate < cpu->pstate.min_pstate)
2984 		min_pstate = cpu->pstate.min_pstate;
2985 
2986 	if (min_pstate < cpu->min_perf_ratio)
2987 		min_pstate = cpu->min_perf_ratio;
2988 
2989 	if (min_pstate > cpu->max_perf_ratio)
2990 		min_pstate = cpu->max_perf_ratio;
2991 
2992 	max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2993 	if (max_pstate < min_pstate)
2994 		max_pstate = min_pstate;
2995 
2996 	target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2997 
2998 	intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2999 
3000 	cpu->pstate.current_pstate = target_pstate;
3001 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
3002 }
3003 
3004 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
3005 {
3006 	struct freq_qos_request *req;
3007 	struct cpudata *cpu;
3008 	struct device *dev;
3009 	int ret, freq;
3010 
3011 	dev = get_cpu_device(policy->cpu);
3012 	if (!dev)
3013 		return -ENODEV;
3014 
3015 	ret = __intel_pstate_cpu_init(policy);
3016 	if (ret)
3017 		return ret;
3018 
3019 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3020 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
3021 	policy->cur = policy->cpuinfo.min_freq;
3022 
3023 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3024 	if (!req) {
3025 		ret = -ENOMEM;
3026 		goto pstate_exit;
3027 	}
3028 
3029 	cpu = all_cpu_data[policy->cpu];
3030 
3031 	if (hwp_active) {
3032 		u64 value;
3033 
3034 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3035 
3036 		intel_pstate_get_hwp_cap(cpu);
3037 
3038 		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3039 		WRITE_ONCE(cpu->hwp_req_cached, value);
3040 
3041 		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3042 	} else {
3043 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3044 	}
3045 
3046 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3047 
3048 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3049 				   freq);
3050 	if (ret < 0) {
3051 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3052 		goto free_req;
3053 	}
3054 
3055 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3056 
3057 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3058 				   freq);
3059 	if (ret < 0) {
3060 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3061 		goto remove_min_req;
3062 	}
3063 
3064 	policy->driver_data = req;
3065 
3066 	return 0;
3067 
3068 remove_min_req:
3069 	freq_qos_remove_request(req);
3070 free_req:
3071 	kfree(req);
3072 pstate_exit:
3073 	intel_pstate_exit_perf_limits(policy);
3074 
3075 	return ret;
3076 }
3077 
3078 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3079 {
3080 	struct freq_qos_request *req;
3081 
3082 	req = policy->driver_data;
3083 
3084 	freq_qos_remove_request(req + 1);
3085 	freq_qos_remove_request(req);
3086 	kfree(req);
3087 
3088 	return intel_pstate_cpu_exit(policy);
3089 }
3090 
3091 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3092 {
3093 	intel_pstate_suspend(policy);
3094 
3095 	if (hwp_active) {
3096 		struct cpudata *cpu = all_cpu_data[policy->cpu];
3097 		u64 value = READ_ONCE(cpu->hwp_req_cached);
3098 
3099 		/*
3100 		 * Clear the desired perf field in MSR_HWP_REQUEST in case
3101 		 * intel_cpufreq_adjust_perf() is in use and the last value
3102 		 * written by it may not be suitable.
3103 		 */
3104 		value &= ~HWP_DESIRED_PERF(~0L);
3105 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3106 		WRITE_ONCE(cpu->hwp_req_cached, value);
3107 	}
3108 
3109 	return 0;
3110 }
3111 
3112 static struct cpufreq_driver intel_cpufreq = {
3113 	.flags		= CPUFREQ_CONST_LOOPS,
3114 	.verify		= intel_cpufreq_verify_policy,
3115 	.target		= intel_cpufreq_target,
3116 	.fast_switch	= intel_cpufreq_fast_switch,
3117 	.init		= intel_cpufreq_cpu_init,
3118 	.exit		= intel_cpufreq_cpu_exit,
3119 	.offline	= intel_cpufreq_cpu_offline,
3120 	.online		= intel_pstate_cpu_online,
3121 	.suspend	= intel_cpufreq_suspend,
3122 	.resume		= intel_pstate_resume,
3123 	.update_limits	= intel_pstate_update_limits,
3124 	.name		= "intel_cpufreq",
3125 };
3126 
3127 static struct cpufreq_driver *default_driver;
3128 
3129 static void intel_pstate_driver_cleanup(void)
3130 {
3131 	unsigned int cpu;
3132 
3133 	cpus_read_lock();
3134 	for_each_online_cpu(cpu) {
3135 		if (all_cpu_data[cpu]) {
3136 			if (intel_pstate_driver == &intel_pstate)
3137 				intel_pstate_clear_update_util_hook(cpu);
3138 
3139 			raw_spin_lock(&hwp_notify_lock);
3140 			kfree(all_cpu_data[cpu]);
3141 			WRITE_ONCE(all_cpu_data[cpu], NULL);
3142 			raw_spin_unlock(&hwp_notify_lock);
3143 		}
3144 	}
3145 	cpus_read_unlock();
3146 
3147 	intel_pstate_driver = NULL;
3148 }
3149 
3150 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3151 {
3152 	int ret;
3153 
3154 	if (driver == &intel_pstate)
3155 		intel_pstate_sysfs_expose_hwp_dynamic_boost();
3156 
3157 	memset(&global, 0, sizeof(global));
3158 	global.max_perf_pct = 100;
3159 
3160 	intel_pstate_driver = driver;
3161 	ret = cpufreq_register_driver(intel_pstate_driver);
3162 	if (ret) {
3163 		intel_pstate_driver_cleanup();
3164 		return ret;
3165 	}
3166 
3167 	global.min_perf_pct = min_perf_pct_min();
3168 
3169 	return 0;
3170 }
3171 
3172 static ssize_t intel_pstate_show_status(char *buf)
3173 {
3174 	if (!intel_pstate_driver)
3175 		return sprintf(buf, "off\n");
3176 
3177 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3178 					"active" : "passive");
3179 }
3180 
3181 static int intel_pstate_update_status(const char *buf, size_t size)
3182 {
3183 	if (size == 3 && !strncmp(buf, "off", size)) {
3184 		if (!intel_pstate_driver)
3185 			return -EINVAL;
3186 
3187 		if (hwp_active)
3188 			return -EBUSY;
3189 
3190 		cpufreq_unregister_driver(intel_pstate_driver);
3191 		intel_pstate_driver_cleanup();
3192 		return 0;
3193 	}
3194 
3195 	if (size == 6 && !strncmp(buf, "active", size)) {
3196 		if (intel_pstate_driver) {
3197 			if (intel_pstate_driver == &intel_pstate)
3198 				return 0;
3199 
3200 			cpufreq_unregister_driver(intel_pstate_driver);
3201 		}
3202 
3203 		return intel_pstate_register_driver(&intel_pstate);
3204 	}
3205 
3206 	if (size == 7 && !strncmp(buf, "passive", size)) {
3207 		if (intel_pstate_driver) {
3208 			if (intel_pstate_driver == &intel_cpufreq)
3209 				return 0;
3210 
3211 			cpufreq_unregister_driver(intel_pstate_driver);
3212 			intel_pstate_sysfs_hide_hwp_dynamic_boost();
3213 		}
3214 
3215 		return intel_pstate_register_driver(&intel_cpufreq);
3216 	}
3217 
3218 	return -EINVAL;
3219 }
3220 
3221 static int no_load __initdata;
3222 static int no_hwp __initdata;
3223 static int hwp_only __initdata;
3224 static unsigned int force_load __initdata;
3225 
3226 static int __init intel_pstate_msrs_not_valid(void)
3227 {
3228 	if (!pstate_funcs.get_max(0) ||
3229 	    !pstate_funcs.get_min(0) ||
3230 	    !pstate_funcs.get_turbo(0))
3231 		return -ENODEV;
3232 
3233 	return 0;
3234 }
3235 
3236 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3237 {
3238 	pstate_funcs.get_max   = funcs->get_max;
3239 	pstate_funcs.get_max_physical = funcs->get_max_physical;
3240 	pstate_funcs.get_min   = funcs->get_min;
3241 	pstate_funcs.get_turbo = funcs->get_turbo;
3242 	pstate_funcs.get_scaling = funcs->get_scaling;
3243 	pstate_funcs.get_val   = funcs->get_val;
3244 	pstate_funcs.get_vid   = funcs->get_vid;
3245 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3246 }
3247 
3248 #ifdef CONFIG_ACPI
3249 
3250 static bool __init intel_pstate_no_acpi_pss(void)
3251 {
3252 	int i;
3253 
3254 	for_each_possible_cpu(i) {
3255 		acpi_status status;
3256 		union acpi_object *pss;
3257 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3258 		struct acpi_processor *pr = per_cpu(processors, i);
3259 
3260 		if (!pr)
3261 			continue;
3262 
3263 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3264 		if (ACPI_FAILURE(status))
3265 			continue;
3266 
3267 		pss = buffer.pointer;
3268 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3269 			kfree(pss);
3270 			return false;
3271 		}
3272 
3273 		kfree(pss);
3274 	}
3275 
3276 	pr_debug("ACPI _PSS not found\n");
3277 	return true;
3278 }
3279 
3280 static bool __init intel_pstate_no_acpi_pcch(void)
3281 {
3282 	acpi_status status;
3283 	acpi_handle handle;
3284 
3285 	status = acpi_get_handle(NULL, "\\_SB", &handle);
3286 	if (ACPI_FAILURE(status))
3287 		goto not_found;
3288 
3289 	if (acpi_has_method(handle, "PCCH"))
3290 		return false;
3291 
3292 not_found:
3293 	pr_debug("ACPI PCCH not found\n");
3294 	return true;
3295 }
3296 
3297 static bool __init intel_pstate_has_acpi_ppc(void)
3298 {
3299 	int i;
3300 
3301 	for_each_possible_cpu(i) {
3302 		struct acpi_processor *pr = per_cpu(processors, i);
3303 
3304 		if (!pr)
3305 			continue;
3306 		if (acpi_has_method(pr->handle, "_PPC"))
3307 			return true;
3308 	}
3309 	pr_debug("ACPI _PPC not found\n");
3310 	return false;
3311 }
3312 
3313 enum {
3314 	PSS,
3315 	PPC,
3316 };
3317 
3318 /* Hardware vendor-specific info that has its own power management modes */
3319 static struct acpi_platform_list plat_info[] __initdata = {
3320 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3321 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3322 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3323 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3324 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3325 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3326 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3327 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3328 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3329 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3330 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3331 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3332 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3333 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3334 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3335 	{ } /* End */
3336 };
3337 
3338 #define BITMASK_OOB	(BIT(8) | BIT(18))
3339 
3340 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3341 {
3342 	const struct x86_cpu_id *id;
3343 	u64 misc_pwr;
3344 	int idx;
3345 
3346 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3347 	if (id) {
3348 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3349 		if (misc_pwr & BITMASK_OOB) {
3350 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3351 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3352 			return true;
3353 		}
3354 	}
3355 
3356 	idx = acpi_match_platform_list(plat_info);
3357 	if (idx < 0)
3358 		return false;
3359 
3360 	switch (plat_info[idx].data) {
3361 	case PSS:
3362 		if (!intel_pstate_no_acpi_pss())
3363 			return false;
3364 
3365 		return intel_pstate_no_acpi_pcch();
3366 	case PPC:
3367 		return intel_pstate_has_acpi_ppc() && !force_load;
3368 	}
3369 
3370 	return false;
3371 }
3372 
3373 static void intel_pstate_request_control_from_smm(void)
3374 {
3375 	/*
3376 	 * It may be unsafe to request P-states control from SMM if _PPC support
3377 	 * has not been enabled.
3378 	 */
3379 	if (acpi_ppc)
3380 		acpi_processor_pstate_control();
3381 }
3382 #else /* CONFIG_ACPI not enabled */
3383 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3384 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3385 static inline void intel_pstate_request_control_from_smm(void) {}
3386 #endif /* CONFIG_ACPI */
3387 
3388 #define INTEL_PSTATE_HWP_BROADWELL	0x01
3389 
3390 #define X86_MATCH_HWP(model, hwp_mode)					\
3391 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3392 					   X86_FEATURE_HWP, hwp_mode)
3393 
3394 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3395 	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
3396 	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
3397 	X86_MATCH_HWP(ANY,		0),
3398 	{}
3399 };
3400 
3401 static bool intel_pstate_hwp_is_enabled(void)
3402 {
3403 	u64 value;
3404 
3405 	rdmsrl(MSR_PM_ENABLE, value);
3406 	return !!(value & 0x1);
3407 }
3408 
3409 static const struct x86_cpu_id intel_epp_balance_perf[] = {
3410 	/*
3411 	 * Set EPP value as 102, this is the max suggested EPP
3412 	 * which can result in one core turbo frequency for
3413 	 * AlderLake Mobile CPUs.
3414 	 */
3415 	X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
3416 	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 32),
3417 	{}
3418 };
3419 
3420 static int __init intel_pstate_init(void)
3421 {
3422 	static struct cpudata **_all_cpu_data;
3423 	const struct x86_cpu_id *id;
3424 	int rc;
3425 
3426 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3427 		return -ENODEV;
3428 
3429 	id = x86_match_cpu(hwp_support_ids);
3430 	if (id) {
3431 		hwp_forced = intel_pstate_hwp_is_enabled();
3432 
3433 		if (hwp_forced)
3434 			pr_info("HWP enabled by BIOS\n");
3435 		else if (no_load)
3436 			return -ENODEV;
3437 
3438 		copy_cpu_funcs(&core_funcs);
3439 		/*
3440 		 * Avoid enabling HWP for processors without EPP support,
3441 		 * because that means incomplete HWP implementation which is a
3442 		 * corner case and supporting it is generally problematic.
3443 		 *
3444 		 * If HWP is enabled already, though, there is no choice but to
3445 		 * deal with it.
3446 		 */
3447 		if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3448 			WRITE_ONCE(hwp_active, 1);
3449 			hwp_mode_bdw = id->driver_data;
3450 			intel_pstate.attr = hwp_cpufreq_attrs;
3451 			intel_cpufreq.attr = hwp_cpufreq_attrs;
3452 			intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3453 			intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3454 			if (!default_driver)
3455 				default_driver = &intel_pstate;
3456 
3457 			pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3458 
3459 			goto hwp_cpu_matched;
3460 		}
3461 		pr_info("HWP not enabled\n");
3462 	} else {
3463 		if (no_load)
3464 			return -ENODEV;
3465 
3466 		id = x86_match_cpu(intel_pstate_cpu_ids);
3467 		if (!id) {
3468 			pr_info("CPU model not supported\n");
3469 			return -ENODEV;
3470 		}
3471 
3472 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3473 	}
3474 
3475 	if (intel_pstate_msrs_not_valid()) {
3476 		pr_info("Invalid MSRs\n");
3477 		return -ENODEV;
3478 	}
3479 	/* Without HWP start in the passive mode. */
3480 	if (!default_driver)
3481 		default_driver = &intel_cpufreq;
3482 
3483 hwp_cpu_matched:
3484 	/*
3485 	 * The Intel pstate driver will be ignored if the platform
3486 	 * firmware has its own power management modes.
3487 	 */
3488 	if (intel_pstate_platform_pwr_mgmt_exists()) {
3489 		pr_info("P-states controlled by the platform\n");
3490 		return -ENODEV;
3491 	}
3492 
3493 	if (!hwp_active && hwp_only)
3494 		return -ENOTSUPP;
3495 
3496 	pr_info("Intel P-state driver initializing\n");
3497 
3498 	_all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3499 	if (!_all_cpu_data)
3500 		return -ENOMEM;
3501 
3502 	WRITE_ONCE(all_cpu_data, _all_cpu_data);
3503 
3504 	intel_pstate_request_control_from_smm();
3505 
3506 	intel_pstate_sysfs_expose_params();
3507 
3508 	if (hwp_active) {
3509 		const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
3510 
3511 		if (id)
3512 			epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
3513 	}
3514 
3515 	mutex_lock(&intel_pstate_driver_lock);
3516 	rc = intel_pstate_register_driver(default_driver);
3517 	mutex_unlock(&intel_pstate_driver_lock);
3518 	if (rc) {
3519 		intel_pstate_sysfs_remove();
3520 		return rc;
3521 	}
3522 
3523 	if (hwp_active) {
3524 		const struct x86_cpu_id *id;
3525 
3526 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3527 		if (id) {
3528 			set_power_ctl_ee_state(false);
3529 			pr_info("Disabling energy efficiency optimization\n");
3530 		}
3531 
3532 		pr_info("HWP enabled\n");
3533 	} else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3534 		pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3535 	}
3536 
3537 	return 0;
3538 }
3539 device_initcall(intel_pstate_init);
3540 
3541 static int __init intel_pstate_setup(char *str)
3542 {
3543 	if (!str)
3544 		return -EINVAL;
3545 
3546 	if (!strcmp(str, "disable"))
3547 		no_load = 1;
3548 	else if (!strcmp(str, "active"))
3549 		default_driver = &intel_pstate;
3550 	else if (!strcmp(str, "passive"))
3551 		default_driver = &intel_cpufreq;
3552 
3553 	if (!strcmp(str, "no_hwp"))
3554 		no_hwp = 1;
3555 
3556 	if (!strcmp(str, "force"))
3557 		force_load = 1;
3558 	if (!strcmp(str, "hwp_only"))
3559 		hwp_only = 1;
3560 	if (!strcmp(str, "per_cpu_perf_limits"))
3561 		per_cpu_limits = true;
3562 
3563 #ifdef CONFIG_ACPI
3564 	if (!strcmp(str, "support_acpi_ppc"))
3565 		acpi_ppc = true;
3566 #endif
3567 
3568 	return 0;
3569 }
3570 early_param("intel_pstate", intel_pstate_setup);
3571 
3572 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3573 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3574