1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define ATOM_RATIOS		0x66a
41 #define ATOM_VIDS		0x66b
42 #define ATOM_TURBO_RATIOS	0x66c
43 #define ATOM_TURBO_VIDS		0x66d
44 
45 #ifdef CONFIG_ACPI
46 #include <acpi/processor.h>
47 #endif
48 
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52 
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60 
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 	return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65 
66 static inline int ceiling_fp(int32_t x)
67 {
68 	int mask, ret;
69 
70 	ret = fp_toint(x);
71 	mask = (1 << FRAC_BITS) - 1;
72 	if (x & mask)
73 		ret += 1;
74 	return ret;
75 }
76 
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 	return (x * y) >> EXT_FRAC_BITS;
80 }
81 
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 	return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86 
87 /**
88  * struct sample -	Store performance sample
89  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
90  *			performance during last sample period
91  * @busy_scaled:	Scaled busy value which is used to calculate next
92  *			P state. This can be different than core_avg_perf
93  *			to account for cpu idle period
94  * @aperf:		Difference of actual performance frequency clock count
95  *			read from APERF MSR between last and current sample
96  * @mperf:		Difference of maximum performance frequency clock count
97  *			read from MPERF MSR between last and current sample
98  * @tsc:		Difference of time stamp counter between last and
99  *			current sample
100  * @time:		Current time from scheduler
101  *
102  * This structure is used in the cpudata structure to store performance sample
103  * data for choosing next P State.
104  */
105 struct sample {
106 	int32_t core_avg_perf;
107 	int32_t busy_scaled;
108 	u64 aperf;
109 	u64 mperf;
110 	u64 tsc;
111 	u64 time;
112 };
113 
114 /**
115  * struct pstate_data - Store P state data
116  * @current_pstate:	Current requested P state
117  * @min_pstate:		Min P state possible for this platform
118  * @max_pstate:		Max P state possible for this platform
119  * @max_pstate_physical:This is physical Max P state for a processor
120  *			This can be higher than the max_pstate which can
121  *			be limited by platform thermal design power limits
122  * @scaling:		Scaling factor to  convert frequency to cpufreq
123  *			frequency units
124  * @turbo_pstate:	Max Turbo P state possible for this platform
125  *
126  * Stores the per cpu model P state limits and current P state.
127  */
128 struct pstate_data {
129 	int	current_pstate;
130 	int	min_pstate;
131 	int	max_pstate;
132 	int	max_pstate_physical;
133 	int	scaling;
134 	int	turbo_pstate;
135 };
136 
137 /**
138  * struct vid_data -	Stores voltage information data
139  * @min:		VID data for this platform corresponding to
140  *			the lowest P state
141  * @max:		VID data corresponding to the highest P State.
142  * @turbo:		VID data for turbo P state
143  * @ratio:		Ratio of (vid max - vid min) /
144  *			(max P state - Min P State)
145  *
146  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
147  * This data is used in Atom platforms, where in addition to target P state,
148  * the voltage data needs to be specified to select next P State.
149  */
150 struct vid_data {
151 	int min;
152 	int max;
153 	int turbo;
154 	int32_t ratio;
155 };
156 
157 /**
158  * struct _pid -	Stores PID data
159  * @setpoint:		Target set point for busyness or performance
160  * @integral:		Storage for accumulated error values
161  * @p_gain:		PID proportional gain
162  * @i_gain:		PID integral gain
163  * @d_gain:		PID derivative gain
164  * @deadband:		PID deadband
165  * @last_err:		Last error storage for integral part of PID calculation
166  *
167  * Stores PID coefficients and last error for PID controller.
168  */
169 struct _pid {
170 	int setpoint;
171 	int32_t integral;
172 	int32_t p_gain;
173 	int32_t i_gain;
174 	int32_t d_gain;
175 	int deadband;
176 	int32_t last_err;
177 };
178 
179 /**
180  * struct cpudata -	Per CPU instance data storage
181  * @cpu:		CPU number for this instance data
182  * @update_util:	CPUFreq utility callback information
183  * @update_util_set:	CPUFreq utility callback is set
184  * @pstate:		Stores P state limits for this CPU
185  * @vid:		Stores VID limits for this CPU
186  * @pid:		Stores PID parameters for this CPU
187  * @last_sample_time:	Last Sample time
188  * @prev_aperf:		Last APERF value read from APERF MSR
189  * @prev_mperf:		Last MPERF value read from MPERF MSR
190  * @prev_tsc:		Last timestamp counter (TSC) value
191  * @prev_cummulative_iowait: IO Wait time difference from last and
192  *			current sample
193  * @sample:		Storage for storing last Sample data
194  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
195  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
196  *
197  * This structure stores per CPU instance data for all CPUs.
198  */
199 struct cpudata {
200 	int cpu;
201 
202 	struct update_util_data update_util;
203 	bool   update_util_set;
204 
205 	struct pstate_data pstate;
206 	struct vid_data vid;
207 	struct _pid pid;
208 
209 	u64	last_sample_time;
210 	u64	prev_aperf;
211 	u64	prev_mperf;
212 	u64	prev_tsc;
213 	u64	prev_cummulative_iowait;
214 	struct sample sample;
215 #ifdef CONFIG_ACPI
216 	struct acpi_processor_performance acpi_perf_data;
217 	bool valid_pss_table;
218 #endif
219 };
220 
221 static struct cpudata **all_cpu_data;
222 
223 /**
224  * struct pid_adjust_policy - Stores static PID configuration data
225  * @sample_rate_ms:	PID calculation sample rate in ms
226  * @sample_rate_ns:	Sample rate calculation in ns
227  * @deadband:		PID deadband
228  * @setpoint:		PID Setpoint
229  * @p_gain_pct:		PID proportional gain
230  * @i_gain_pct:		PID integral gain
231  * @d_gain_pct:		PID derivative gain
232  *
233  * Stores per CPU model static PID configuration data.
234  */
235 struct pstate_adjust_policy {
236 	int sample_rate_ms;
237 	s64 sample_rate_ns;
238 	int deadband;
239 	int setpoint;
240 	int p_gain_pct;
241 	int d_gain_pct;
242 	int i_gain_pct;
243 };
244 
245 /**
246  * struct pstate_funcs - Per CPU model specific callbacks
247  * @get_max:		Callback to get maximum non turbo effective P state
248  * @get_max_physical:	Callback to get maximum non turbo physical P state
249  * @get_min:		Callback to get minimum P state
250  * @get_turbo:		Callback to get turbo P state
251  * @get_scaling:	Callback to get frequency scaling factor
252  * @get_val:		Callback to convert P state to actual MSR write value
253  * @get_vid:		Callback to get VID data for Atom platforms
254  * @get_target_pstate:	Callback to a function to calculate next P state to use
255  *
256  * Core and Atom CPU models have different way to get P State limits. This
257  * structure is used to store those callbacks.
258  */
259 struct pstate_funcs {
260 	int (*get_max)(void);
261 	int (*get_max_physical)(void);
262 	int (*get_min)(void);
263 	int (*get_turbo)(void);
264 	int (*get_scaling)(void);
265 	u64 (*get_val)(struct cpudata*, int pstate);
266 	void (*get_vid)(struct cpudata *);
267 	int32_t (*get_target_pstate)(struct cpudata *);
268 };
269 
270 /**
271  * struct cpu_defaults- Per CPU model default config data
272  * @pid_policy:	PID config data
273  * @funcs:		Callback function data
274  */
275 struct cpu_defaults {
276 	struct pstate_adjust_policy pid_policy;
277 	struct pstate_funcs funcs;
278 };
279 
280 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
281 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
282 
283 static struct pstate_adjust_policy pid_params __read_mostly;
284 static struct pstate_funcs pstate_funcs __read_mostly;
285 static int hwp_active __read_mostly;
286 
287 #ifdef CONFIG_ACPI
288 static bool acpi_ppc;
289 #endif
290 
291 /**
292  * struct perf_limits - Store user and policy limits
293  * @no_turbo:		User requested turbo state from intel_pstate sysfs
294  * @turbo_disabled:	Platform turbo status either from msr
295  *			MSR_IA32_MISC_ENABLE or when maximum available pstate
296  *			matches the maximum turbo pstate
297  * @max_perf_pct:	Effective maximum performance limit in percentage, this
298  *			is minimum of either limits enforced by cpufreq policy
299  *			or limits from user set limits via intel_pstate sysfs
300  * @min_perf_pct:	Effective minimum performance limit in percentage, this
301  *			is maximum of either limits enforced by cpufreq policy
302  *			or limits from user set limits via intel_pstate sysfs
303  * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
304  *			This value is used to limit max pstate
305  * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
306  *			This value is used to limit min pstate
307  * @max_policy_pct:	The maximum performance in percentage enforced by
308  *			cpufreq setpolicy interface
309  * @max_sysfs_pct:	The maximum performance in percentage enforced by
310  *			intel pstate sysfs interface
311  * @min_policy_pct:	The minimum performance in percentage enforced by
312  *			cpufreq setpolicy interface
313  * @min_sysfs_pct:	The minimum performance in percentage enforced by
314  *			intel pstate sysfs interface
315  *
316  * Storage for user and policy defined limits.
317  */
318 struct perf_limits {
319 	int no_turbo;
320 	int turbo_disabled;
321 	int max_perf_pct;
322 	int min_perf_pct;
323 	int32_t max_perf;
324 	int32_t min_perf;
325 	int max_policy_pct;
326 	int max_sysfs_pct;
327 	int min_policy_pct;
328 	int min_sysfs_pct;
329 };
330 
331 static struct perf_limits performance_limits = {
332 	.no_turbo = 0,
333 	.turbo_disabled = 0,
334 	.max_perf_pct = 100,
335 	.max_perf = int_tofp(1),
336 	.min_perf_pct = 100,
337 	.min_perf = int_tofp(1),
338 	.max_policy_pct = 100,
339 	.max_sysfs_pct = 100,
340 	.min_policy_pct = 0,
341 	.min_sysfs_pct = 0,
342 };
343 
344 static struct perf_limits powersave_limits = {
345 	.no_turbo = 0,
346 	.turbo_disabled = 0,
347 	.max_perf_pct = 100,
348 	.max_perf = int_tofp(1),
349 	.min_perf_pct = 0,
350 	.min_perf = 0,
351 	.max_policy_pct = 100,
352 	.max_sysfs_pct = 100,
353 	.min_policy_pct = 0,
354 	.min_sysfs_pct = 0,
355 };
356 
357 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
358 static struct perf_limits *limits = &performance_limits;
359 #else
360 static struct perf_limits *limits = &powersave_limits;
361 #endif
362 
363 #ifdef CONFIG_ACPI
364 
365 static bool intel_pstate_get_ppc_enable_status(void)
366 {
367 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
368 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
369 		return true;
370 
371 	return acpi_ppc;
372 }
373 
374 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
375 {
376 	struct cpudata *cpu;
377 	int ret;
378 	int i;
379 
380 	if (hwp_active)
381 		return;
382 
383 	if (!intel_pstate_get_ppc_enable_status())
384 		return;
385 
386 	cpu = all_cpu_data[policy->cpu];
387 
388 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
389 						  policy->cpu);
390 	if (ret)
391 		return;
392 
393 	/*
394 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
395 	 * guarantee that the states returned by it map to the states in our
396 	 * list directly.
397 	 */
398 	if (cpu->acpi_perf_data.control_register.space_id !=
399 						ACPI_ADR_SPACE_FIXED_HARDWARE)
400 		goto err;
401 
402 	/*
403 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
404 	 * usual without taking _PSS into account
405 	 */
406 	if (cpu->acpi_perf_data.state_count < 2)
407 		goto err;
408 
409 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
410 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
411 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
412 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
413 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
414 			 (u32) cpu->acpi_perf_data.states[i].power,
415 			 (u32) cpu->acpi_perf_data.states[i].control);
416 	}
417 
418 	/*
419 	 * The _PSS table doesn't contain whole turbo frequency range.
420 	 * This just contains +1 MHZ above the max non turbo frequency,
421 	 * with control value corresponding to max turbo ratio. But
422 	 * when cpufreq set policy is called, it will call with this
423 	 * max frequency, which will cause a reduced performance as
424 	 * this driver uses real max turbo frequency as the max
425 	 * frequency. So correct this frequency in _PSS table to
426 	 * correct max turbo frequency based on the turbo state.
427 	 * Also need to convert to MHz as _PSS freq is in MHz.
428 	 */
429 	if (!limits->turbo_disabled)
430 		cpu->acpi_perf_data.states[0].core_frequency =
431 					policy->cpuinfo.max_freq / 1000;
432 	cpu->valid_pss_table = true;
433 	pr_debug("_PPC limits will be enforced\n");
434 
435 	return;
436 
437  err:
438 	cpu->valid_pss_table = false;
439 	acpi_processor_unregister_performance(policy->cpu);
440 }
441 
442 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
443 {
444 	struct cpudata *cpu;
445 
446 	cpu = all_cpu_data[policy->cpu];
447 	if (!cpu->valid_pss_table)
448 		return;
449 
450 	acpi_processor_unregister_performance(policy->cpu);
451 }
452 
453 #else
454 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
455 {
456 }
457 
458 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
459 {
460 }
461 #endif
462 
463 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
464 			     int deadband, int integral) {
465 	pid->setpoint = int_tofp(setpoint);
466 	pid->deadband  = int_tofp(deadband);
467 	pid->integral  = int_tofp(integral);
468 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
469 }
470 
471 static inline void pid_p_gain_set(struct _pid *pid, int percent)
472 {
473 	pid->p_gain = div_fp(percent, 100);
474 }
475 
476 static inline void pid_i_gain_set(struct _pid *pid, int percent)
477 {
478 	pid->i_gain = div_fp(percent, 100);
479 }
480 
481 static inline void pid_d_gain_set(struct _pid *pid, int percent)
482 {
483 	pid->d_gain = div_fp(percent, 100);
484 }
485 
486 static signed int pid_calc(struct _pid *pid, int32_t busy)
487 {
488 	signed int result;
489 	int32_t pterm, dterm, fp_error;
490 	int32_t integral_limit;
491 
492 	fp_error = pid->setpoint - busy;
493 
494 	if (abs(fp_error) <= pid->deadband)
495 		return 0;
496 
497 	pterm = mul_fp(pid->p_gain, fp_error);
498 
499 	pid->integral += fp_error;
500 
501 	/*
502 	 * We limit the integral here so that it will never
503 	 * get higher than 30.  This prevents it from becoming
504 	 * too large an input over long periods of time and allows
505 	 * it to get factored out sooner.
506 	 *
507 	 * The value of 30 was chosen through experimentation.
508 	 */
509 	integral_limit = int_tofp(30);
510 	if (pid->integral > integral_limit)
511 		pid->integral = integral_limit;
512 	if (pid->integral < -integral_limit)
513 		pid->integral = -integral_limit;
514 
515 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
516 	pid->last_err = fp_error;
517 
518 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
519 	result = result + (1 << (FRAC_BITS-1));
520 	return (signed int)fp_toint(result);
521 }
522 
523 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
524 {
525 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
526 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
527 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
528 
529 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
530 }
531 
532 static inline void intel_pstate_reset_all_pid(void)
533 {
534 	unsigned int cpu;
535 
536 	for_each_online_cpu(cpu) {
537 		if (all_cpu_data[cpu])
538 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
539 	}
540 }
541 
542 static inline void update_turbo_state(void)
543 {
544 	u64 misc_en;
545 	struct cpudata *cpu;
546 
547 	cpu = all_cpu_data[0];
548 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
549 	limits->turbo_disabled =
550 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
551 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
552 }
553 
554 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
555 {
556 	int min, hw_min, max, hw_max, cpu, range, adj_range;
557 	u64 value, cap;
558 
559 	rdmsrl(MSR_HWP_CAPABILITIES, cap);
560 	hw_min = HWP_LOWEST_PERF(cap);
561 	hw_max = HWP_HIGHEST_PERF(cap);
562 	range = hw_max - hw_min;
563 
564 	for_each_cpu(cpu, cpumask) {
565 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
566 		adj_range = limits->min_perf_pct * range / 100;
567 		min = hw_min + adj_range;
568 		value &= ~HWP_MIN_PERF(~0L);
569 		value |= HWP_MIN_PERF(min);
570 
571 		adj_range = limits->max_perf_pct * range / 100;
572 		max = hw_min + adj_range;
573 		if (limits->no_turbo) {
574 			hw_max = HWP_GUARANTEED_PERF(cap);
575 			if (hw_max < max)
576 				max = hw_max;
577 		}
578 
579 		value &= ~HWP_MAX_PERF(~0L);
580 		value |= HWP_MAX_PERF(max);
581 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
582 	}
583 }
584 
585 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
586 {
587 	if (hwp_active)
588 		intel_pstate_hwp_set(policy->cpus);
589 
590 	return 0;
591 }
592 
593 static void intel_pstate_hwp_set_online_cpus(void)
594 {
595 	get_online_cpus();
596 	intel_pstate_hwp_set(cpu_online_mask);
597 	put_online_cpus();
598 }
599 
600 /************************** debugfs begin ************************/
601 static int pid_param_set(void *data, u64 val)
602 {
603 	*(u32 *)data = val;
604 	intel_pstate_reset_all_pid();
605 	return 0;
606 }
607 
608 static int pid_param_get(void *data, u64 *val)
609 {
610 	*val = *(u32 *)data;
611 	return 0;
612 }
613 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
614 
615 struct pid_param {
616 	char *name;
617 	void *value;
618 };
619 
620 static struct pid_param pid_files[] = {
621 	{"sample_rate_ms", &pid_params.sample_rate_ms},
622 	{"d_gain_pct", &pid_params.d_gain_pct},
623 	{"i_gain_pct", &pid_params.i_gain_pct},
624 	{"deadband", &pid_params.deadband},
625 	{"setpoint", &pid_params.setpoint},
626 	{"p_gain_pct", &pid_params.p_gain_pct},
627 	{NULL, NULL}
628 };
629 
630 static void __init intel_pstate_debug_expose_params(void)
631 {
632 	struct dentry *debugfs_parent;
633 	int i = 0;
634 
635 	if (hwp_active)
636 		return;
637 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
638 	if (IS_ERR_OR_NULL(debugfs_parent))
639 		return;
640 	while (pid_files[i].name) {
641 		debugfs_create_file(pid_files[i].name, 0660,
642 				    debugfs_parent, pid_files[i].value,
643 				    &fops_pid_param);
644 		i++;
645 	}
646 }
647 
648 /************************** debugfs end ************************/
649 
650 /************************** sysfs begin ************************/
651 #define show_one(file_name, object)					\
652 	static ssize_t show_##file_name					\
653 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
654 	{								\
655 		return sprintf(buf, "%u\n", limits->object);		\
656 	}
657 
658 static ssize_t show_turbo_pct(struct kobject *kobj,
659 				struct attribute *attr, char *buf)
660 {
661 	struct cpudata *cpu;
662 	int total, no_turbo, turbo_pct;
663 	uint32_t turbo_fp;
664 
665 	cpu = all_cpu_data[0];
666 
667 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
668 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
669 	turbo_fp = div_fp(no_turbo, total);
670 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
671 	return sprintf(buf, "%u\n", turbo_pct);
672 }
673 
674 static ssize_t show_num_pstates(struct kobject *kobj,
675 				struct attribute *attr, char *buf)
676 {
677 	struct cpudata *cpu;
678 	int total;
679 
680 	cpu = all_cpu_data[0];
681 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
682 	return sprintf(buf, "%u\n", total);
683 }
684 
685 static ssize_t show_no_turbo(struct kobject *kobj,
686 			     struct attribute *attr, char *buf)
687 {
688 	ssize_t ret;
689 
690 	update_turbo_state();
691 	if (limits->turbo_disabled)
692 		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
693 	else
694 		ret = sprintf(buf, "%u\n", limits->no_turbo);
695 
696 	return ret;
697 }
698 
699 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
700 			      const char *buf, size_t count)
701 {
702 	unsigned int input;
703 	int ret;
704 
705 	ret = sscanf(buf, "%u", &input);
706 	if (ret != 1)
707 		return -EINVAL;
708 
709 	update_turbo_state();
710 	if (limits->turbo_disabled) {
711 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
712 		return -EPERM;
713 	}
714 
715 	limits->no_turbo = clamp_t(int, input, 0, 1);
716 
717 	if (hwp_active)
718 		intel_pstate_hwp_set_online_cpus();
719 
720 	return count;
721 }
722 
723 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
724 				  const char *buf, size_t count)
725 {
726 	unsigned int input;
727 	int ret;
728 
729 	ret = sscanf(buf, "%u", &input);
730 	if (ret != 1)
731 		return -EINVAL;
732 
733 	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
734 	limits->max_perf_pct = min(limits->max_policy_pct,
735 				   limits->max_sysfs_pct);
736 	limits->max_perf_pct = max(limits->min_policy_pct,
737 				   limits->max_perf_pct);
738 	limits->max_perf_pct = max(limits->min_perf_pct,
739 				   limits->max_perf_pct);
740 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
741 
742 	if (hwp_active)
743 		intel_pstate_hwp_set_online_cpus();
744 	return count;
745 }
746 
747 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
748 				  const char *buf, size_t count)
749 {
750 	unsigned int input;
751 	int ret;
752 
753 	ret = sscanf(buf, "%u", &input);
754 	if (ret != 1)
755 		return -EINVAL;
756 
757 	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
758 	limits->min_perf_pct = max(limits->min_policy_pct,
759 				   limits->min_sysfs_pct);
760 	limits->min_perf_pct = min(limits->max_policy_pct,
761 				   limits->min_perf_pct);
762 	limits->min_perf_pct = min(limits->max_perf_pct,
763 				   limits->min_perf_pct);
764 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
765 
766 	if (hwp_active)
767 		intel_pstate_hwp_set_online_cpus();
768 	return count;
769 }
770 
771 show_one(max_perf_pct, max_perf_pct);
772 show_one(min_perf_pct, min_perf_pct);
773 
774 define_one_global_rw(no_turbo);
775 define_one_global_rw(max_perf_pct);
776 define_one_global_rw(min_perf_pct);
777 define_one_global_ro(turbo_pct);
778 define_one_global_ro(num_pstates);
779 
780 static struct attribute *intel_pstate_attributes[] = {
781 	&no_turbo.attr,
782 	&max_perf_pct.attr,
783 	&min_perf_pct.attr,
784 	&turbo_pct.attr,
785 	&num_pstates.attr,
786 	NULL
787 };
788 
789 static struct attribute_group intel_pstate_attr_group = {
790 	.attrs = intel_pstate_attributes,
791 };
792 
793 static void __init intel_pstate_sysfs_expose_params(void)
794 {
795 	struct kobject *intel_pstate_kobject;
796 	int rc;
797 
798 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
799 						&cpu_subsys.dev_root->kobj);
800 	BUG_ON(!intel_pstate_kobject);
801 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
802 	BUG_ON(rc);
803 }
804 /************************** sysfs end ************************/
805 
806 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
807 {
808 	/* First disable HWP notification interrupt as we don't process them */
809 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
810 
811 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
812 }
813 
814 static int atom_get_min_pstate(void)
815 {
816 	u64 value;
817 
818 	rdmsrl(ATOM_RATIOS, value);
819 	return (value >> 8) & 0x7F;
820 }
821 
822 static int atom_get_max_pstate(void)
823 {
824 	u64 value;
825 
826 	rdmsrl(ATOM_RATIOS, value);
827 	return (value >> 16) & 0x7F;
828 }
829 
830 static int atom_get_turbo_pstate(void)
831 {
832 	u64 value;
833 
834 	rdmsrl(ATOM_TURBO_RATIOS, value);
835 	return value & 0x7F;
836 }
837 
838 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
839 {
840 	u64 val;
841 	int32_t vid_fp;
842 	u32 vid;
843 
844 	val = (u64)pstate << 8;
845 	if (limits->no_turbo && !limits->turbo_disabled)
846 		val |= (u64)1 << 32;
847 
848 	vid_fp = cpudata->vid.min + mul_fp(
849 		int_tofp(pstate - cpudata->pstate.min_pstate),
850 		cpudata->vid.ratio);
851 
852 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
853 	vid = ceiling_fp(vid_fp);
854 
855 	if (pstate > cpudata->pstate.max_pstate)
856 		vid = cpudata->vid.turbo;
857 
858 	return val | vid;
859 }
860 
861 static int silvermont_get_scaling(void)
862 {
863 	u64 value;
864 	int i;
865 	/* Defined in Table 35-6 from SDM (Sept 2015) */
866 	static int silvermont_freq_table[] = {
867 		83300, 100000, 133300, 116700, 80000};
868 
869 	rdmsrl(MSR_FSB_FREQ, value);
870 	i = value & 0x7;
871 	WARN_ON(i > 4);
872 
873 	return silvermont_freq_table[i];
874 }
875 
876 static int airmont_get_scaling(void)
877 {
878 	u64 value;
879 	int i;
880 	/* Defined in Table 35-10 from SDM (Sept 2015) */
881 	static int airmont_freq_table[] = {
882 		83300, 100000, 133300, 116700, 80000,
883 		93300, 90000, 88900, 87500};
884 
885 	rdmsrl(MSR_FSB_FREQ, value);
886 	i = value & 0xF;
887 	WARN_ON(i > 8);
888 
889 	return airmont_freq_table[i];
890 }
891 
892 static void atom_get_vid(struct cpudata *cpudata)
893 {
894 	u64 value;
895 
896 	rdmsrl(ATOM_VIDS, value);
897 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
898 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
899 	cpudata->vid.ratio = div_fp(
900 		cpudata->vid.max - cpudata->vid.min,
901 		int_tofp(cpudata->pstate.max_pstate -
902 			cpudata->pstate.min_pstate));
903 
904 	rdmsrl(ATOM_TURBO_VIDS, value);
905 	cpudata->vid.turbo = value & 0x7f;
906 }
907 
908 static int core_get_min_pstate(void)
909 {
910 	u64 value;
911 
912 	rdmsrl(MSR_PLATFORM_INFO, value);
913 	return (value >> 40) & 0xFF;
914 }
915 
916 static int core_get_max_pstate_physical(void)
917 {
918 	u64 value;
919 
920 	rdmsrl(MSR_PLATFORM_INFO, value);
921 	return (value >> 8) & 0xFF;
922 }
923 
924 static int core_get_max_pstate(void)
925 {
926 	u64 tar;
927 	u64 plat_info;
928 	int max_pstate;
929 	int err;
930 
931 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
932 	max_pstate = (plat_info >> 8) & 0xFF;
933 
934 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
935 	if (!err) {
936 		/* Do some sanity checking for safety */
937 		if (plat_info & 0x600000000) {
938 			u64 tdp_ctrl;
939 			u64 tdp_ratio;
940 			int tdp_msr;
941 
942 			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
943 			if (err)
944 				goto skip_tar;
945 
946 			tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x3);
947 			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
948 			if (err)
949 				goto skip_tar;
950 
951 			/* For level 1 and 2, bits[23:16] contain the ratio */
952 			if (tdp_ctrl)
953 				tdp_ratio >>= 16;
954 
955 			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
956 			if (tdp_ratio - 1 == tar) {
957 				max_pstate = tar;
958 				pr_debug("max_pstate=TAC %x\n", max_pstate);
959 			} else {
960 				goto skip_tar;
961 			}
962 		}
963 	}
964 
965 skip_tar:
966 	return max_pstate;
967 }
968 
969 static int core_get_turbo_pstate(void)
970 {
971 	u64 value;
972 	int nont, ret;
973 
974 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
975 	nont = core_get_max_pstate();
976 	ret = (value) & 255;
977 	if (ret <= nont)
978 		ret = nont;
979 	return ret;
980 }
981 
982 static inline int core_get_scaling(void)
983 {
984 	return 100000;
985 }
986 
987 static u64 core_get_val(struct cpudata *cpudata, int pstate)
988 {
989 	u64 val;
990 
991 	val = (u64)pstate << 8;
992 	if (limits->no_turbo && !limits->turbo_disabled)
993 		val |= (u64)1 << 32;
994 
995 	return val;
996 }
997 
998 static int knl_get_turbo_pstate(void)
999 {
1000 	u64 value;
1001 	int nont, ret;
1002 
1003 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1004 	nont = core_get_max_pstate();
1005 	ret = (((value) >> 8) & 0xFF);
1006 	if (ret <= nont)
1007 		ret = nont;
1008 	return ret;
1009 }
1010 
1011 static struct cpu_defaults core_params = {
1012 	.pid_policy = {
1013 		.sample_rate_ms = 10,
1014 		.deadband = 0,
1015 		.setpoint = 97,
1016 		.p_gain_pct = 20,
1017 		.d_gain_pct = 0,
1018 		.i_gain_pct = 0,
1019 	},
1020 	.funcs = {
1021 		.get_max = core_get_max_pstate,
1022 		.get_max_physical = core_get_max_pstate_physical,
1023 		.get_min = core_get_min_pstate,
1024 		.get_turbo = core_get_turbo_pstate,
1025 		.get_scaling = core_get_scaling,
1026 		.get_val = core_get_val,
1027 		.get_target_pstate = get_target_pstate_use_performance,
1028 	},
1029 };
1030 
1031 static struct cpu_defaults silvermont_params = {
1032 	.pid_policy = {
1033 		.sample_rate_ms = 10,
1034 		.deadband = 0,
1035 		.setpoint = 60,
1036 		.p_gain_pct = 14,
1037 		.d_gain_pct = 0,
1038 		.i_gain_pct = 4,
1039 	},
1040 	.funcs = {
1041 		.get_max = atom_get_max_pstate,
1042 		.get_max_physical = atom_get_max_pstate,
1043 		.get_min = atom_get_min_pstate,
1044 		.get_turbo = atom_get_turbo_pstate,
1045 		.get_val = atom_get_val,
1046 		.get_scaling = silvermont_get_scaling,
1047 		.get_vid = atom_get_vid,
1048 		.get_target_pstate = get_target_pstate_use_cpu_load,
1049 	},
1050 };
1051 
1052 static struct cpu_defaults airmont_params = {
1053 	.pid_policy = {
1054 		.sample_rate_ms = 10,
1055 		.deadband = 0,
1056 		.setpoint = 60,
1057 		.p_gain_pct = 14,
1058 		.d_gain_pct = 0,
1059 		.i_gain_pct = 4,
1060 	},
1061 	.funcs = {
1062 		.get_max = atom_get_max_pstate,
1063 		.get_max_physical = atom_get_max_pstate,
1064 		.get_min = atom_get_min_pstate,
1065 		.get_turbo = atom_get_turbo_pstate,
1066 		.get_val = atom_get_val,
1067 		.get_scaling = airmont_get_scaling,
1068 		.get_vid = atom_get_vid,
1069 		.get_target_pstate = get_target_pstate_use_cpu_load,
1070 	},
1071 };
1072 
1073 static struct cpu_defaults knl_params = {
1074 	.pid_policy = {
1075 		.sample_rate_ms = 10,
1076 		.deadband = 0,
1077 		.setpoint = 97,
1078 		.p_gain_pct = 20,
1079 		.d_gain_pct = 0,
1080 		.i_gain_pct = 0,
1081 	},
1082 	.funcs = {
1083 		.get_max = core_get_max_pstate,
1084 		.get_max_physical = core_get_max_pstate_physical,
1085 		.get_min = core_get_min_pstate,
1086 		.get_turbo = knl_get_turbo_pstate,
1087 		.get_scaling = core_get_scaling,
1088 		.get_val = core_get_val,
1089 		.get_target_pstate = get_target_pstate_use_performance,
1090 	},
1091 };
1092 
1093 static struct cpu_defaults bxt_params = {
1094 	.pid_policy = {
1095 		.sample_rate_ms = 10,
1096 		.deadband = 0,
1097 		.setpoint = 60,
1098 		.p_gain_pct = 14,
1099 		.d_gain_pct = 0,
1100 		.i_gain_pct = 4,
1101 	},
1102 	.funcs = {
1103 		.get_max = core_get_max_pstate,
1104 		.get_max_physical = core_get_max_pstate_physical,
1105 		.get_min = core_get_min_pstate,
1106 		.get_turbo = core_get_turbo_pstate,
1107 		.get_scaling = core_get_scaling,
1108 		.get_val = core_get_val,
1109 		.get_target_pstate = get_target_pstate_use_cpu_load,
1110 	},
1111 };
1112 
1113 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1114 {
1115 	int max_perf = cpu->pstate.turbo_pstate;
1116 	int max_perf_adj;
1117 	int min_perf;
1118 
1119 	if (limits->no_turbo || limits->turbo_disabled)
1120 		max_perf = cpu->pstate.max_pstate;
1121 
1122 	/*
1123 	 * performance can be limited by user through sysfs, by cpufreq
1124 	 * policy, or by cpu specific default values determined through
1125 	 * experimentation.
1126 	 */
1127 	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1128 	*max = clamp_t(int, max_perf_adj,
1129 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1130 
1131 	min_perf = fp_toint(max_perf * limits->min_perf);
1132 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1133 }
1134 
1135 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1136 {
1137 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1138 	cpu->pstate.current_pstate = pstate;
1139 }
1140 
1141 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1142 {
1143 	int pstate = cpu->pstate.min_pstate;
1144 
1145 	intel_pstate_record_pstate(cpu, pstate);
1146 	/*
1147 	 * Generally, there is no guarantee that this code will always run on
1148 	 * the CPU being updated, so force the register update to run on the
1149 	 * right CPU.
1150 	 */
1151 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1152 		      pstate_funcs.get_val(cpu, pstate));
1153 }
1154 
1155 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1156 {
1157 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1158 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1159 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1160 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1161 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1162 
1163 	if (pstate_funcs.get_vid)
1164 		pstate_funcs.get_vid(cpu);
1165 
1166 	intel_pstate_set_min_pstate(cpu);
1167 }
1168 
1169 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1170 {
1171 	struct sample *sample = &cpu->sample;
1172 
1173 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1174 }
1175 
1176 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1177 {
1178 	u64 aperf, mperf;
1179 	unsigned long flags;
1180 	u64 tsc;
1181 
1182 	local_irq_save(flags);
1183 	rdmsrl(MSR_IA32_APERF, aperf);
1184 	rdmsrl(MSR_IA32_MPERF, mperf);
1185 	tsc = rdtsc();
1186 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1187 		local_irq_restore(flags);
1188 		return false;
1189 	}
1190 	local_irq_restore(flags);
1191 
1192 	cpu->last_sample_time = cpu->sample.time;
1193 	cpu->sample.time = time;
1194 	cpu->sample.aperf = aperf;
1195 	cpu->sample.mperf = mperf;
1196 	cpu->sample.tsc =  tsc;
1197 	cpu->sample.aperf -= cpu->prev_aperf;
1198 	cpu->sample.mperf -= cpu->prev_mperf;
1199 	cpu->sample.tsc -= cpu->prev_tsc;
1200 
1201 	cpu->prev_aperf = aperf;
1202 	cpu->prev_mperf = mperf;
1203 	cpu->prev_tsc = tsc;
1204 	/*
1205 	 * First time this function is invoked in a given cycle, all of the
1206 	 * previous sample data fields are equal to zero or stale and they must
1207 	 * be populated with meaningful numbers for things to work, so assume
1208 	 * that sample.time will always be reset before setting the utilization
1209 	 * update hook and make the caller skip the sample then.
1210 	 */
1211 	return !!cpu->last_sample_time;
1212 }
1213 
1214 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1215 {
1216 	return mul_ext_fp(cpu->sample.core_avg_perf,
1217 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1218 }
1219 
1220 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1221 {
1222 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1223 			  cpu->sample.core_avg_perf);
1224 }
1225 
1226 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1227 {
1228 	struct sample *sample = &cpu->sample;
1229 	u64 cummulative_iowait, delta_iowait_us;
1230 	u64 delta_iowait_mperf;
1231 	u64 mperf, now;
1232 	int32_t cpu_load;
1233 
1234 	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1235 
1236 	/*
1237 	 * Convert iowait time into number of IO cycles spent at max_freq.
1238 	 * IO is considered as busy only for the cpu_load algorithm. For
1239 	 * performance this is not needed since we always try to reach the
1240 	 * maximum P-State, so we are already boosting the IOs.
1241 	 */
1242 	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1243 	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1244 		cpu->pstate.max_pstate, MSEC_PER_SEC);
1245 
1246 	mperf = cpu->sample.mperf + delta_iowait_mperf;
1247 	cpu->prev_cummulative_iowait = cummulative_iowait;
1248 
1249 	/*
1250 	 * The load can be estimated as the ratio of the mperf counter
1251 	 * running at a constant frequency during active periods
1252 	 * (C0) and the time stamp counter running at the same frequency
1253 	 * also during C-states.
1254 	 */
1255 	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1256 	cpu->sample.busy_scaled = cpu_load;
1257 
1258 	return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1259 }
1260 
1261 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1262 {
1263 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1264 	u64 duration_ns;
1265 
1266 	/*
1267 	 * perf_scaled is the average performance during the last sampling
1268 	 * period scaled by the ratio of the maximum P-state to the P-state
1269 	 * requested last time (in percent).  That measures the system's
1270 	 * response to the previous P-state selection.
1271 	 */
1272 	max_pstate = cpu->pstate.max_pstate_physical;
1273 	current_pstate = cpu->pstate.current_pstate;
1274 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1275 			       div_fp(100 * max_pstate, current_pstate));
1276 
1277 	/*
1278 	 * Since our utilization update callback will not run unless we are
1279 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1280 	 * than our sample interval.  If it is, then we were idle for a long
1281 	 * enough period of time to adjust our performance metric.
1282 	 */
1283 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1284 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1285 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1286 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1287 	} else {
1288 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1289 		if (sample_ratio < int_tofp(1))
1290 			perf_scaled = 0;
1291 	}
1292 
1293 	cpu->sample.busy_scaled = perf_scaled;
1294 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1295 }
1296 
1297 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1298 {
1299 	int max_perf, min_perf;
1300 
1301 	update_turbo_state();
1302 
1303 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1304 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1305 	if (pstate == cpu->pstate.current_pstate)
1306 		return;
1307 
1308 	intel_pstate_record_pstate(cpu, pstate);
1309 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1310 }
1311 
1312 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1313 {
1314 	int from, target_pstate;
1315 	struct sample *sample;
1316 
1317 	from = cpu->pstate.current_pstate;
1318 
1319 	target_pstate = pstate_funcs.get_target_pstate(cpu);
1320 
1321 	intel_pstate_update_pstate(cpu, target_pstate);
1322 
1323 	sample = &cpu->sample;
1324 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1325 		fp_toint(sample->busy_scaled),
1326 		from,
1327 		cpu->pstate.current_pstate,
1328 		sample->mperf,
1329 		sample->aperf,
1330 		sample->tsc,
1331 		get_avg_frequency(cpu));
1332 }
1333 
1334 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1335 				     unsigned long util, unsigned long max)
1336 {
1337 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1338 	u64 delta_ns = time - cpu->sample.time;
1339 
1340 	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1341 		bool sample_taken = intel_pstate_sample(cpu, time);
1342 
1343 		if (sample_taken) {
1344 			intel_pstate_calc_avg_perf(cpu);
1345 			if (!hwp_active)
1346 				intel_pstate_adjust_busy_pstate(cpu);
1347 		}
1348 	}
1349 }
1350 
1351 #define ICPU(model, policy) \
1352 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1353 			(unsigned long)&policy }
1354 
1355 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1356 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
1357 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
1358 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
1359 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
1360 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
1361 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
1362 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
1363 	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
1364 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
1365 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
1366 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
1367 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
1368 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
1369 	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
1370 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
1371 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
1372 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1373 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1374 	{}
1375 };
1376 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1377 
1378 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1379 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1380 	{}
1381 };
1382 
1383 static int intel_pstate_init_cpu(unsigned int cpunum)
1384 {
1385 	struct cpudata *cpu;
1386 
1387 	if (!all_cpu_data[cpunum])
1388 		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1389 					       GFP_KERNEL);
1390 	if (!all_cpu_data[cpunum])
1391 		return -ENOMEM;
1392 
1393 	cpu = all_cpu_data[cpunum];
1394 
1395 	cpu->cpu = cpunum;
1396 
1397 	if (hwp_active) {
1398 		intel_pstate_hwp_enable(cpu);
1399 		pid_params.sample_rate_ms = 50;
1400 		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1401 	}
1402 
1403 	intel_pstate_get_cpu_pstates(cpu);
1404 
1405 	intel_pstate_busy_pid_reset(cpu);
1406 
1407 	pr_debug("controlling: cpu %d\n", cpunum);
1408 
1409 	return 0;
1410 }
1411 
1412 static unsigned int intel_pstate_get(unsigned int cpu_num)
1413 {
1414 	struct cpudata *cpu = all_cpu_data[cpu_num];
1415 
1416 	return cpu ? get_avg_frequency(cpu) : 0;
1417 }
1418 
1419 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1420 {
1421 	struct cpudata *cpu = all_cpu_data[cpu_num];
1422 
1423 	if (cpu->update_util_set)
1424 		return;
1425 
1426 	/* Prevent intel_pstate_update_util() from using stale data. */
1427 	cpu->sample.time = 0;
1428 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1429 				     intel_pstate_update_util);
1430 	cpu->update_util_set = true;
1431 }
1432 
1433 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1434 {
1435 	struct cpudata *cpu_data = all_cpu_data[cpu];
1436 
1437 	if (!cpu_data->update_util_set)
1438 		return;
1439 
1440 	cpufreq_remove_update_util_hook(cpu);
1441 	cpu_data->update_util_set = false;
1442 	synchronize_sched();
1443 }
1444 
1445 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1446 {
1447 	limits->no_turbo = 0;
1448 	limits->turbo_disabled = 0;
1449 	limits->max_perf_pct = 100;
1450 	limits->max_perf = int_tofp(1);
1451 	limits->min_perf_pct = 100;
1452 	limits->min_perf = int_tofp(1);
1453 	limits->max_policy_pct = 100;
1454 	limits->max_sysfs_pct = 100;
1455 	limits->min_policy_pct = 0;
1456 	limits->min_sysfs_pct = 0;
1457 }
1458 
1459 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1460 {
1461 	struct cpudata *cpu;
1462 
1463 	if (!policy->cpuinfo.max_freq)
1464 		return -ENODEV;
1465 
1466 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1467 		 policy->cpuinfo.max_freq, policy->max);
1468 
1469 	cpu = all_cpu_data[0];
1470 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1471 	    policy->max < policy->cpuinfo.max_freq &&
1472 	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1473 		pr_debug("policy->max > max non turbo frequency\n");
1474 		policy->max = policy->cpuinfo.max_freq;
1475 	}
1476 
1477 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1478 		limits = &performance_limits;
1479 		if (policy->max >= policy->cpuinfo.max_freq) {
1480 			pr_debug("set performance\n");
1481 			intel_pstate_set_performance_limits(limits);
1482 			goto out;
1483 		}
1484 	} else {
1485 		pr_debug("set powersave\n");
1486 		limits = &powersave_limits;
1487 	}
1488 
1489 	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1490 	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1491 	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1492 					      policy->cpuinfo.max_freq);
1493 	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1494 
1495 	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1496 	limits->min_perf_pct = max(limits->min_policy_pct,
1497 				   limits->min_sysfs_pct);
1498 	limits->min_perf_pct = min(limits->max_policy_pct,
1499 				   limits->min_perf_pct);
1500 	limits->max_perf_pct = min(limits->max_policy_pct,
1501 				   limits->max_sysfs_pct);
1502 	limits->max_perf_pct = max(limits->min_policy_pct,
1503 				   limits->max_perf_pct);
1504 
1505 	/* Make sure min_perf_pct <= max_perf_pct */
1506 	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1507 
1508 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
1509 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1510 	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1511 
1512  out:
1513 	intel_pstate_set_update_util_hook(policy->cpu);
1514 
1515 	intel_pstate_hwp_set_policy(policy);
1516 
1517 	return 0;
1518 }
1519 
1520 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1521 {
1522 	cpufreq_verify_within_cpu_limits(policy);
1523 
1524 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1525 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1526 		return -EINVAL;
1527 
1528 	return 0;
1529 }
1530 
1531 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1532 {
1533 	int cpu_num = policy->cpu;
1534 	struct cpudata *cpu = all_cpu_data[cpu_num];
1535 
1536 	pr_debug("CPU %d exiting\n", cpu_num);
1537 
1538 	intel_pstate_clear_update_util_hook(cpu_num);
1539 
1540 	if (hwp_active)
1541 		return;
1542 
1543 	intel_pstate_set_min_pstate(cpu);
1544 }
1545 
1546 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1547 {
1548 	struct cpudata *cpu;
1549 	int rc;
1550 
1551 	rc = intel_pstate_init_cpu(policy->cpu);
1552 	if (rc)
1553 		return rc;
1554 
1555 	cpu = all_cpu_data[policy->cpu];
1556 
1557 	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1558 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1559 	else
1560 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1561 
1562 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1563 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1564 
1565 	/* cpuinfo and default policy values */
1566 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1567 	update_turbo_state();
1568 	policy->cpuinfo.max_freq = limits->turbo_disabled ?
1569 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1570 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
1571 
1572 	intel_pstate_init_acpi_perf_limits(policy);
1573 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1574 	cpumask_set_cpu(policy->cpu, policy->cpus);
1575 
1576 	return 0;
1577 }
1578 
1579 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1580 {
1581 	intel_pstate_exit_perf_limits(policy);
1582 
1583 	return 0;
1584 }
1585 
1586 static struct cpufreq_driver intel_pstate_driver = {
1587 	.flags		= CPUFREQ_CONST_LOOPS,
1588 	.verify		= intel_pstate_verify_policy,
1589 	.setpolicy	= intel_pstate_set_policy,
1590 	.resume		= intel_pstate_hwp_set_policy,
1591 	.get		= intel_pstate_get,
1592 	.init		= intel_pstate_cpu_init,
1593 	.exit		= intel_pstate_cpu_exit,
1594 	.stop_cpu	= intel_pstate_stop_cpu,
1595 	.name		= "intel_pstate",
1596 };
1597 
1598 static int no_load __initdata;
1599 static int no_hwp __initdata;
1600 static int hwp_only __initdata;
1601 static unsigned int force_load __initdata;
1602 
1603 static int __init intel_pstate_msrs_not_valid(void)
1604 {
1605 	if (!pstate_funcs.get_max() ||
1606 	    !pstate_funcs.get_min() ||
1607 	    !pstate_funcs.get_turbo())
1608 		return -ENODEV;
1609 
1610 	return 0;
1611 }
1612 
1613 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
1614 {
1615 	pid_params.sample_rate_ms = policy->sample_rate_ms;
1616 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1617 	pid_params.p_gain_pct = policy->p_gain_pct;
1618 	pid_params.i_gain_pct = policy->i_gain_pct;
1619 	pid_params.d_gain_pct = policy->d_gain_pct;
1620 	pid_params.deadband = policy->deadband;
1621 	pid_params.setpoint = policy->setpoint;
1622 }
1623 
1624 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
1625 {
1626 	pstate_funcs.get_max   = funcs->get_max;
1627 	pstate_funcs.get_max_physical = funcs->get_max_physical;
1628 	pstate_funcs.get_min   = funcs->get_min;
1629 	pstate_funcs.get_turbo = funcs->get_turbo;
1630 	pstate_funcs.get_scaling = funcs->get_scaling;
1631 	pstate_funcs.get_val   = funcs->get_val;
1632 	pstate_funcs.get_vid   = funcs->get_vid;
1633 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1634 
1635 }
1636 
1637 #ifdef CONFIG_ACPI
1638 
1639 static bool __init intel_pstate_no_acpi_pss(void)
1640 {
1641 	int i;
1642 
1643 	for_each_possible_cpu(i) {
1644 		acpi_status status;
1645 		union acpi_object *pss;
1646 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1647 		struct acpi_processor *pr = per_cpu(processors, i);
1648 
1649 		if (!pr)
1650 			continue;
1651 
1652 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1653 		if (ACPI_FAILURE(status))
1654 			continue;
1655 
1656 		pss = buffer.pointer;
1657 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1658 			kfree(pss);
1659 			return false;
1660 		}
1661 
1662 		kfree(pss);
1663 	}
1664 
1665 	return true;
1666 }
1667 
1668 static bool __init intel_pstate_has_acpi_ppc(void)
1669 {
1670 	int i;
1671 
1672 	for_each_possible_cpu(i) {
1673 		struct acpi_processor *pr = per_cpu(processors, i);
1674 
1675 		if (!pr)
1676 			continue;
1677 		if (acpi_has_method(pr->handle, "_PPC"))
1678 			return true;
1679 	}
1680 	return false;
1681 }
1682 
1683 enum {
1684 	PSS,
1685 	PPC,
1686 };
1687 
1688 struct hw_vendor_info {
1689 	u16  valid;
1690 	char oem_id[ACPI_OEM_ID_SIZE];
1691 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1692 	int  oem_pwr_table;
1693 };
1694 
1695 /* Hardware vendor-specific info that has its own power management modes */
1696 static struct hw_vendor_info vendor_info[] __initdata = {
1697 	{1, "HP    ", "ProLiant", PSS},
1698 	{1, "ORACLE", "X4-2    ", PPC},
1699 	{1, "ORACLE", "X4-2L   ", PPC},
1700 	{1, "ORACLE", "X4-2B   ", PPC},
1701 	{1, "ORACLE", "X3-2    ", PPC},
1702 	{1, "ORACLE", "X3-2L   ", PPC},
1703 	{1, "ORACLE", "X3-2B   ", PPC},
1704 	{1, "ORACLE", "X4470M2 ", PPC},
1705 	{1, "ORACLE", "X4270M3 ", PPC},
1706 	{1, "ORACLE", "X4270M2 ", PPC},
1707 	{1, "ORACLE", "X4170M2 ", PPC},
1708 	{1, "ORACLE", "X4170 M3", PPC},
1709 	{1, "ORACLE", "X4275 M3", PPC},
1710 	{1, "ORACLE", "X6-2    ", PPC},
1711 	{1, "ORACLE", "Sudbury ", PPC},
1712 	{0, "", ""},
1713 };
1714 
1715 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
1716 {
1717 	struct acpi_table_header hdr;
1718 	struct hw_vendor_info *v_info;
1719 	const struct x86_cpu_id *id;
1720 	u64 misc_pwr;
1721 
1722 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1723 	if (id) {
1724 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1725 		if ( misc_pwr & (1 << 8))
1726 			return true;
1727 	}
1728 
1729 	if (acpi_disabled ||
1730 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1731 		return false;
1732 
1733 	for (v_info = vendor_info; v_info->valid; v_info++) {
1734 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1735 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1736 						ACPI_OEM_TABLE_ID_SIZE))
1737 			switch (v_info->oem_pwr_table) {
1738 			case PSS:
1739 				return intel_pstate_no_acpi_pss();
1740 			case PPC:
1741 				return intel_pstate_has_acpi_ppc() &&
1742 					(!force_load);
1743 			}
1744 	}
1745 
1746 	return false;
1747 }
1748 #else /* CONFIG_ACPI not enabled */
1749 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1750 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1751 #endif /* CONFIG_ACPI */
1752 
1753 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1754 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1755 	{}
1756 };
1757 
1758 static int __init intel_pstate_init(void)
1759 {
1760 	int cpu, rc = 0;
1761 	const struct x86_cpu_id *id;
1762 	struct cpu_defaults *cpu_def;
1763 
1764 	if (no_load)
1765 		return -ENODEV;
1766 
1767 	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1768 		copy_cpu_funcs(&core_params.funcs);
1769 		hwp_active++;
1770 		goto hwp_cpu_matched;
1771 	}
1772 
1773 	id = x86_match_cpu(intel_pstate_cpu_ids);
1774 	if (!id)
1775 		return -ENODEV;
1776 
1777 	cpu_def = (struct cpu_defaults *)id->driver_data;
1778 
1779 	copy_pid_params(&cpu_def->pid_policy);
1780 	copy_cpu_funcs(&cpu_def->funcs);
1781 
1782 	if (intel_pstate_msrs_not_valid())
1783 		return -ENODEV;
1784 
1785 hwp_cpu_matched:
1786 	/*
1787 	 * The Intel pstate driver will be ignored if the platform
1788 	 * firmware has its own power management modes.
1789 	 */
1790 	if (intel_pstate_platform_pwr_mgmt_exists())
1791 		return -ENODEV;
1792 
1793 	pr_info("Intel P-state driver initializing\n");
1794 
1795 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1796 	if (!all_cpu_data)
1797 		return -ENOMEM;
1798 
1799 	if (!hwp_active && hwp_only)
1800 		goto out;
1801 
1802 	rc = cpufreq_register_driver(&intel_pstate_driver);
1803 	if (rc)
1804 		goto out;
1805 
1806 	intel_pstate_debug_expose_params();
1807 	intel_pstate_sysfs_expose_params();
1808 
1809 	if (hwp_active)
1810 		pr_info("HWP enabled\n");
1811 
1812 	return rc;
1813 out:
1814 	get_online_cpus();
1815 	for_each_online_cpu(cpu) {
1816 		if (all_cpu_data[cpu]) {
1817 			intel_pstate_clear_update_util_hook(cpu);
1818 			kfree(all_cpu_data[cpu]);
1819 		}
1820 	}
1821 
1822 	put_online_cpus();
1823 	vfree(all_cpu_data);
1824 	return -ENODEV;
1825 }
1826 device_initcall(intel_pstate_init);
1827 
1828 static int __init intel_pstate_setup(char *str)
1829 {
1830 	if (!str)
1831 		return -EINVAL;
1832 
1833 	if (!strcmp(str, "disable"))
1834 		no_load = 1;
1835 	if (!strcmp(str, "no_hwp")) {
1836 		pr_info("HWP disabled\n");
1837 		no_hwp = 1;
1838 	}
1839 	if (!strcmp(str, "force"))
1840 		force_load = 1;
1841 	if (!strcmp(str, "hwp_only"))
1842 		hwp_only = 1;
1843 
1844 #ifdef CONFIG_ACPI
1845 	if (!strcmp(str, "support_acpi_ppc"))
1846 		acpi_ppc = true;
1847 #endif
1848 
1849 	return 0;
1850 }
1851 early_param("intel_pstate", intel_pstate_setup);
1852 
1853 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1854 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1855 MODULE_LICENSE("GPL");
1856