1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
41 
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46 
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50 
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55 
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60 
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 	return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65 
66 static inline int ceiling_fp(int32_t x)
67 {
68 	int mask, ret;
69 
70 	ret = fp_toint(x);
71 	mask = (1 << FRAC_BITS) - 1;
72 	if (x & mask)
73 		ret += 1;
74 	return ret;
75 }
76 
77 static inline u64 mul_ext_fp(u64 x, u64 y)
78 {
79 	return (x * y) >> EXT_FRAC_BITS;
80 }
81 
82 static inline u64 div_ext_fp(u64 x, u64 y)
83 {
84 	return div64_u64(x << EXT_FRAC_BITS, y);
85 }
86 
87 static inline int32_t percent_ext_fp(int percent)
88 {
89 	return div_ext_fp(percent, 100);
90 }
91 
92 /**
93  * struct sample -	Store performance sample
94  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
95  *			performance during last sample period
96  * @busy_scaled:	Scaled busy value which is used to calculate next
97  *			P state. This can be different than core_avg_perf
98  *			to account for cpu idle period
99  * @aperf:		Difference of actual performance frequency clock count
100  *			read from APERF MSR between last and current sample
101  * @mperf:		Difference of maximum performance frequency clock count
102  *			read from MPERF MSR between last and current sample
103  * @tsc:		Difference of time stamp counter between last and
104  *			current sample
105  * @time:		Current time from scheduler
106  *
107  * This structure is used in the cpudata structure to store performance sample
108  * data for choosing next P State.
109  */
110 struct sample {
111 	int32_t core_avg_perf;
112 	int32_t busy_scaled;
113 	u64 aperf;
114 	u64 mperf;
115 	u64 tsc;
116 	u64 time;
117 };
118 
119 /**
120  * struct pstate_data - Store P state data
121  * @current_pstate:	Current requested P state
122  * @min_pstate:		Min P state possible for this platform
123  * @max_pstate:		Max P state possible for this platform
124  * @max_pstate_physical:This is physical Max P state for a processor
125  *			This can be higher than the max_pstate which can
126  *			be limited by platform thermal design power limits
127  * @scaling:		Scaling factor to  convert frequency to cpufreq
128  *			frequency units
129  * @turbo_pstate:	Max Turbo P state possible for this platform
130  * @max_freq:		@max_pstate frequency in cpufreq units
131  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
132  *
133  * Stores the per cpu model P state limits and current P state.
134  */
135 struct pstate_data {
136 	int	current_pstate;
137 	int	min_pstate;
138 	int	max_pstate;
139 	int	max_pstate_physical;
140 	int	scaling;
141 	int	turbo_pstate;
142 	unsigned int max_freq;
143 	unsigned int turbo_freq;
144 };
145 
146 /**
147  * struct vid_data -	Stores voltage information data
148  * @min:		VID data for this platform corresponding to
149  *			the lowest P state
150  * @max:		VID data corresponding to the highest P State.
151  * @turbo:		VID data for turbo P state
152  * @ratio:		Ratio of (vid max - vid min) /
153  *			(max P state - Min P State)
154  *
155  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156  * This data is used in Atom platforms, where in addition to target P state,
157  * the voltage data needs to be specified to select next P State.
158  */
159 struct vid_data {
160 	int min;
161 	int max;
162 	int turbo;
163 	int32_t ratio;
164 };
165 
166 /**
167  * struct _pid -	Stores PID data
168  * @setpoint:		Target set point for busyness or performance
169  * @integral:		Storage for accumulated error values
170  * @p_gain:		PID proportional gain
171  * @i_gain:		PID integral gain
172  * @d_gain:		PID derivative gain
173  * @deadband:		PID deadband
174  * @last_err:		Last error storage for integral part of PID calculation
175  *
176  * Stores PID coefficients and last error for PID controller.
177  */
178 struct _pid {
179 	int setpoint;
180 	int32_t integral;
181 	int32_t p_gain;
182 	int32_t i_gain;
183 	int32_t d_gain;
184 	int deadband;
185 	int32_t last_err;
186 };
187 
188 /**
189  * struct perf_limits - Store user and policy limits
190  * @no_turbo:		User requested turbo state from intel_pstate sysfs
191  * @turbo_disabled:	Platform turbo status either from msr
192  *			MSR_IA32_MISC_ENABLE or when maximum available pstate
193  *			matches the maximum turbo pstate
194  * @max_perf_pct:	Effective maximum performance limit in percentage, this
195  *			is minimum of either limits enforced by cpufreq policy
196  *			or limits from user set limits via intel_pstate sysfs
197  * @min_perf_pct:	Effective minimum performance limit in percentage, this
198  *			is maximum of either limits enforced by cpufreq policy
199  *			or limits from user set limits via intel_pstate sysfs
200  * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
201  *			This value is used to limit max pstate
202  * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
203  *			This value is used to limit min pstate
204  * @max_policy_pct:	The maximum performance in percentage enforced by
205  *			cpufreq setpolicy interface
206  * @max_sysfs_pct:	The maximum performance in percentage enforced by
207  *			intel pstate sysfs interface, unused when per cpu
208  *			controls are enforced
209  * @min_policy_pct:	The minimum performance in percentage enforced by
210  *			cpufreq setpolicy interface
211  * @min_sysfs_pct:	The minimum performance in percentage enforced by
212  *			intel pstate sysfs interface, unused when per cpu
213  *			controls are enforced
214  *
215  * Storage for user and policy defined limits.
216  */
217 struct perf_limits {
218 	int no_turbo;
219 	int turbo_disabled;
220 	int max_perf_pct;
221 	int min_perf_pct;
222 	int32_t max_perf;
223 	int32_t min_perf;
224 	int max_policy_pct;
225 	int max_sysfs_pct;
226 	int min_policy_pct;
227 	int min_sysfs_pct;
228 };
229 
230 /**
231  * struct cpudata -	Per CPU instance data storage
232  * @cpu:		CPU number for this instance data
233  * @policy:		CPUFreq policy value
234  * @update_util:	CPUFreq utility callback information
235  * @update_util_set:	CPUFreq utility callback is set
236  * @iowait_boost:	iowait-related boost fraction
237  * @last_update:	Time of the last update.
238  * @pstate:		Stores P state limits for this CPU
239  * @vid:		Stores VID limits for this CPU
240  * @pid:		Stores PID parameters for this CPU
241  * @last_sample_time:	Last Sample time
242  * @prev_aperf:		Last APERF value read from APERF MSR
243  * @prev_mperf:		Last MPERF value read from MPERF MSR
244  * @prev_tsc:		Last timestamp counter (TSC) value
245  * @prev_cummulative_iowait: IO Wait time difference from last and
246  *			current sample
247  * @sample:		Storage for storing last Sample data
248  * @perf_limits:	Pointer to perf_limit unique to this CPU
249  *			Not all field in the structure are applicable
250  *			when per cpu controls are enforced
251  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
252  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
253  * @epp_powersave:	Last saved HWP energy performance preference
254  *			(EPP) or energy performance bias (EPB),
255  *			when policy switched to performance
256  * @epp_policy:		Last saved policy used to set EPP/EPB
257  * @epp_default:	Power on default HWP energy performance
258  *			preference/bias
259  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
260  *			operation
261  *
262  * This structure stores per CPU instance data for all CPUs.
263  */
264 struct cpudata {
265 	int cpu;
266 
267 	unsigned int policy;
268 	struct update_util_data update_util;
269 	bool   update_util_set;
270 
271 	struct pstate_data pstate;
272 	struct vid_data vid;
273 	struct _pid pid;
274 
275 	u64	last_update;
276 	u64	last_sample_time;
277 	u64	prev_aperf;
278 	u64	prev_mperf;
279 	u64	prev_tsc;
280 	u64	prev_cummulative_iowait;
281 	struct sample sample;
282 	struct perf_limits *perf_limits;
283 #ifdef CONFIG_ACPI
284 	struct acpi_processor_performance acpi_perf_data;
285 	bool valid_pss_table;
286 #endif
287 	unsigned int iowait_boost;
288 	s16 epp_powersave;
289 	s16 epp_policy;
290 	s16 epp_default;
291 	s16 epp_saved;
292 };
293 
294 static struct cpudata **all_cpu_data;
295 
296 /**
297  * struct pstate_adjust_policy - Stores static PID configuration data
298  * @sample_rate_ms:	PID calculation sample rate in ms
299  * @sample_rate_ns:	Sample rate calculation in ns
300  * @deadband:		PID deadband
301  * @setpoint:		PID Setpoint
302  * @p_gain_pct:		PID proportional gain
303  * @i_gain_pct:		PID integral gain
304  * @d_gain_pct:		PID derivative gain
305  *
306  * Stores per CPU model static PID configuration data.
307  */
308 struct pstate_adjust_policy {
309 	int sample_rate_ms;
310 	s64 sample_rate_ns;
311 	int deadband;
312 	int setpoint;
313 	int p_gain_pct;
314 	int d_gain_pct;
315 	int i_gain_pct;
316 };
317 
318 /**
319  * struct pstate_funcs - Per CPU model specific callbacks
320  * @get_max:		Callback to get maximum non turbo effective P state
321  * @get_max_physical:	Callback to get maximum non turbo physical P state
322  * @get_min:		Callback to get minimum P state
323  * @get_turbo:		Callback to get turbo P state
324  * @get_scaling:	Callback to get frequency scaling factor
325  * @get_val:		Callback to convert P state to actual MSR write value
326  * @get_vid:		Callback to get VID data for Atom platforms
327  * @get_target_pstate:	Callback to a function to calculate next P state to use
328  *
329  * Core and Atom CPU models have different way to get P State limits. This
330  * structure is used to store those callbacks.
331  */
332 struct pstate_funcs {
333 	int (*get_max)(void);
334 	int (*get_max_physical)(void);
335 	int (*get_min)(void);
336 	int (*get_turbo)(void);
337 	int (*get_scaling)(void);
338 	u64 (*get_val)(struct cpudata*, int pstate);
339 	void (*get_vid)(struct cpudata *);
340 	int32_t (*get_target_pstate)(struct cpudata *);
341 };
342 
343 /**
344  * struct cpu_defaults- Per CPU model default config data
345  * @pid_policy:	PID config data
346  * @funcs:		Callback function data
347  */
348 struct cpu_defaults {
349 	struct pstate_adjust_policy pid_policy;
350 	struct pstate_funcs funcs;
351 };
352 
353 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
354 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
355 
356 static struct pstate_adjust_policy pid_params __read_mostly;
357 static struct pstate_funcs pstate_funcs __read_mostly;
358 static int hwp_active __read_mostly;
359 static bool per_cpu_limits __read_mostly;
360 
361 static bool driver_registered __read_mostly;
362 
363 #ifdef CONFIG_ACPI
364 static bool acpi_ppc;
365 #endif
366 
367 static struct perf_limits global;
368 
369 static void intel_pstate_init_limits(struct perf_limits *limits)
370 {
371 	memset(limits, 0, sizeof(*limits));
372 	limits->max_perf_pct = 100;
373 	limits->max_perf = int_ext_tofp(1);
374 	limits->max_policy_pct = 100;
375 	limits->max_sysfs_pct = 100;
376 }
377 
378 static DEFINE_MUTEX(intel_pstate_driver_lock);
379 static DEFINE_MUTEX(intel_pstate_limits_lock);
380 
381 #ifdef CONFIG_ACPI
382 
383 static bool intel_pstate_get_ppc_enable_status(void)
384 {
385 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
386 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
387 		return true;
388 
389 	return acpi_ppc;
390 }
391 
392 #ifdef CONFIG_ACPI_CPPC_LIB
393 
394 /* The work item is needed to avoid CPU hotplug locking issues */
395 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
396 {
397 	sched_set_itmt_support();
398 }
399 
400 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
401 
402 static void intel_pstate_set_itmt_prio(int cpu)
403 {
404 	struct cppc_perf_caps cppc_perf;
405 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
406 	int ret;
407 
408 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
409 	if (ret)
410 		return;
411 
412 	/*
413 	 * The priorities can be set regardless of whether or not
414 	 * sched_set_itmt_support(true) has been called and it is valid to
415 	 * update them at any time after it has been called.
416 	 */
417 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
418 
419 	if (max_highest_perf <= min_highest_perf) {
420 		if (cppc_perf.highest_perf > max_highest_perf)
421 			max_highest_perf = cppc_perf.highest_perf;
422 
423 		if (cppc_perf.highest_perf < min_highest_perf)
424 			min_highest_perf = cppc_perf.highest_perf;
425 
426 		if (max_highest_perf > min_highest_perf) {
427 			/*
428 			 * This code can be run during CPU online under the
429 			 * CPU hotplug locks, so sched_set_itmt_support()
430 			 * cannot be called from here.  Queue up a work item
431 			 * to invoke it.
432 			 */
433 			schedule_work(&sched_itmt_work);
434 		}
435 	}
436 }
437 #else
438 static void intel_pstate_set_itmt_prio(int cpu)
439 {
440 }
441 #endif
442 
443 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
444 {
445 	struct cpudata *cpu;
446 	int ret;
447 	int i;
448 
449 	if (hwp_active) {
450 		intel_pstate_set_itmt_prio(policy->cpu);
451 		return;
452 	}
453 
454 	if (!intel_pstate_get_ppc_enable_status())
455 		return;
456 
457 	cpu = all_cpu_data[policy->cpu];
458 
459 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
460 						  policy->cpu);
461 	if (ret)
462 		return;
463 
464 	/*
465 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
466 	 * guarantee that the states returned by it map to the states in our
467 	 * list directly.
468 	 */
469 	if (cpu->acpi_perf_data.control_register.space_id !=
470 						ACPI_ADR_SPACE_FIXED_HARDWARE)
471 		goto err;
472 
473 	/*
474 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
475 	 * usual without taking _PSS into account
476 	 */
477 	if (cpu->acpi_perf_data.state_count < 2)
478 		goto err;
479 
480 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
481 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
482 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
483 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
484 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
485 			 (u32) cpu->acpi_perf_data.states[i].power,
486 			 (u32) cpu->acpi_perf_data.states[i].control);
487 	}
488 
489 	/*
490 	 * The _PSS table doesn't contain whole turbo frequency range.
491 	 * This just contains +1 MHZ above the max non turbo frequency,
492 	 * with control value corresponding to max turbo ratio. But
493 	 * when cpufreq set policy is called, it will call with this
494 	 * max frequency, which will cause a reduced performance as
495 	 * this driver uses real max turbo frequency as the max
496 	 * frequency. So correct this frequency in _PSS table to
497 	 * correct max turbo frequency based on the turbo state.
498 	 * Also need to convert to MHz as _PSS freq is in MHz.
499 	 */
500 	if (!global.turbo_disabled)
501 		cpu->acpi_perf_data.states[0].core_frequency =
502 					policy->cpuinfo.max_freq / 1000;
503 	cpu->valid_pss_table = true;
504 	pr_debug("_PPC limits will be enforced\n");
505 
506 	return;
507 
508  err:
509 	cpu->valid_pss_table = false;
510 	acpi_processor_unregister_performance(policy->cpu);
511 }
512 
513 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
514 {
515 	struct cpudata *cpu;
516 
517 	cpu = all_cpu_data[policy->cpu];
518 	if (!cpu->valid_pss_table)
519 		return;
520 
521 	acpi_processor_unregister_performance(policy->cpu);
522 }
523 #else
524 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
525 {
526 }
527 
528 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
529 {
530 }
531 #endif
532 
533 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
534 			     int deadband, int integral) {
535 	pid->setpoint = int_tofp(setpoint);
536 	pid->deadband  = int_tofp(deadband);
537 	pid->integral  = int_tofp(integral);
538 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
539 }
540 
541 static inline void pid_p_gain_set(struct _pid *pid, int percent)
542 {
543 	pid->p_gain = div_fp(percent, 100);
544 }
545 
546 static inline void pid_i_gain_set(struct _pid *pid, int percent)
547 {
548 	pid->i_gain = div_fp(percent, 100);
549 }
550 
551 static inline void pid_d_gain_set(struct _pid *pid, int percent)
552 {
553 	pid->d_gain = div_fp(percent, 100);
554 }
555 
556 static signed int pid_calc(struct _pid *pid, int32_t busy)
557 {
558 	signed int result;
559 	int32_t pterm, dterm, fp_error;
560 	int32_t integral_limit;
561 
562 	fp_error = pid->setpoint - busy;
563 
564 	if (abs(fp_error) <= pid->deadband)
565 		return 0;
566 
567 	pterm = mul_fp(pid->p_gain, fp_error);
568 
569 	pid->integral += fp_error;
570 
571 	/*
572 	 * We limit the integral here so that it will never
573 	 * get higher than 30.  This prevents it from becoming
574 	 * too large an input over long periods of time and allows
575 	 * it to get factored out sooner.
576 	 *
577 	 * The value of 30 was chosen through experimentation.
578 	 */
579 	integral_limit = int_tofp(30);
580 	if (pid->integral > integral_limit)
581 		pid->integral = integral_limit;
582 	if (pid->integral < -integral_limit)
583 		pid->integral = -integral_limit;
584 
585 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
586 	pid->last_err = fp_error;
587 
588 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
589 	result = result + (1 << (FRAC_BITS-1));
590 	return (signed int)fp_toint(result);
591 }
592 
593 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
594 {
595 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
596 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
597 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
598 
599 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
600 }
601 
602 static inline void intel_pstate_reset_all_pid(void)
603 {
604 	unsigned int cpu;
605 
606 	for_each_online_cpu(cpu) {
607 		if (all_cpu_data[cpu])
608 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
609 	}
610 }
611 
612 static inline void update_turbo_state(void)
613 {
614 	u64 misc_en;
615 	struct cpudata *cpu;
616 
617 	cpu = all_cpu_data[0];
618 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
619 	global.turbo_disabled =
620 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
621 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
622 }
623 
624 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
625 {
626 	u64 epb;
627 	int ret;
628 
629 	if (!static_cpu_has(X86_FEATURE_EPB))
630 		return -ENXIO;
631 
632 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
633 	if (ret)
634 		return (s16)ret;
635 
636 	return (s16)(epb & 0x0f);
637 }
638 
639 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
640 {
641 	s16 epp;
642 
643 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
644 		/*
645 		 * When hwp_req_data is 0, means that caller didn't read
646 		 * MSR_HWP_REQUEST, so need to read and get EPP.
647 		 */
648 		if (!hwp_req_data) {
649 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
650 					    &hwp_req_data);
651 			if (epp)
652 				return epp;
653 		}
654 		epp = (hwp_req_data >> 24) & 0xff;
655 	} else {
656 		/* When there is no EPP present, HWP uses EPB settings */
657 		epp = intel_pstate_get_epb(cpu_data);
658 	}
659 
660 	return epp;
661 }
662 
663 static int intel_pstate_set_epb(int cpu, s16 pref)
664 {
665 	u64 epb;
666 	int ret;
667 
668 	if (!static_cpu_has(X86_FEATURE_EPB))
669 		return -ENXIO;
670 
671 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
672 	if (ret)
673 		return ret;
674 
675 	epb = (epb & ~0x0f) | pref;
676 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
677 
678 	return 0;
679 }
680 
681 /*
682  * EPP/EPB display strings corresponding to EPP index in the
683  * energy_perf_strings[]
684  *	index		String
685  *-------------------------------------
686  *	0		default
687  *	1		performance
688  *	2		balance_performance
689  *	3		balance_power
690  *	4		power
691  */
692 static const char * const energy_perf_strings[] = {
693 	"default",
694 	"performance",
695 	"balance_performance",
696 	"balance_power",
697 	"power",
698 	NULL
699 };
700 
701 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
702 {
703 	s16 epp;
704 	int index = -EINVAL;
705 
706 	epp = intel_pstate_get_epp(cpu_data, 0);
707 	if (epp < 0)
708 		return epp;
709 
710 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
711 		/*
712 		 * Range:
713 		 *	0x00-0x3F	:	Performance
714 		 *	0x40-0x7F	:	Balance performance
715 		 *	0x80-0xBF	:	Balance power
716 		 *	0xC0-0xFF	:	Power
717 		 * The EPP is a 8 bit value, but our ranges restrict the
718 		 * value which can be set. Here only using top two bits
719 		 * effectively.
720 		 */
721 		index = (epp >> 6) + 1;
722 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
723 		/*
724 		 * Range:
725 		 *	0x00-0x03	:	Performance
726 		 *	0x04-0x07	:	Balance performance
727 		 *	0x08-0x0B	:	Balance power
728 		 *	0x0C-0x0F	:	Power
729 		 * The EPB is a 4 bit value, but our ranges restrict the
730 		 * value which can be set. Here only using top two bits
731 		 * effectively.
732 		 */
733 		index = (epp >> 2) + 1;
734 	}
735 
736 	return index;
737 }
738 
739 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
740 					      int pref_index)
741 {
742 	int epp = -EINVAL;
743 	int ret;
744 
745 	if (!pref_index)
746 		epp = cpu_data->epp_default;
747 
748 	mutex_lock(&intel_pstate_limits_lock);
749 
750 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
751 		u64 value;
752 
753 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
754 		if (ret)
755 			goto return_pref;
756 
757 		value &= ~GENMASK_ULL(31, 24);
758 
759 		/*
760 		 * If epp is not default, convert from index into
761 		 * energy_perf_strings to epp value, by shifting 6
762 		 * bits left to use only top two bits in epp.
763 		 * The resultant epp need to shifted by 24 bits to
764 		 * epp position in MSR_HWP_REQUEST.
765 		 */
766 		if (epp == -EINVAL)
767 			epp = (pref_index - 1) << 6;
768 
769 		value |= (u64)epp << 24;
770 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
771 	} else {
772 		if (epp == -EINVAL)
773 			epp = (pref_index - 1) << 2;
774 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
775 	}
776 return_pref:
777 	mutex_unlock(&intel_pstate_limits_lock);
778 
779 	return ret;
780 }
781 
782 static ssize_t show_energy_performance_available_preferences(
783 				struct cpufreq_policy *policy, char *buf)
784 {
785 	int i = 0;
786 	int ret = 0;
787 
788 	while (energy_perf_strings[i] != NULL)
789 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
790 
791 	ret += sprintf(&buf[ret], "\n");
792 
793 	return ret;
794 }
795 
796 cpufreq_freq_attr_ro(energy_performance_available_preferences);
797 
798 static ssize_t store_energy_performance_preference(
799 		struct cpufreq_policy *policy, const char *buf, size_t count)
800 {
801 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
802 	char str_preference[21];
803 	int ret, i = 0;
804 
805 	ret = sscanf(buf, "%20s", str_preference);
806 	if (ret != 1)
807 		return -EINVAL;
808 
809 	while (energy_perf_strings[i] != NULL) {
810 		if (!strcmp(str_preference, energy_perf_strings[i])) {
811 			intel_pstate_set_energy_pref_index(cpu_data, i);
812 			return count;
813 		}
814 		++i;
815 	}
816 
817 	return -EINVAL;
818 }
819 
820 static ssize_t show_energy_performance_preference(
821 				struct cpufreq_policy *policy, char *buf)
822 {
823 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
824 	int preference;
825 
826 	preference = intel_pstate_get_energy_pref_index(cpu_data);
827 	if (preference < 0)
828 		return preference;
829 
830 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
831 }
832 
833 cpufreq_freq_attr_rw(energy_performance_preference);
834 
835 static struct freq_attr *hwp_cpufreq_attrs[] = {
836 	&energy_performance_preference,
837 	&energy_performance_available_preferences,
838 	NULL,
839 };
840 
841 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
842 {
843 	int min, hw_min, max, hw_max, cpu;
844 	struct perf_limits *perf_limits = &global;
845 	u64 value, cap;
846 
847 	for_each_cpu(cpu, policy->cpus) {
848 		struct cpudata *cpu_data = all_cpu_data[cpu];
849 		s16 epp;
850 
851 		if (per_cpu_limits)
852 			perf_limits = all_cpu_data[cpu]->perf_limits;
853 
854 		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
855 		hw_min = HWP_LOWEST_PERF(cap);
856 		if (global.no_turbo)
857 			hw_max = HWP_GUARANTEED_PERF(cap);
858 		else
859 			hw_max = HWP_HIGHEST_PERF(cap);
860 
861 		max = fp_ext_toint(hw_max * perf_limits->max_perf);
862 		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
863 			min = max;
864 		else
865 			min = fp_ext_toint(hw_max * perf_limits->min_perf);
866 
867 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
868 
869 		value &= ~HWP_MIN_PERF(~0L);
870 		value |= HWP_MIN_PERF(min);
871 
872 		value &= ~HWP_MAX_PERF(~0L);
873 		value |= HWP_MAX_PERF(max);
874 
875 		if (cpu_data->epp_policy == cpu_data->policy)
876 			goto skip_epp;
877 
878 		cpu_data->epp_policy = cpu_data->policy;
879 
880 		if (cpu_data->epp_saved >= 0) {
881 			epp = cpu_data->epp_saved;
882 			cpu_data->epp_saved = -EINVAL;
883 			goto update_epp;
884 		}
885 
886 		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
887 			epp = intel_pstate_get_epp(cpu_data, value);
888 			cpu_data->epp_powersave = epp;
889 			/* If EPP read was failed, then don't try to write */
890 			if (epp < 0)
891 				goto skip_epp;
892 
893 
894 			epp = 0;
895 		} else {
896 			/* skip setting EPP, when saved value is invalid */
897 			if (cpu_data->epp_powersave < 0)
898 				goto skip_epp;
899 
900 			/*
901 			 * No need to restore EPP when it is not zero. This
902 			 * means:
903 			 *  - Policy is not changed
904 			 *  - user has manually changed
905 			 *  - Error reading EPB
906 			 */
907 			epp = intel_pstate_get_epp(cpu_data, value);
908 			if (epp)
909 				goto skip_epp;
910 
911 			epp = cpu_data->epp_powersave;
912 		}
913 update_epp:
914 		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
915 			value &= ~GENMASK_ULL(31, 24);
916 			value |= (u64)epp << 24;
917 		} else {
918 			intel_pstate_set_epb(cpu, epp);
919 		}
920 skip_epp:
921 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
922 	}
923 }
924 
925 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
926 {
927 	if (hwp_active)
928 		intel_pstate_hwp_set(policy);
929 
930 	return 0;
931 }
932 
933 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
934 {
935 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
936 
937 	if (!hwp_active)
938 		return 0;
939 
940 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
941 
942 	return 0;
943 }
944 
945 static int intel_pstate_resume(struct cpufreq_policy *policy)
946 {
947 	int ret;
948 
949 	if (!hwp_active)
950 		return 0;
951 
952 	mutex_lock(&intel_pstate_limits_lock);
953 
954 	all_cpu_data[policy->cpu]->epp_policy = 0;
955 
956 	ret = intel_pstate_hwp_set_policy(policy);
957 
958 	mutex_unlock(&intel_pstate_limits_lock);
959 
960 	return ret;
961 }
962 
963 static void intel_pstate_update_policies(void)
964 {
965 	int cpu;
966 
967 	for_each_possible_cpu(cpu)
968 		cpufreq_update_policy(cpu);
969 }
970 
971 /************************** debugfs begin ************************/
972 static int pid_param_set(void *data, u64 val)
973 {
974 	*(u32 *)data = val;
975 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
976 	intel_pstate_reset_all_pid();
977 	return 0;
978 }
979 
980 static int pid_param_get(void *data, u64 *val)
981 {
982 	*val = *(u32 *)data;
983 	return 0;
984 }
985 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
986 
987 static struct dentry *debugfs_parent;
988 
989 struct pid_param {
990 	char *name;
991 	void *value;
992 	struct dentry *dentry;
993 };
994 
995 static struct pid_param pid_files[] = {
996 	{"sample_rate_ms", &pid_params.sample_rate_ms, },
997 	{"d_gain_pct", &pid_params.d_gain_pct, },
998 	{"i_gain_pct", &pid_params.i_gain_pct, },
999 	{"deadband", &pid_params.deadband, },
1000 	{"setpoint", &pid_params.setpoint, },
1001 	{"p_gain_pct", &pid_params.p_gain_pct, },
1002 	{NULL, NULL, }
1003 };
1004 
1005 static void intel_pstate_debug_expose_params(void)
1006 {
1007 	int i;
1008 
1009 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
1010 	if (IS_ERR_OR_NULL(debugfs_parent))
1011 		return;
1012 
1013 	for (i = 0; pid_files[i].name; i++) {
1014 		struct dentry *dentry;
1015 
1016 		dentry = debugfs_create_file(pid_files[i].name, 0660,
1017 					     debugfs_parent, pid_files[i].value,
1018 					     &fops_pid_param);
1019 		if (!IS_ERR(dentry))
1020 			pid_files[i].dentry = dentry;
1021 	}
1022 }
1023 
1024 static void intel_pstate_debug_hide_params(void)
1025 {
1026 	int i;
1027 
1028 	if (IS_ERR_OR_NULL(debugfs_parent))
1029 		return;
1030 
1031 	for (i = 0; pid_files[i].name; i++) {
1032 		debugfs_remove(pid_files[i].dentry);
1033 		pid_files[i].dentry = NULL;
1034 	}
1035 
1036 	debugfs_remove(debugfs_parent);
1037 	debugfs_parent = NULL;
1038 }
1039 
1040 /************************** debugfs end ************************/
1041 
1042 /************************** sysfs begin ************************/
1043 #define show_one(file_name, object)					\
1044 	static ssize_t show_##file_name					\
1045 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
1046 	{								\
1047 		return sprintf(buf, "%u\n", global.object);		\
1048 	}
1049 
1050 static ssize_t intel_pstate_show_status(char *buf);
1051 static int intel_pstate_update_status(const char *buf, size_t size);
1052 
1053 static ssize_t show_status(struct kobject *kobj,
1054 			   struct attribute *attr, char *buf)
1055 {
1056 	ssize_t ret;
1057 
1058 	mutex_lock(&intel_pstate_driver_lock);
1059 	ret = intel_pstate_show_status(buf);
1060 	mutex_unlock(&intel_pstate_driver_lock);
1061 
1062 	return ret;
1063 }
1064 
1065 static ssize_t store_status(struct kobject *a, struct attribute *b,
1066 			    const char *buf, size_t count)
1067 {
1068 	char *p = memchr(buf, '\n', count);
1069 	int ret;
1070 
1071 	mutex_lock(&intel_pstate_driver_lock);
1072 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1073 	mutex_unlock(&intel_pstate_driver_lock);
1074 
1075 	return ret < 0 ? ret : count;
1076 }
1077 
1078 static ssize_t show_turbo_pct(struct kobject *kobj,
1079 				struct attribute *attr, char *buf)
1080 {
1081 	struct cpudata *cpu;
1082 	int total, no_turbo, turbo_pct;
1083 	uint32_t turbo_fp;
1084 
1085 	mutex_lock(&intel_pstate_driver_lock);
1086 
1087 	if (!driver_registered) {
1088 		mutex_unlock(&intel_pstate_driver_lock);
1089 		return -EAGAIN;
1090 	}
1091 
1092 	cpu = all_cpu_data[0];
1093 
1094 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1095 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1096 	turbo_fp = div_fp(no_turbo, total);
1097 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1098 
1099 	mutex_unlock(&intel_pstate_driver_lock);
1100 
1101 	return sprintf(buf, "%u\n", turbo_pct);
1102 }
1103 
1104 static ssize_t show_num_pstates(struct kobject *kobj,
1105 				struct attribute *attr, char *buf)
1106 {
1107 	struct cpudata *cpu;
1108 	int total;
1109 
1110 	mutex_lock(&intel_pstate_driver_lock);
1111 
1112 	if (!driver_registered) {
1113 		mutex_unlock(&intel_pstate_driver_lock);
1114 		return -EAGAIN;
1115 	}
1116 
1117 	cpu = all_cpu_data[0];
1118 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1119 
1120 	mutex_unlock(&intel_pstate_driver_lock);
1121 
1122 	return sprintf(buf, "%u\n", total);
1123 }
1124 
1125 static ssize_t show_no_turbo(struct kobject *kobj,
1126 			     struct attribute *attr, char *buf)
1127 {
1128 	ssize_t ret;
1129 
1130 	mutex_lock(&intel_pstate_driver_lock);
1131 
1132 	if (!driver_registered) {
1133 		mutex_unlock(&intel_pstate_driver_lock);
1134 		return -EAGAIN;
1135 	}
1136 
1137 	update_turbo_state();
1138 	if (global.turbo_disabled)
1139 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1140 	else
1141 		ret = sprintf(buf, "%u\n", global.no_turbo);
1142 
1143 	mutex_unlock(&intel_pstate_driver_lock);
1144 
1145 	return ret;
1146 }
1147 
1148 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1149 			      const char *buf, size_t count)
1150 {
1151 	unsigned int input;
1152 	int ret;
1153 
1154 	ret = sscanf(buf, "%u", &input);
1155 	if (ret != 1)
1156 		return -EINVAL;
1157 
1158 	mutex_lock(&intel_pstate_driver_lock);
1159 
1160 	if (!driver_registered) {
1161 		mutex_unlock(&intel_pstate_driver_lock);
1162 		return -EAGAIN;
1163 	}
1164 
1165 	mutex_lock(&intel_pstate_limits_lock);
1166 
1167 	update_turbo_state();
1168 	if (global.turbo_disabled) {
1169 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1170 		mutex_unlock(&intel_pstate_limits_lock);
1171 		mutex_unlock(&intel_pstate_driver_lock);
1172 		return -EPERM;
1173 	}
1174 
1175 	global.no_turbo = clamp_t(int, input, 0, 1);
1176 
1177 	mutex_unlock(&intel_pstate_limits_lock);
1178 
1179 	intel_pstate_update_policies();
1180 
1181 	mutex_unlock(&intel_pstate_driver_lock);
1182 
1183 	return count;
1184 }
1185 
1186 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1187 				  const char *buf, size_t count)
1188 {
1189 	unsigned int input;
1190 	int ret;
1191 
1192 	ret = sscanf(buf, "%u", &input);
1193 	if (ret != 1)
1194 		return -EINVAL;
1195 
1196 	mutex_lock(&intel_pstate_driver_lock);
1197 
1198 	if (!driver_registered) {
1199 		mutex_unlock(&intel_pstate_driver_lock);
1200 		return -EAGAIN;
1201 	}
1202 
1203 	mutex_lock(&intel_pstate_limits_lock);
1204 
1205 	global.max_sysfs_pct = clamp_t(int, input, 0 , 100);
1206 	global.max_perf_pct = min(global.max_policy_pct, global.max_sysfs_pct);
1207 	global.max_perf_pct = max(global.min_policy_pct, global.max_perf_pct);
1208 	global.max_perf_pct = max(global.min_perf_pct, global.max_perf_pct);
1209 	global.max_perf = percent_ext_fp(global.max_perf_pct);
1210 
1211 	mutex_unlock(&intel_pstate_limits_lock);
1212 
1213 	intel_pstate_update_policies();
1214 
1215 	mutex_unlock(&intel_pstate_driver_lock);
1216 
1217 	return count;
1218 }
1219 
1220 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1221 				  const char *buf, size_t count)
1222 {
1223 	unsigned int input;
1224 	int ret;
1225 
1226 	ret = sscanf(buf, "%u", &input);
1227 	if (ret != 1)
1228 		return -EINVAL;
1229 
1230 	mutex_lock(&intel_pstate_driver_lock);
1231 
1232 	if (!driver_registered) {
1233 		mutex_unlock(&intel_pstate_driver_lock);
1234 		return -EAGAIN;
1235 	}
1236 
1237 	mutex_lock(&intel_pstate_limits_lock);
1238 
1239 	global.min_sysfs_pct = clamp_t(int, input, 0 , 100);
1240 	global.min_perf_pct = max(global.min_policy_pct, global.min_sysfs_pct);
1241 	global.min_perf_pct = min(global.max_policy_pct, global.min_perf_pct);
1242 	global.min_perf_pct = min(global.max_perf_pct, global.min_perf_pct);
1243 	global.min_perf = percent_ext_fp(global.min_perf_pct);
1244 
1245 	mutex_unlock(&intel_pstate_limits_lock);
1246 
1247 	intel_pstate_update_policies();
1248 
1249 	mutex_unlock(&intel_pstate_driver_lock);
1250 
1251 	return count;
1252 }
1253 
1254 show_one(max_perf_pct, max_perf_pct);
1255 show_one(min_perf_pct, min_perf_pct);
1256 
1257 define_one_global_rw(status);
1258 define_one_global_rw(no_turbo);
1259 define_one_global_rw(max_perf_pct);
1260 define_one_global_rw(min_perf_pct);
1261 define_one_global_ro(turbo_pct);
1262 define_one_global_ro(num_pstates);
1263 
1264 static struct attribute *intel_pstate_attributes[] = {
1265 	&status.attr,
1266 	&no_turbo.attr,
1267 	&turbo_pct.attr,
1268 	&num_pstates.attr,
1269 	NULL
1270 };
1271 
1272 static struct attribute_group intel_pstate_attr_group = {
1273 	.attrs = intel_pstate_attributes,
1274 };
1275 
1276 static void __init intel_pstate_sysfs_expose_params(void)
1277 {
1278 	struct kobject *intel_pstate_kobject;
1279 	int rc;
1280 
1281 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1282 						&cpu_subsys.dev_root->kobj);
1283 	if (WARN_ON(!intel_pstate_kobject))
1284 		return;
1285 
1286 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1287 	if (WARN_ON(rc))
1288 		return;
1289 
1290 	/*
1291 	 * If per cpu limits are enforced there are no global limits, so
1292 	 * return without creating max/min_perf_pct attributes
1293 	 */
1294 	if (per_cpu_limits)
1295 		return;
1296 
1297 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1298 	WARN_ON(rc);
1299 
1300 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1301 	WARN_ON(rc);
1302 
1303 }
1304 /************************** sysfs end ************************/
1305 
1306 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1307 {
1308 	/* First disable HWP notification interrupt as we don't process them */
1309 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1310 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1311 
1312 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1313 	cpudata->epp_policy = 0;
1314 	if (cpudata->epp_default == -EINVAL)
1315 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1316 }
1317 
1318 #define MSR_IA32_POWER_CTL_BIT_EE	19
1319 
1320 /* Disable energy efficiency optimization */
1321 static void intel_pstate_disable_ee(int cpu)
1322 {
1323 	u64 power_ctl;
1324 	int ret;
1325 
1326 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1327 	if (ret)
1328 		return;
1329 
1330 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1331 		pr_info("Disabling energy efficiency optimization\n");
1332 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1333 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1334 	}
1335 }
1336 
1337 static int atom_get_min_pstate(void)
1338 {
1339 	u64 value;
1340 
1341 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1342 	return (value >> 8) & 0x7F;
1343 }
1344 
1345 static int atom_get_max_pstate(void)
1346 {
1347 	u64 value;
1348 
1349 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1350 	return (value >> 16) & 0x7F;
1351 }
1352 
1353 static int atom_get_turbo_pstate(void)
1354 {
1355 	u64 value;
1356 
1357 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1358 	return value & 0x7F;
1359 }
1360 
1361 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1362 {
1363 	u64 val;
1364 	int32_t vid_fp;
1365 	u32 vid;
1366 
1367 	val = (u64)pstate << 8;
1368 	if (global.no_turbo && !global.turbo_disabled)
1369 		val |= (u64)1 << 32;
1370 
1371 	vid_fp = cpudata->vid.min + mul_fp(
1372 		int_tofp(pstate - cpudata->pstate.min_pstate),
1373 		cpudata->vid.ratio);
1374 
1375 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1376 	vid = ceiling_fp(vid_fp);
1377 
1378 	if (pstate > cpudata->pstate.max_pstate)
1379 		vid = cpudata->vid.turbo;
1380 
1381 	return val | vid;
1382 }
1383 
1384 static int silvermont_get_scaling(void)
1385 {
1386 	u64 value;
1387 	int i;
1388 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1389 	static int silvermont_freq_table[] = {
1390 		83300, 100000, 133300, 116700, 80000};
1391 
1392 	rdmsrl(MSR_FSB_FREQ, value);
1393 	i = value & 0x7;
1394 	WARN_ON(i > 4);
1395 
1396 	return silvermont_freq_table[i];
1397 }
1398 
1399 static int airmont_get_scaling(void)
1400 {
1401 	u64 value;
1402 	int i;
1403 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1404 	static int airmont_freq_table[] = {
1405 		83300, 100000, 133300, 116700, 80000,
1406 		93300, 90000, 88900, 87500};
1407 
1408 	rdmsrl(MSR_FSB_FREQ, value);
1409 	i = value & 0xF;
1410 	WARN_ON(i > 8);
1411 
1412 	return airmont_freq_table[i];
1413 }
1414 
1415 static void atom_get_vid(struct cpudata *cpudata)
1416 {
1417 	u64 value;
1418 
1419 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1420 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1421 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1422 	cpudata->vid.ratio = div_fp(
1423 		cpudata->vid.max - cpudata->vid.min,
1424 		int_tofp(cpudata->pstate.max_pstate -
1425 			cpudata->pstate.min_pstate));
1426 
1427 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1428 	cpudata->vid.turbo = value & 0x7f;
1429 }
1430 
1431 static int core_get_min_pstate(void)
1432 {
1433 	u64 value;
1434 
1435 	rdmsrl(MSR_PLATFORM_INFO, value);
1436 	return (value >> 40) & 0xFF;
1437 }
1438 
1439 static int core_get_max_pstate_physical(void)
1440 {
1441 	u64 value;
1442 
1443 	rdmsrl(MSR_PLATFORM_INFO, value);
1444 	return (value >> 8) & 0xFF;
1445 }
1446 
1447 static int core_get_tdp_ratio(u64 plat_info)
1448 {
1449 	/* Check how many TDP levels present */
1450 	if (plat_info & 0x600000000) {
1451 		u64 tdp_ctrl;
1452 		u64 tdp_ratio;
1453 		int tdp_msr;
1454 		int err;
1455 
1456 		/* Get the TDP level (0, 1, 2) to get ratios */
1457 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1458 		if (err)
1459 			return err;
1460 
1461 		/* TDP MSR are continuous starting at 0x648 */
1462 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1463 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1464 		if (err)
1465 			return err;
1466 
1467 		/* For level 1 and 2, bits[23:16] contain the ratio */
1468 		if (tdp_ctrl & 0x03)
1469 			tdp_ratio >>= 16;
1470 
1471 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1472 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1473 
1474 		return (int)tdp_ratio;
1475 	}
1476 
1477 	return -ENXIO;
1478 }
1479 
1480 static int core_get_max_pstate(void)
1481 {
1482 	u64 tar;
1483 	u64 plat_info;
1484 	int max_pstate;
1485 	int tdp_ratio;
1486 	int err;
1487 
1488 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1489 	max_pstate = (plat_info >> 8) & 0xFF;
1490 
1491 	tdp_ratio = core_get_tdp_ratio(plat_info);
1492 	if (tdp_ratio <= 0)
1493 		return max_pstate;
1494 
1495 	if (hwp_active) {
1496 		/* Turbo activation ratio is not used on HWP platforms */
1497 		return tdp_ratio;
1498 	}
1499 
1500 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1501 	if (!err) {
1502 		int tar_levels;
1503 
1504 		/* Do some sanity checking for safety */
1505 		tar_levels = tar & 0xff;
1506 		if (tdp_ratio - 1 == tar_levels) {
1507 			max_pstate = tar_levels;
1508 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1509 		}
1510 	}
1511 
1512 	return max_pstate;
1513 }
1514 
1515 static int core_get_turbo_pstate(void)
1516 {
1517 	u64 value;
1518 	int nont, ret;
1519 
1520 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1521 	nont = core_get_max_pstate();
1522 	ret = (value) & 255;
1523 	if (ret <= nont)
1524 		ret = nont;
1525 	return ret;
1526 }
1527 
1528 static inline int core_get_scaling(void)
1529 {
1530 	return 100000;
1531 }
1532 
1533 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1534 {
1535 	u64 val;
1536 
1537 	val = (u64)pstate << 8;
1538 	if (global.no_turbo && !global.turbo_disabled)
1539 		val |= (u64)1 << 32;
1540 
1541 	return val;
1542 }
1543 
1544 static int knl_get_turbo_pstate(void)
1545 {
1546 	u64 value;
1547 	int nont, ret;
1548 
1549 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1550 	nont = core_get_max_pstate();
1551 	ret = (((value) >> 8) & 0xFF);
1552 	if (ret <= nont)
1553 		ret = nont;
1554 	return ret;
1555 }
1556 
1557 static struct cpu_defaults core_params = {
1558 	.pid_policy = {
1559 		.sample_rate_ms = 10,
1560 		.deadband = 0,
1561 		.setpoint = 97,
1562 		.p_gain_pct = 20,
1563 		.d_gain_pct = 0,
1564 		.i_gain_pct = 0,
1565 	},
1566 	.funcs = {
1567 		.get_max = core_get_max_pstate,
1568 		.get_max_physical = core_get_max_pstate_physical,
1569 		.get_min = core_get_min_pstate,
1570 		.get_turbo = core_get_turbo_pstate,
1571 		.get_scaling = core_get_scaling,
1572 		.get_val = core_get_val,
1573 		.get_target_pstate = get_target_pstate_use_performance,
1574 	},
1575 };
1576 
1577 static const struct cpu_defaults silvermont_params = {
1578 	.pid_policy = {
1579 		.sample_rate_ms = 10,
1580 		.deadband = 0,
1581 		.setpoint = 60,
1582 		.p_gain_pct = 14,
1583 		.d_gain_pct = 0,
1584 		.i_gain_pct = 4,
1585 	},
1586 	.funcs = {
1587 		.get_max = atom_get_max_pstate,
1588 		.get_max_physical = atom_get_max_pstate,
1589 		.get_min = atom_get_min_pstate,
1590 		.get_turbo = atom_get_turbo_pstate,
1591 		.get_val = atom_get_val,
1592 		.get_scaling = silvermont_get_scaling,
1593 		.get_vid = atom_get_vid,
1594 		.get_target_pstate = get_target_pstate_use_cpu_load,
1595 	},
1596 };
1597 
1598 static const struct cpu_defaults airmont_params = {
1599 	.pid_policy = {
1600 		.sample_rate_ms = 10,
1601 		.deadband = 0,
1602 		.setpoint = 60,
1603 		.p_gain_pct = 14,
1604 		.d_gain_pct = 0,
1605 		.i_gain_pct = 4,
1606 	},
1607 	.funcs = {
1608 		.get_max = atom_get_max_pstate,
1609 		.get_max_physical = atom_get_max_pstate,
1610 		.get_min = atom_get_min_pstate,
1611 		.get_turbo = atom_get_turbo_pstate,
1612 		.get_val = atom_get_val,
1613 		.get_scaling = airmont_get_scaling,
1614 		.get_vid = atom_get_vid,
1615 		.get_target_pstate = get_target_pstate_use_cpu_load,
1616 	},
1617 };
1618 
1619 static const struct cpu_defaults knl_params = {
1620 	.pid_policy = {
1621 		.sample_rate_ms = 10,
1622 		.deadband = 0,
1623 		.setpoint = 97,
1624 		.p_gain_pct = 20,
1625 		.d_gain_pct = 0,
1626 		.i_gain_pct = 0,
1627 	},
1628 	.funcs = {
1629 		.get_max = core_get_max_pstate,
1630 		.get_max_physical = core_get_max_pstate_physical,
1631 		.get_min = core_get_min_pstate,
1632 		.get_turbo = knl_get_turbo_pstate,
1633 		.get_scaling = core_get_scaling,
1634 		.get_val = core_get_val,
1635 		.get_target_pstate = get_target_pstate_use_performance,
1636 	},
1637 };
1638 
1639 static const struct cpu_defaults bxt_params = {
1640 	.pid_policy = {
1641 		.sample_rate_ms = 10,
1642 		.deadband = 0,
1643 		.setpoint = 60,
1644 		.p_gain_pct = 14,
1645 		.d_gain_pct = 0,
1646 		.i_gain_pct = 4,
1647 	},
1648 	.funcs = {
1649 		.get_max = core_get_max_pstate,
1650 		.get_max_physical = core_get_max_pstate_physical,
1651 		.get_min = core_get_min_pstate,
1652 		.get_turbo = core_get_turbo_pstate,
1653 		.get_scaling = core_get_scaling,
1654 		.get_val = core_get_val,
1655 		.get_target_pstate = get_target_pstate_use_cpu_load,
1656 	},
1657 };
1658 
1659 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1660 {
1661 	int max_perf = cpu->pstate.turbo_pstate;
1662 	int max_perf_adj;
1663 	int min_perf;
1664 	struct perf_limits *perf_limits = &global;
1665 
1666 	if (global.no_turbo || global.turbo_disabled)
1667 		max_perf = cpu->pstate.max_pstate;
1668 
1669 	if (per_cpu_limits)
1670 		perf_limits = cpu->perf_limits;
1671 
1672 	/*
1673 	 * performance can be limited by user through sysfs, by cpufreq
1674 	 * policy, or by cpu specific default values determined through
1675 	 * experimentation.
1676 	 */
1677 	max_perf_adj = fp_ext_toint(max_perf * perf_limits->max_perf);
1678 	*max = clamp_t(int, max_perf_adj,
1679 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1680 
1681 	min_perf = fp_ext_toint(max_perf * perf_limits->min_perf);
1682 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1683 }
1684 
1685 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1686 {
1687 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1688 	cpu->pstate.current_pstate = pstate;
1689 	/*
1690 	 * Generally, there is no guarantee that this code will always run on
1691 	 * the CPU being updated, so force the register update to run on the
1692 	 * right CPU.
1693 	 */
1694 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1695 		      pstate_funcs.get_val(cpu, pstate));
1696 }
1697 
1698 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1699 {
1700 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1701 }
1702 
1703 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1704 {
1705 	int min_pstate, max_pstate;
1706 
1707 	update_turbo_state();
1708 	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1709 	intel_pstate_set_pstate(cpu, max_pstate);
1710 }
1711 
1712 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1713 {
1714 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1715 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1716 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1717 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1718 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1719 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1720 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1721 
1722 	if (pstate_funcs.get_vid)
1723 		pstate_funcs.get_vid(cpu);
1724 
1725 	intel_pstate_set_min_pstate(cpu);
1726 }
1727 
1728 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1729 {
1730 	struct sample *sample = &cpu->sample;
1731 
1732 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1733 }
1734 
1735 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1736 {
1737 	u64 aperf, mperf;
1738 	unsigned long flags;
1739 	u64 tsc;
1740 
1741 	local_irq_save(flags);
1742 	rdmsrl(MSR_IA32_APERF, aperf);
1743 	rdmsrl(MSR_IA32_MPERF, mperf);
1744 	tsc = rdtsc();
1745 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1746 		local_irq_restore(flags);
1747 		return false;
1748 	}
1749 	local_irq_restore(flags);
1750 
1751 	cpu->last_sample_time = cpu->sample.time;
1752 	cpu->sample.time = time;
1753 	cpu->sample.aperf = aperf;
1754 	cpu->sample.mperf = mperf;
1755 	cpu->sample.tsc =  tsc;
1756 	cpu->sample.aperf -= cpu->prev_aperf;
1757 	cpu->sample.mperf -= cpu->prev_mperf;
1758 	cpu->sample.tsc -= cpu->prev_tsc;
1759 
1760 	cpu->prev_aperf = aperf;
1761 	cpu->prev_mperf = mperf;
1762 	cpu->prev_tsc = tsc;
1763 	/*
1764 	 * First time this function is invoked in a given cycle, all of the
1765 	 * previous sample data fields are equal to zero or stale and they must
1766 	 * be populated with meaningful numbers for things to work, so assume
1767 	 * that sample.time will always be reset before setting the utilization
1768 	 * update hook and make the caller skip the sample then.
1769 	 */
1770 	return !!cpu->last_sample_time;
1771 }
1772 
1773 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1774 {
1775 	return mul_ext_fp(cpu->sample.core_avg_perf,
1776 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1777 }
1778 
1779 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1780 {
1781 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1782 			  cpu->sample.core_avg_perf);
1783 }
1784 
1785 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1786 {
1787 	struct sample *sample = &cpu->sample;
1788 	int32_t busy_frac, boost;
1789 	int target, avg_pstate;
1790 
1791 	busy_frac = div_fp(sample->mperf, sample->tsc);
1792 
1793 	boost = cpu->iowait_boost;
1794 	cpu->iowait_boost >>= 1;
1795 
1796 	if (busy_frac < boost)
1797 		busy_frac = boost;
1798 
1799 	sample->busy_scaled = busy_frac * 100;
1800 
1801 	target = global.no_turbo || global.turbo_disabled ?
1802 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1803 	target += target >> 2;
1804 	target = mul_fp(target, busy_frac);
1805 	if (target < cpu->pstate.min_pstate)
1806 		target = cpu->pstate.min_pstate;
1807 
1808 	/*
1809 	 * If the average P-state during the previous cycle was higher than the
1810 	 * current target, add 50% of the difference to the target to reduce
1811 	 * possible performance oscillations and offset possible performance
1812 	 * loss related to moving the workload from one CPU to another within
1813 	 * a package/module.
1814 	 */
1815 	avg_pstate = get_avg_pstate(cpu);
1816 	if (avg_pstate > target)
1817 		target += (avg_pstate - target) >> 1;
1818 
1819 	return target;
1820 }
1821 
1822 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1823 {
1824 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1825 	u64 duration_ns;
1826 
1827 	/*
1828 	 * perf_scaled is the ratio of the average P-state during the last
1829 	 * sampling period to the P-state requested last time (in percent).
1830 	 *
1831 	 * That measures the system's response to the previous P-state
1832 	 * selection.
1833 	 */
1834 	max_pstate = cpu->pstate.max_pstate_physical;
1835 	current_pstate = cpu->pstate.current_pstate;
1836 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1837 			       div_fp(100 * max_pstate, current_pstate));
1838 
1839 	/*
1840 	 * Since our utilization update callback will not run unless we are
1841 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1842 	 * than our sample interval.  If it is, then we were idle for a long
1843 	 * enough period of time to adjust our performance metric.
1844 	 */
1845 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1846 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1847 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1848 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1849 	} else {
1850 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1851 		if (sample_ratio < int_tofp(1))
1852 			perf_scaled = 0;
1853 	}
1854 
1855 	cpu->sample.busy_scaled = perf_scaled;
1856 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1857 }
1858 
1859 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1860 {
1861 	int max_perf, min_perf;
1862 
1863 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1864 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1865 	return pstate;
1866 }
1867 
1868 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1869 {
1870 	if (pstate == cpu->pstate.current_pstate)
1871 		return;
1872 
1873 	cpu->pstate.current_pstate = pstate;
1874 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1875 }
1876 
1877 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1878 {
1879 	int from, target_pstate;
1880 	struct sample *sample;
1881 
1882 	from = cpu->pstate.current_pstate;
1883 
1884 	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1885 		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1886 
1887 	update_turbo_state();
1888 
1889 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1890 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1891 	intel_pstate_update_pstate(cpu, target_pstate);
1892 
1893 	sample = &cpu->sample;
1894 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1895 		fp_toint(sample->busy_scaled),
1896 		from,
1897 		cpu->pstate.current_pstate,
1898 		sample->mperf,
1899 		sample->aperf,
1900 		sample->tsc,
1901 		get_avg_frequency(cpu),
1902 		fp_toint(cpu->iowait_boost * 100));
1903 }
1904 
1905 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1906 				     unsigned int flags)
1907 {
1908 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1909 	u64 delta_ns;
1910 
1911 	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1912 		if (flags & SCHED_CPUFREQ_IOWAIT) {
1913 			cpu->iowait_boost = int_tofp(1);
1914 		} else if (cpu->iowait_boost) {
1915 			/* Clear iowait_boost if the CPU may have been idle. */
1916 			delta_ns = time - cpu->last_update;
1917 			if (delta_ns > TICK_NSEC)
1918 				cpu->iowait_boost = 0;
1919 		}
1920 		cpu->last_update = time;
1921 	}
1922 
1923 	delta_ns = time - cpu->sample.time;
1924 	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1925 		bool sample_taken = intel_pstate_sample(cpu, time);
1926 
1927 		if (sample_taken) {
1928 			intel_pstate_calc_avg_perf(cpu);
1929 			if (!hwp_active)
1930 				intel_pstate_adjust_busy_pstate(cpu);
1931 		}
1932 	}
1933 }
1934 
1935 #define ICPU(model, policy) \
1936 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1937 			(unsigned long)&policy }
1938 
1939 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1940 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
1941 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
1942 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
1943 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
1944 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
1945 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
1946 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
1947 	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
1948 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
1949 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
1950 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
1951 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
1952 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
1953 	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
1954 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
1955 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
1956 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1957 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1958 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1959 	{}
1960 };
1961 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1962 
1963 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1964 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1965 	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1966 	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1967 	{}
1968 };
1969 
1970 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1971 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1972 	{}
1973 };
1974 
1975 static int intel_pstate_init_cpu(unsigned int cpunum)
1976 {
1977 	struct cpudata *cpu;
1978 
1979 	cpu = all_cpu_data[cpunum];
1980 
1981 	if (!cpu) {
1982 		unsigned int size = sizeof(struct cpudata);
1983 
1984 		if (per_cpu_limits)
1985 			size += sizeof(struct perf_limits);
1986 
1987 		cpu = kzalloc(size, GFP_KERNEL);
1988 		if (!cpu)
1989 			return -ENOMEM;
1990 
1991 		all_cpu_data[cpunum] = cpu;
1992 		if (per_cpu_limits)
1993 			cpu->perf_limits = (struct perf_limits *)(cpu + 1);
1994 
1995 		cpu->epp_default = -EINVAL;
1996 		cpu->epp_powersave = -EINVAL;
1997 		cpu->epp_saved = -EINVAL;
1998 	}
1999 
2000 	cpu = all_cpu_data[cpunum];
2001 
2002 	cpu->cpu = cpunum;
2003 
2004 	if (hwp_active) {
2005 		const struct x86_cpu_id *id;
2006 
2007 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
2008 		if (id)
2009 			intel_pstate_disable_ee(cpunum);
2010 
2011 		intel_pstate_hwp_enable(cpu);
2012 		pid_params.sample_rate_ms = 50;
2013 		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
2014 	}
2015 
2016 	intel_pstate_get_cpu_pstates(cpu);
2017 
2018 	intel_pstate_busy_pid_reset(cpu);
2019 
2020 	pr_debug("controlling: cpu %d\n", cpunum);
2021 
2022 	return 0;
2023 }
2024 
2025 static unsigned int intel_pstate_get(unsigned int cpu_num)
2026 {
2027 	struct cpudata *cpu = all_cpu_data[cpu_num];
2028 
2029 	return cpu ? get_avg_frequency(cpu) : 0;
2030 }
2031 
2032 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2033 {
2034 	struct cpudata *cpu = all_cpu_data[cpu_num];
2035 
2036 	if (cpu->update_util_set)
2037 		return;
2038 
2039 	/* Prevent intel_pstate_update_util() from using stale data. */
2040 	cpu->sample.time = 0;
2041 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2042 				     intel_pstate_update_util);
2043 	cpu->update_util_set = true;
2044 }
2045 
2046 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2047 {
2048 	struct cpudata *cpu_data = all_cpu_data[cpu];
2049 
2050 	if (!cpu_data->update_util_set)
2051 		return;
2052 
2053 	cpufreq_remove_update_util_hook(cpu);
2054 	cpu_data->update_util_set = false;
2055 	synchronize_sched();
2056 }
2057 
2058 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
2059 					    struct perf_limits *limits)
2060 {
2061 	int32_t max_policy_perf, min_policy_perf;
2062 
2063 	max_policy_perf = div_ext_fp(policy->max, policy->cpuinfo.max_freq);
2064 	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
2065 	if (policy->max == policy->min) {
2066 		min_policy_perf = max_policy_perf;
2067 	} else {
2068 		min_policy_perf = div_ext_fp(policy->min,
2069 					     policy->cpuinfo.max_freq);
2070 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2071 					  0, max_policy_perf);
2072 	}
2073 
2074 	/* Normalize user input to [min_perf, max_perf] */
2075 	limits->min_perf = max(min_policy_perf,
2076 			       percent_ext_fp(limits->min_sysfs_pct));
2077 	limits->min_perf = min(limits->min_perf, max_policy_perf);
2078 	limits->max_perf = min(max_policy_perf,
2079 			       percent_ext_fp(limits->max_sysfs_pct));
2080 	limits->max_perf = max(min_policy_perf, limits->max_perf);
2081 
2082 	/* Make sure min_perf <= max_perf */
2083 	limits->min_perf = min(limits->min_perf, limits->max_perf);
2084 
2085 	limits->max_perf = round_up(limits->max_perf, EXT_FRAC_BITS);
2086 	limits->min_perf = round_up(limits->min_perf, EXT_FRAC_BITS);
2087 	limits->max_perf_pct = fp_ext_toint(limits->max_perf * 100);
2088 	limits->min_perf_pct = fp_ext_toint(limits->min_perf * 100);
2089 
2090 	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2091 		 limits->max_perf_pct, limits->min_perf_pct);
2092 }
2093 
2094 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2095 {
2096 	struct cpudata *cpu;
2097 	struct perf_limits *perf_limits = &global;
2098 
2099 	if (!policy->cpuinfo.max_freq)
2100 		return -ENODEV;
2101 
2102 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2103 		 policy->cpuinfo.max_freq, policy->max);
2104 
2105 	cpu = all_cpu_data[policy->cpu];
2106 	cpu->policy = policy->policy;
2107 
2108 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2109 	    policy->max < policy->cpuinfo.max_freq &&
2110 	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
2111 		pr_debug("policy->max > max non turbo frequency\n");
2112 		policy->max = policy->cpuinfo.max_freq;
2113 	}
2114 
2115 	if (per_cpu_limits)
2116 		perf_limits = cpu->perf_limits;
2117 
2118 	mutex_lock(&intel_pstate_limits_lock);
2119 
2120 	intel_pstate_update_perf_limits(policy, perf_limits);
2121 
2122 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2123 		/*
2124 		 * NOHZ_FULL CPUs need this as the governor callback may not
2125 		 * be invoked on them.
2126 		 */
2127 		intel_pstate_clear_update_util_hook(policy->cpu);
2128 		intel_pstate_max_within_limits(cpu);
2129 	}
2130 
2131 	intel_pstate_set_update_util_hook(policy->cpu);
2132 
2133 	intel_pstate_hwp_set_policy(policy);
2134 
2135 	mutex_unlock(&intel_pstate_limits_lock);
2136 
2137 	return 0;
2138 }
2139 
2140 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2141 {
2142 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2143 
2144 	update_turbo_state();
2145 	policy->cpuinfo.max_freq = global.turbo_disabled || global.no_turbo ?
2146 					cpu->pstate.max_freq :
2147 					cpu->pstate.turbo_freq;
2148 
2149 	cpufreq_verify_within_cpu_limits(policy);
2150 
2151 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2152 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2153 		return -EINVAL;
2154 
2155 	/* When per-CPU limits are used, sysfs limits are not used */
2156 	if (!per_cpu_limits) {
2157 		unsigned int max_freq, min_freq;
2158 
2159 		max_freq = policy->cpuinfo.max_freq *
2160 					global.max_sysfs_pct / 100;
2161 		min_freq = policy->cpuinfo.max_freq *
2162 					global.min_sysfs_pct / 100;
2163 		cpufreq_verify_within_limits(policy, min_freq, max_freq);
2164 	}
2165 
2166 	return 0;
2167 }
2168 
2169 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2170 {
2171 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2172 }
2173 
2174 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2175 {
2176 	pr_debug("CPU %d exiting\n", policy->cpu);
2177 
2178 	intel_pstate_clear_update_util_hook(policy->cpu);
2179 	if (hwp_active)
2180 		intel_pstate_hwp_save_state(policy);
2181 	else
2182 		intel_cpufreq_stop_cpu(policy);
2183 }
2184 
2185 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2186 {
2187 	intel_pstate_exit_perf_limits(policy);
2188 
2189 	policy->fast_switch_possible = false;
2190 
2191 	return 0;
2192 }
2193 
2194 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2195 {
2196 	struct cpudata *cpu;
2197 	int rc;
2198 
2199 	rc = intel_pstate_init_cpu(policy->cpu);
2200 	if (rc)
2201 		return rc;
2202 
2203 	cpu = all_cpu_data[policy->cpu];
2204 
2205 	if (per_cpu_limits)
2206 		intel_pstate_init_limits(cpu->perf_limits);
2207 
2208 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2209 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2210 
2211 	/* cpuinfo and default policy values */
2212 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2213 	update_turbo_state();
2214 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2215 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2216 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2217 
2218 	intel_pstate_init_acpi_perf_limits(policy);
2219 	cpumask_set_cpu(policy->cpu, policy->cpus);
2220 
2221 	policy->fast_switch_possible = true;
2222 
2223 	return 0;
2224 }
2225 
2226 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2227 {
2228 	int ret = __intel_pstate_cpu_init(policy);
2229 
2230 	if (ret)
2231 		return ret;
2232 
2233 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2234 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2235 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2236 	else
2237 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2238 
2239 	return 0;
2240 }
2241 
2242 static struct cpufreq_driver intel_pstate = {
2243 	.flags		= CPUFREQ_CONST_LOOPS,
2244 	.verify		= intel_pstate_verify_policy,
2245 	.setpolicy	= intel_pstate_set_policy,
2246 	.suspend	= intel_pstate_hwp_save_state,
2247 	.resume		= intel_pstate_resume,
2248 	.get		= intel_pstate_get,
2249 	.init		= intel_pstate_cpu_init,
2250 	.exit		= intel_pstate_cpu_exit,
2251 	.stop_cpu	= intel_pstate_stop_cpu,
2252 	.name		= "intel_pstate",
2253 };
2254 
2255 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2256 {
2257 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2258 
2259 	update_turbo_state();
2260 	policy->cpuinfo.max_freq = global.no_turbo || global.turbo_disabled ?
2261 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2262 
2263 	cpufreq_verify_within_cpu_limits(policy);
2264 
2265 	return 0;
2266 }
2267 
2268 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2269 				unsigned int target_freq,
2270 				unsigned int relation)
2271 {
2272 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2273 	struct cpufreq_freqs freqs;
2274 	int target_pstate;
2275 
2276 	update_turbo_state();
2277 
2278 	freqs.old = policy->cur;
2279 	freqs.new = target_freq;
2280 
2281 	cpufreq_freq_transition_begin(policy, &freqs);
2282 	switch (relation) {
2283 	case CPUFREQ_RELATION_L:
2284 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2285 		break;
2286 	case CPUFREQ_RELATION_H:
2287 		target_pstate = freqs.new / cpu->pstate.scaling;
2288 		break;
2289 	default:
2290 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2291 		break;
2292 	}
2293 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2294 	if (target_pstate != cpu->pstate.current_pstate) {
2295 		cpu->pstate.current_pstate = target_pstate;
2296 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2297 			      pstate_funcs.get_val(cpu, target_pstate));
2298 	}
2299 	freqs.new = target_pstate * cpu->pstate.scaling;
2300 	cpufreq_freq_transition_end(policy, &freqs, false);
2301 
2302 	return 0;
2303 }
2304 
2305 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2306 					      unsigned int target_freq)
2307 {
2308 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2309 	int target_pstate;
2310 
2311 	update_turbo_state();
2312 
2313 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2314 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2315 	intel_pstate_update_pstate(cpu, target_pstate);
2316 	return target_pstate * cpu->pstate.scaling;
2317 }
2318 
2319 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2320 {
2321 	int ret = __intel_pstate_cpu_init(policy);
2322 
2323 	if (ret)
2324 		return ret;
2325 
2326 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2327 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2328 	policy->cur = policy->cpuinfo.min_freq;
2329 
2330 	return 0;
2331 }
2332 
2333 static struct cpufreq_driver intel_cpufreq = {
2334 	.flags		= CPUFREQ_CONST_LOOPS,
2335 	.verify		= intel_cpufreq_verify_policy,
2336 	.target		= intel_cpufreq_target,
2337 	.fast_switch	= intel_cpufreq_fast_switch,
2338 	.init		= intel_cpufreq_cpu_init,
2339 	.exit		= intel_pstate_cpu_exit,
2340 	.stop_cpu	= intel_cpufreq_stop_cpu,
2341 	.name		= "intel_cpufreq",
2342 };
2343 
2344 static struct cpufreq_driver *intel_pstate_driver = &intel_pstate;
2345 
2346 static void intel_pstate_driver_cleanup(void)
2347 {
2348 	unsigned int cpu;
2349 
2350 	get_online_cpus();
2351 	for_each_online_cpu(cpu) {
2352 		if (all_cpu_data[cpu]) {
2353 			if (intel_pstate_driver == &intel_pstate)
2354 				intel_pstate_clear_update_util_hook(cpu);
2355 
2356 			kfree(all_cpu_data[cpu]);
2357 			all_cpu_data[cpu] = NULL;
2358 		}
2359 	}
2360 	put_online_cpus();
2361 }
2362 
2363 static int intel_pstate_register_driver(void)
2364 {
2365 	int ret;
2366 
2367 	intel_pstate_init_limits(&global);
2368 
2369 	ret = cpufreq_register_driver(intel_pstate_driver);
2370 	if (ret) {
2371 		intel_pstate_driver_cleanup();
2372 		return ret;
2373 	}
2374 
2375 	mutex_lock(&intel_pstate_limits_lock);
2376 	driver_registered = true;
2377 	mutex_unlock(&intel_pstate_limits_lock);
2378 
2379 	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2380 	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2381 		intel_pstate_debug_expose_params();
2382 
2383 	return 0;
2384 }
2385 
2386 static int intel_pstate_unregister_driver(void)
2387 {
2388 	if (hwp_active)
2389 		return -EBUSY;
2390 
2391 	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2392 	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2393 		intel_pstate_debug_hide_params();
2394 
2395 	mutex_lock(&intel_pstate_limits_lock);
2396 	driver_registered = false;
2397 	mutex_unlock(&intel_pstate_limits_lock);
2398 
2399 	cpufreq_unregister_driver(intel_pstate_driver);
2400 	intel_pstate_driver_cleanup();
2401 
2402 	return 0;
2403 }
2404 
2405 static ssize_t intel_pstate_show_status(char *buf)
2406 {
2407 	if (!driver_registered)
2408 		return sprintf(buf, "off\n");
2409 
2410 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2411 					"active" : "passive");
2412 }
2413 
2414 static int intel_pstate_update_status(const char *buf, size_t size)
2415 {
2416 	int ret;
2417 
2418 	if (size == 3 && !strncmp(buf, "off", size))
2419 		return driver_registered ?
2420 			intel_pstate_unregister_driver() : -EINVAL;
2421 
2422 	if (size == 6 && !strncmp(buf, "active", size)) {
2423 		if (driver_registered) {
2424 			if (intel_pstate_driver == &intel_pstate)
2425 				return 0;
2426 
2427 			ret = intel_pstate_unregister_driver();
2428 			if (ret)
2429 				return ret;
2430 		}
2431 
2432 		intel_pstate_driver = &intel_pstate;
2433 		return intel_pstate_register_driver();
2434 	}
2435 
2436 	if (size == 7 && !strncmp(buf, "passive", size)) {
2437 		if (driver_registered) {
2438 			if (intel_pstate_driver != &intel_pstate)
2439 				return 0;
2440 
2441 			ret = intel_pstate_unregister_driver();
2442 			if (ret)
2443 				return ret;
2444 		}
2445 
2446 		intel_pstate_driver = &intel_cpufreq;
2447 		return intel_pstate_register_driver();
2448 	}
2449 
2450 	return -EINVAL;
2451 }
2452 
2453 static int no_load __initdata;
2454 static int no_hwp __initdata;
2455 static int hwp_only __initdata;
2456 static unsigned int force_load __initdata;
2457 
2458 static int __init intel_pstate_msrs_not_valid(void)
2459 {
2460 	if (!pstate_funcs.get_max() ||
2461 	    !pstate_funcs.get_min() ||
2462 	    !pstate_funcs.get_turbo())
2463 		return -ENODEV;
2464 
2465 	return 0;
2466 }
2467 
2468 static void __init copy_pid_params(struct pstate_adjust_policy *policy)
2469 {
2470 	pid_params.sample_rate_ms = policy->sample_rate_ms;
2471 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
2472 	pid_params.p_gain_pct = policy->p_gain_pct;
2473 	pid_params.i_gain_pct = policy->i_gain_pct;
2474 	pid_params.d_gain_pct = policy->d_gain_pct;
2475 	pid_params.deadband = policy->deadband;
2476 	pid_params.setpoint = policy->setpoint;
2477 }
2478 
2479 #ifdef CONFIG_ACPI
2480 static void intel_pstate_use_acpi_profile(void)
2481 {
2482 	if (acpi_gbl_FADT.preferred_profile == PM_MOBILE)
2483 		pstate_funcs.get_target_pstate =
2484 				get_target_pstate_use_cpu_load;
2485 }
2486 #else
2487 static void intel_pstate_use_acpi_profile(void)
2488 {
2489 }
2490 #endif
2491 
2492 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2493 {
2494 	pstate_funcs.get_max   = funcs->get_max;
2495 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2496 	pstate_funcs.get_min   = funcs->get_min;
2497 	pstate_funcs.get_turbo = funcs->get_turbo;
2498 	pstate_funcs.get_scaling = funcs->get_scaling;
2499 	pstate_funcs.get_val   = funcs->get_val;
2500 	pstate_funcs.get_vid   = funcs->get_vid;
2501 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2502 
2503 	intel_pstate_use_acpi_profile();
2504 }
2505 
2506 #ifdef CONFIG_ACPI
2507 
2508 static bool __init intel_pstate_no_acpi_pss(void)
2509 {
2510 	int i;
2511 
2512 	for_each_possible_cpu(i) {
2513 		acpi_status status;
2514 		union acpi_object *pss;
2515 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2516 		struct acpi_processor *pr = per_cpu(processors, i);
2517 
2518 		if (!pr)
2519 			continue;
2520 
2521 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2522 		if (ACPI_FAILURE(status))
2523 			continue;
2524 
2525 		pss = buffer.pointer;
2526 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2527 			kfree(pss);
2528 			return false;
2529 		}
2530 
2531 		kfree(pss);
2532 	}
2533 
2534 	return true;
2535 }
2536 
2537 static bool __init intel_pstate_has_acpi_ppc(void)
2538 {
2539 	int i;
2540 
2541 	for_each_possible_cpu(i) {
2542 		struct acpi_processor *pr = per_cpu(processors, i);
2543 
2544 		if (!pr)
2545 			continue;
2546 		if (acpi_has_method(pr->handle, "_PPC"))
2547 			return true;
2548 	}
2549 	return false;
2550 }
2551 
2552 enum {
2553 	PSS,
2554 	PPC,
2555 };
2556 
2557 struct hw_vendor_info {
2558 	u16  valid;
2559 	char oem_id[ACPI_OEM_ID_SIZE];
2560 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2561 	int  oem_pwr_table;
2562 };
2563 
2564 /* Hardware vendor-specific info that has its own power management modes */
2565 static struct hw_vendor_info vendor_info[] __initdata = {
2566 	{1, "HP    ", "ProLiant", PSS},
2567 	{1, "ORACLE", "X4-2    ", PPC},
2568 	{1, "ORACLE", "X4-2L   ", PPC},
2569 	{1, "ORACLE", "X4-2B   ", PPC},
2570 	{1, "ORACLE", "X3-2    ", PPC},
2571 	{1, "ORACLE", "X3-2L   ", PPC},
2572 	{1, "ORACLE", "X3-2B   ", PPC},
2573 	{1, "ORACLE", "X4470M2 ", PPC},
2574 	{1, "ORACLE", "X4270M3 ", PPC},
2575 	{1, "ORACLE", "X4270M2 ", PPC},
2576 	{1, "ORACLE", "X4170M2 ", PPC},
2577 	{1, "ORACLE", "X4170 M3", PPC},
2578 	{1, "ORACLE", "X4275 M3", PPC},
2579 	{1, "ORACLE", "X6-2    ", PPC},
2580 	{1, "ORACLE", "Sudbury ", PPC},
2581 	{0, "", ""},
2582 };
2583 
2584 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2585 {
2586 	struct acpi_table_header hdr;
2587 	struct hw_vendor_info *v_info;
2588 	const struct x86_cpu_id *id;
2589 	u64 misc_pwr;
2590 
2591 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2592 	if (id) {
2593 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2594 		if ( misc_pwr & (1 << 8))
2595 			return true;
2596 	}
2597 
2598 	if (acpi_disabled ||
2599 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2600 		return false;
2601 
2602 	for (v_info = vendor_info; v_info->valid; v_info++) {
2603 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2604 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
2605 						ACPI_OEM_TABLE_ID_SIZE))
2606 			switch (v_info->oem_pwr_table) {
2607 			case PSS:
2608 				return intel_pstate_no_acpi_pss();
2609 			case PPC:
2610 				return intel_pstate_has_acpi_ppc() &&
2611 					(!force_load);
2612 			}
2613 	}
2614 
2615 	return false;
2616 }
2617 
2618 static void intel_pstate_request_control_from_smm(void)
2619 {
2620 	/*
2621 	 * It may be unsafe to request P-states control from SMM if _PPC support
2622 	 * has not been enabled.
2623 	 */
2624 	if (acpi_ppc)
2625 		acpi_processor_pstate_control();
2626 }
2627 #else /* CONFIG_ACPI not enabled */
2628 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2629 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2630 static inline void intel_pstate_request_control_from_smm(void) {}
2631 #endif /* CONFIG_ACPI */
2632 
2633 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2634 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2635 	{}
2636 };
2637 
2638 static int __init intel_pstate_init(void)
2639 {
2640 	const struct x86_cpu_id *id;
2641 	struct cpu_defaults *cpu_def;
2642 	int rc = 0;
2643 
2644 	if (no_load)
2645 		return -ENODEV;
2646 
2647 	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
2648 		copy_cpu_funcs(&core_params.funcs);
2649 		hwp_active++;
2650 		intel_pstate.attr = hwp_cpufreq_attrs;
2651 		goto hwp_cpu_matched;
2652 	}
2653 
2654 	id = x86_match_cpu(intel_pstate_cpu_ids);
2655 	if (!id)
2656 		return -ENODEV;
2657 
2658 	cpu_def = (struct cpu_defaults *)id->driver_data;
2659 
2660 	copy_pid_params(&cpu_def->pid_policy);
2661 	copy_cpu_funcs(&cpu_def->funcs);
2662 
2663 	if (intel_pstate_msrs_not_valid())
2664 		return -ENODEV;
2665 
2666 hwp_cpu_matched:
2667 	/*
2668 	 * The Intel pstate driver will be ignored if the platform
2669 	 * firmware has its own power management modes.
2670 	 */
2671 	if (intel_pstate_platform_pwr_mgmt_exists())
2672 		return -ENODEV;
2673 
2674 	if (!hwp_active && hwp_only)
2675 		return -ENOTSUPP;
2676 
2677 	pr_info("Intel P-state driver initializing\n");
2678 
2679 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2680 	if (!all_cpu_data)
2681 		return -ENOMEM;
2682 
2683 	intel_pstate_request_control_from_smm();
2684 
2685 	intel_pstate_sysfs_expose_params();
2686 
2687 	mutex_lock(&intel_pstate_driver_lock);
2688 	rc = intel_pstate_register_driver();
2689 	mutex_unlock(&intel_pstate_driver_lock);
2690 	if (rc)
2691 		return rc;
2692 
2693 	if (hwp_active)
2694 		pr_info("HWP enabled\n");
2695 
2696 	return 0;
2697 }
2698 device_initcall(intel_pstate_init);
2699 
2700 static int __init intel_pstate_setup(char *str)
2701 {
2702 	if (!str)
2703 		return -EINVAL;
2704 
2705 	if (!strcmp(str, "disable")) {
2706 		no_load = 1;
2707 	} else if (!strcmp(str, "passive")) {
2708 		pr_info("Passive mode enabled\n");
2709 		intel_pstate_driver = &intel_cpufreq;
2710 		no_hwp = 1;
2711 	}
2712 	if (!strcmp(str, "no_hwp")) {
2713 		pr_info("HWP disabled\n");
2714 		no_hwp = 1;
2715 	}
2716 	if (!strcmp(str, "force"))
2717 		force_load = 1;
2718 	if (!strcmp(str, "hwp_only"))
2719 		hwp_only = 1;
2720 	if (!strcmp(str, "per_cpu_perf_limits"))
2721 		per_cpu_limits = true;
2722 
2723 #ifdef CONFIG_ACPI
2724 	if (!strcmp(str, "support_acpi_ppc"))
2725 		acpi_ppc = true;
2726 #endif
2727 
2728 	return 0;
2729 }
2730 early_param("intel_pstate", intel_pstate_setup);
2731 
2732 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2733 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2734 MODULE_LICENSE("GPL");
2735