1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31 
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36 
37 #define BYT_RATIOS		0x66a
38 #define BYT_VIDS		0x66b
39 #define BYT_TURBO_RATIOS	0x66c
40 #define BYT_TURBO_VIDS		0x66d
41 
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45 
46 
47 static inline int32_t mul_fp(int32_t x, int32_t y)
48 {
49 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
50 }
51 
52 static inline int32_t div_fp(s64 x, s64 y)
53 {
54 	return div64_s64((int64_t)x << FRAC_BITS, y);
55 }
56 
57 static inline int ceiling_fp(int32_t x)
58 {
59 	int mask, ret;
60 
61 	ret = fp_toint(x);
62 	mask = (1 << FRAC_BITS) - 1;
63 	if (x & mask)
64 		ret += 1;
65 	return ret;
66 }
67 
68 struct sample {
69 	int32_t core_pct_busy;
70 	u64 aperf;
71 	u64 mperf;
72 	u64 tsc;
73 	int freq;
74 	ktime_t time;
75 };
76 
77 struct pstate_data {
78 	int	current_pstate;
79 	int	min_pstate;
80 	int	max_pstate;
81 	int	scaling;
82 	int	turbo_pstate;
83 };
84 
85 struct vid_data {
86 	int min;
87 	int max;
88 	int turbo;
89 	int32_t ratio;
90 };
91 
92 struct _pid {
93 	int setpoint;
94 	int32_t integral;
95 	int32_t p_gain;
96 	int32_t i_gain;
97 	int32_t d_gain;
98 	int deadband;
99 	int32_t last_err;
100 };
101 
102 struct cpudata {
103 	int cpu;
104 
105 	struct timer_list timer;
106 
107 	struct pstate_data pstate;
108 	struct vid_data vid;
109 	struct _pid pid;
110 
111 	ktime_t last_sample_time;
112 	u64	prev_aperf;
113 	u64	prev_mperf;
114 	u64	prev_tsc;
115 	struct sample sample;
116 };
117 
118 static struct cpudata **all_cpu_data;
119 struct pstate_adjust_policy {
120 	int sample_rate_ms;
121 	int deadband;
122 	int setpoint;
123 	int p_gain_pct;
124 	int d_gain_pct;
125 	int i_gain_pct;
126 };
127 
128 struct pstate_funcs {
129 	int (*get_max)(void);
130 	int (*get_min)(void);
131 	int (*get_turbo)(void);
132 	int (*get_scaling)(void);
133 	void (*set)(struct cpudata*, int pstate);
134 	void (*get_vid)(struct cpudata *);
135 };
136 
137 struct cpu_defaults {
138 	struct pstate_adjust_policy pid_policy;
139 	struct pstate_funcs funcs;
140 };
141 
142 static struct pstate_adjust_policy pid_params;
143 static struct pstate_funcs pstate_funcs;
144 static int hwp_active;
145 
146 struct perf_limits {
147 	int no_turbo;
148 	int turbo_disabled;
149 	int max_perf_pct;
150 	int min_perf_pct;
151 	int32_t max_perf;
152 	int32_t min_perf;
153 	int max_policy_pct;
154 	int max_sysfs_pct;
155 	int min_policy_pct;
156 	int min_sysfs_pct;
157 };
158 
159 static struct perf_limits limits = {
160 	.no_turbo = 0,
161 	.turbo_disabled = 0,
162 	.max_perf_pct = 100,
163 	.max_perf = int_tofp(1),
164 	.min_perf_pct = 0,
165 	.min_perf = 0,
166 	.max_policy_pct = 100,
167 	.max_sysfs_pct = 100,
168 	.min_policy_pct = 0,
169 	.min_sysfs_pct = 0,
170 };
171 
172 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
173 			     int deadband, int integral) {
174 	pid->setpoint = setpoint;
175 	pid->deadband  = deadband;
176 	pid->integral  = int_tofp(integral);
177 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
178 }
179 
180 static inline void pid_p_gain_set(struct _pid *pid, int percent)
181 {
182 	pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
183 }
184 
185 static inline void pid_i_gain_set(struct _pid *pid, int percent)
186 {
187 	pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
188 }
189 
190 static inline void pid_d_gain_set(struct _pid *pid, int percent)
191 {
192 	pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
193 }
194 
195 static signed int pid_calc(struct _pid *pid, int32_t busy)
196 {
197 	signed int result;
198 	int32_t pterm, dterm, fp_error;
199 	int32_t integral_limit;
200 
201 	fp_error = int_tofp(pid->setpoint) - busy;
202 
203 	if (abs(fp_error) <= int_tofp(pid->deadband))
204 		return 0;
205 
206 	pterm = mul_fp(pid->p_gain, fp_error);
207 
208 	pid->integral += fp_error;
209 
210 	/*
211 	 * We limit the integral here so that it will never
212 	 * get higher than 30.  This prevents it from becoming
213 	 * too large an input over long periods of time and allows
214 	 * it to get factored out sooner.
215 	 *
216 	 * The value of 30 was chosen through experimentation.
217 	 */
218 	integral_limit = int_tofp(30);
219 	if (pid->integral > integral_limit)
220 		pid->integral = integral_limit;
221 	if (pid->integral < -integral_limit)
222 		pid->integral = -integral_limit;
223 
224 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
225 	pid->last_err = fp_error;
226 
227 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
228 	result = result + (1 << (FRAC_BITS-1));
229 	return (signed int)fp_toint(result);
230 }
231 
232 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
233 {
234 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
235 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
236 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
237 
238 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
239 }
240 
241 static inline void intel_pstate_reset_all_pid(void)
242 {
243 	unsigned int cpu;
244 
245 	for_each_online_cpu(cpu) {
246 		if (all_cpu_data[cpu])
247 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
248 	}
249 }
250 
251 static inline void update_turbo_state(void)
252 {
253 	u64 misc_en;
254 	struct cpudata *cpu;
255 
256 	cpu = all_cpu_data[0];
257 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
258 	limits.turbo_disabled =
259 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
260 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
261 }
262 
263 #define PCT_TO_HWP(x) (x * 255 / 100)
264 static void intel_pstate_hwp_set(void)
265 {
266 	int min, max, cpu;
267 	u64 value, freq;
268 
269 	get_online_cpus();
270 
271 	for_each_online_cpu(cpu) {
272 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
273 		min = PCT_TO_HWP(limits.min_perf_pct);
274 		value &= ~HWP_MIN_PERF(~0L);
275 		value |= HWP_MIN_PERF(min);
276 
277 		max = PCT_TO_HWP(limits.max_perf_pct);
278 		if (limits.no_turbo) {
279 			rdmsrl( MSR_HWP_CAPABILITIES, freq);
280 			max = HWP_GUARANTEED_PERF(freq);
281 		}
282 
283 		value &= ~HWP_MAX_PERF(~0L);
284 		value |= HWP_MAX_PERF(max);
285 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
286 	}
287 
288 	put_online_cpus();
289 }
290 
291 /************************** debugfs begin ************************/
292 static int pid_param_set(void *data, u64 val)
293 {
294 	*(u32 *)data = val;
295 	intel_pstate_reset_all_pid();
296 	return 0;
297 }
298 
299 static int pid_param_get(void *data, u64 *val)
300 {
301 	*val = *(u32 *)data;
302 	return 0;
303 }
304 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
305 
306 struct pid_param {
307 	char *name;
308 	void *value;
309 };
310 
311 static struct pid_param pid_files[] = {
312 	{"sample_rate_ms", &pid_params.sample_rate_ms},
313 	{"d_gain_pct", &pid_params.d_gain_pct},
314 	{"i_gain_pct", &pid_params.i_gain_pct},
315 	{"deadband", &pid_params.deadband},
316 	{"setpoint", &pid_params.setpoint},
317 	{"p_gain_pct", &pid_params.p_gain_pct},
318 	{NULL, NULL}
319 };
320 
321 static void __init intel_pstate_debug_expose_params(void)
322 {
323 	struct dentry *debugfs_parent;
324 	int i = 0;
325 
326 	if (hwp_active)
327 		return;
328 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
329 	if (IS_ERR_OR_NULL(debugfs_parent))
330 		return;
331 	while (pid_files[i].name) {
332 		debugfs_create_file(pid_files[i].name, 0660,
333 				    debugfs_parent, pid_files[i].value,
334 				    &fops_pid_param);
335 		i++;
336 	}
337 }
338 
339 /************************** debugfs end ************************/
340 
341 /************************** sysfs begin ************************/
342 #define show_one(file_name, object)					\
343 	static ssize_t show_##file_name					\
344 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
345 	{								\
346 		return sprintf(buf, "%u\n", limits.object);		\
347 	}
348 
349 static ssize_t show_turbo_pct(struct kobject *kobj,
350 				struct attribute *attr, char *buf)
351 {
352 	struct cpudata *cpu;
353 	int total, no_turbo, turbo_pct;
354 	uint32_t turbo_fp;
355 
356 	cpu = all_cpu_data[0];
357 
358 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
359 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
360 	turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
361 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
362 	return sprintf(buf, "%u\n", turbo_pct);
363 }
364 
365 static ssize_t show_num_pstates(struct kobject *kobj,
366 				struct attribute *attr, char *buf)
367 {
368 	struct cpudata *cpu;
369 	int total;
370 
371 	cpu = all_cpu_data[0];
372 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
373 	return sprintf(buf, "%u\n", total);
374 }
375 
376 static ssize_t show_no_turbo(struct kobject *kobj,
377 			     struct attribute *attr, char *buf)
378 {
379 	ssize_t ret;
380 
381 	update_turbo_state();
382 	if (limits.turbo_disabled)
383 		ret = sprintf(buf, "%u\n", limits.turbo_disabled);
384 	else
385 		ret = sprintf(buf, "%u\n", limits.no_turbo);
386 
387 	return ret;
388 }
389 
390 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
391 			      const char *buf, size_t count)
392 {
393 	unsigned int input;
394 	int ret;
395 
396 	ret = sscanf(buf, "%u", &input);
397 	if (ret != 1)
398 		return -EINVAL;
399 
400 	update_turbo_state();
401 	if (limits.turbo_disabled) {
402 		pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
403 		return -EPERM;
404 	}
405 
406 	limits.no_turbo = clamp_t(int, input, 0, 1);
407 
408 	if (hwp_active)
409 		intel_pstate_hwp_set();
410 
411 	return count;
412 }
413 
414 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
415 				  const char *buf, size_t count)
416 {
417 	unsigned int input;
418 	int ret;
419 
420 	ret = sscanf(buf, "%u", &input);
421 	if (ret != 1)
422 		return -EINVAL;
423 
424 	limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
425 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
426 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
427 
428 	if (hwp_active)
429 		intel_pstate_hwp_set();
430 	return count;
431 }
432 
433 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
434 				  const char *buf, size_t count)
435 {
436 	unsigned int input;
437 	int ret;
438 
439 	ret = sscanf(buf, "%u", &input);
440 	if (ret != 1)
441 		return -EINVAL;
442 
443 	limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
444 	limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
445 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
446 
447 	if (hwp_active)
448 		intel_pstate_hwp_set();
449 	return count;
450 }
451 
452 show_one(max_perf_pct, max_perf_pct);
453 show_one(min_perf_pct, min_perf_pct);
454 
455 define_one_global_rw(no_turbo);
456 define_one_global_rw(max_perf_pct);
457 define_one_global_rw(min_perf_pct);
458 define_one_global_ro(turbo_pct);
459 define_one_global_ro(num_pstates);
460 
461 static struct attribute *intel_pstate_attributes[] = {
462 	&no_turbo.attr,
463 	&max_perf_pct.attr,
464 	&min_perf_pct.attr,
465 	&turbo_pct.attr,
466 	&num_pstates.attr,
467 	NULL
468 };
469 
470 static struct attribute_group intel_pstate_attr_group = {
471 	.attrs = intel_pstate_attributes,
472 };
473 
474 static void __init intel_pstate_sysfs_expose_params(void)
475 {
476 	struct kobject *intel_pstate_kobject;
477 	int rc;
478 
479 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
480 						&cpu_subsys.dev_root->kobj);
481 	BUG_ON(!intel_pstate_kobject);
482 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
483 	BUG_ON(rc);
484 }
485 /************************** sysfs end ************************/
486 
487 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
488 {
489 	pr_info("intel_pstate: HWP enabled\n");
490 
491 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
492 }
493 
494 static int byt_get_min_pstate(void)
495 {
496 	u64 value;
497 
498 	rdmsrl(BYT_RATIOS, value);
499 	return (value >> 8) & 0x7F;
500 }
501 
502 static int byt_get_max_pstate(void)
503 {
504 	u64 value;
505 
506 	rdmsrl(BYT_RATIOS, value);
507 	return (value >> 16) & 0x7F;
508 }
509 
510 static int byt_get_turbo_pstate(void)
511 {
512 	u64 value;
513 
514 	rdmsrl(BYT_TURBO_RATIOS, value);
515 	return value & 0x7F;
516 }
517 
518 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
519 {
520 	u64 val;
521 	int32_t vid_fp;
522 	u32 vid;
523 
524 	val = (u64)pstate << 8;
525 	if (limits.no_turbo && !limits.turbo_disabled)
526 		val |= (u64)1 << 32;
527 
528 	vid_fp = cpudata->vid.min + mul_fp(
529 		int_tofp(pstate - cpudata->pstate.min_pstate),
530 		cpudata->vid.ratio);
531 
532 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
533 	vid = ceiling_fp(vid_fp);
534 
535 	if (pstate > cpudata->pstate.max_pstate)
536 		vid = cpudata->vid.turbo;
537 
538 	val |= vid;
539 
540 	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
541 }
542 
543 #define BYT_BCLK_FREQS 5
544 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
545 
546 static int byt_get_scaling(void)
547 {
548 	u64 value;
549 	int i;
550 
551 	rdmsrl(MSR_FSB_FREQ, value);
552 	i = value & 0x3;
553 
554 	BUG_ON(i > BYT_BCLK_FREQS);
555 
556 	return byt_freq_table[i] * 100;
557 }
558 
559 static void byt_get_vid(struct cpudata *cpudata)
560 {
561 	u64 value;
562 
563 	rdmsrl(BYT_VIDS, value);
564 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
565 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
566 	cpudata->vid.ratio = div_fp(
567 		cpudata->vid.max - cpudata->vid.min,
568 		int_tofp(cpudata->pstate.max_pstate -
569 			cpudata->pstate.min_pstate));
570 
571 	rdmsrl(BYT_TURBO_VIDS, value);
572 	cpudata->vid.turbo = value & 0x7f;
573 }
574 
575 static int core_get_min_pstate(void)
576 {
577 	u64 value;
578 
579 	rdmsrl(MSR_PLATFORM_INFO, value);
580 	return (value >> 40) & 0xFF;
581 }
582 
583 static int core_get_max_pstate(void)
584 {
585 	u64 value;
586 
587 	rdmsrl(MSR_PLATFORM_INFO, value);
588 	return (value >> 8) & 0xFF;
589 }
590 
591 static int core_get_turbo_pstate(void)
592 {
593 	u64 value;
594 	int nont, ret;
595 
596 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
597 	nont = core_get_max_pstate();
598 	ret = (value) & 255;
599 	if (ret <= nont)
600 		ret = nont;
601 	return ret;
602 }
603 
604 static inline int core_get_scaling(void)
605 {
606 	return 100000;
607 }
608 
609 static void core_set_pstate(struct cpudata *cpudata, int pstate)
610 {
611 	u64 val;
612 
613 	val = (u64)pstate << 8;
614 	if (limits.no_turbo && !limits.turbo_disabled)
615 		val |= (u64)1 << 32;
616 
617 	wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
618 }
619 
620 static int knl_get_turbo_pstate(void)
621 {
622 	u64 value;
623 	int nont, ret;
624 
625 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
626 	nont = core_get_max_pstate();
627 	ret = (((value) >> 8) & 0xFF);
628 	if (ret <= nont)
629 		ret = nont;
630 	return ret;
631 }
632 
633 static struct cpu_defaults core_params = {
634 	.pid_policy = {
635 		.sample_rate_ms = 10,
636 		.deadband = 0,
637 		.setpoint = 97,
638 		.p_gain_pct = 20,
639 		.d_gain_pct = 0,
640 		.i_gain_pct = 0,
641 	},
642 	.funcs = {
643 		.get_max = core_get_max_pstate,
644 		.get_min = core_get_min_pstate,
645 		.get_turbo = core_get_turbo_pstate,
646 		.get_scaling = core_get_scaling,
647 		.set = core_set_pstate,
648 	},
649 };
650 
651 static struct cpu_defaults byt_params = {
652 	.pid_policy = {
653 		.sample_rate_ms = 10,
654 		.deadband = 0,
655 		.setpoint = 60,
656 		.p_gain_pct = 14,
657 		.d_gain_pct = 0,
658 		.i_gain_pct = 4,
659 	},
660 	.funcs = {
661 		.get_max = byt_get_max_pstate,
662 		.get_min = byt_get_min_pstate,
663 		.get_turbo = byt_get_turbo_pstate,
664 		.set = byt_set_pstate,
665 		.get_scaling = byt_get_scaling,
666 		.get_vid = byt_get_vid,
667 	},
668 };
669 
670 static struct cpu_defaults knl_params = {
671 	.pid_policy = {
672 		.sample_rate_ms = 10,
673 		.deadband = 0,
674 		.setpoint = 97,
675 		.p_gain_pct = 20,
676 		.d_gain_pct = 0,
677 		.i_gain_pct = 0,
678 	},
679 	.funcs = {
680 		.get_max = core_get_max_pstate,
681 		.get_min = core_get_min_pstate,
682 		.get_turbo = knl_get_turbo_pstate,
683 		.get_scaling = core_get_scaling,
684 		.set = core_set_pstate,
685 	},
686 };
687 
688 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
689 {
690 	int max_perf = cpu->pstate.turbo_pstate;
691 	int max_perf_adj;
692 	int min_perf;
693 
694 	if (limits.no_turbo || limits.turbo_disabled)
695 		max_perf = cpu->pstate.max_pstate;
696 
697 	/*
698 	 * performance can be limited by user through sysfs, by cpufreq
699 	 * policy, or by cpu specific default values determined through
700 	 * experimentation.
701 	 */
702 	max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
703 	*max = clamp_t(int, max_perf_adj,
704 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
705 
706 	min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
707 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
708 }
709 
710 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
711 {
712 	int max_perf, min_perf;
713 
714 	if (force) {
715 		update_turbo_state();
716 
717 		intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
718 
719 		pstate = clamp_t(int, pstate, min_perf, max_perf);
720 
721 		if (pstate == cpu->pstate.current_pstate)
722 			return;
723 	}
724 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
725 
726 	cpu->pstate.current_pstate = pstate;
727 
728 	pstate_funcs.set(cpu, pstate);
729 }
730 
731 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
732 {
733 	cpu->pstate.min_pstate = pstate_funcs.get_min();
734 	cpu->pstate.max_pstate = pstate_funcs.get_max();
735 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
736 	cpu->pstate.scaling = pstate_funcs.get_scaling();
737 
738 	if (pstate_funcs.get_vid)
739 		pstate_funcs.get_vid(cpu);
740 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
741 }
742 
743 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
744 {
745 	struct sample *sample = &cpu->sample;
746 	int64_t core_pct;
747 
748 	core_pct = int_tofp(sample->aperf) * int_tofp(100);
749 	core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
750 
751 	sample->freq = fp_toint(
752 		mul_fp(int_tofp(
753 			cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
754 			core_pct));
755 
756 	sample->core_pct_busy = (int32_t)core_pct;
757 }
758 
759 static inline void intel_pstate_sample(struct cpudata *cpu)
760 {
761 	u64 aperf, mperf;
762 	unsigned long flags;
763 	u64 tsc;
764 
765 	local_irq_save(flags);
766 	rdmsrl(MSR_IA32_APERF, aperf);
767 	rdmsrl(MSR_IA32_MPERF, mperf);
768 	tsc = native_read_tsc();
769 	local_irq_restore(flags);
770 
771 	cpu->last_sample_time = cpu->sample.time;
772 	cpu->sample.time = ktime_get();
773 	cpu->sample.aperf = aperf;
774 	cpu->sample.mperf = mperf;
775 	cpu->sample.tsc =  tsc;
776 	cpu->sample.aperf -= cpu->prev_aperf;
777 	cpu->sample.mperf -= cpu->prev_mperf;
778 	cpu->sample.tsc -= cpu->prev_tsc;
779 
780 	intel_pstate_calc_busy(cpu);
781 
782 	cpu->prev_aperf = aperf;
783 	cpu->prev_mperf = mperf;
784 	cpu->prev_tsc = tsc;
785 }
786 
787 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
788 {
789 	int delay;
790 
791 	delay = msecs_to_jiffies(50);
792 	mod_timer_pinned(&cpu->timer, jiffies + delay);
793 }
794 
795 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
796 {
797 	int delay;
798 
799 	delay = msecs_to_jiffies(pid_params.sample_rate_ms);
800 	mod_timer_pinned(&cpu->timer, jiffies + delay);
801 }
802 
803 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
804 {
805 	int32_t core_busy, max_pstate, current_pstate, sample_ratio;
806 	s64 duration_us;
807 	u32 sample_time;
808 
809 	/*
810 	 * core_busy is the ratio of actual performance to max
811 	 * max_pstate is the max non turbo pstate available
812 	 * current_pstate was the pstate that was requested during
813 	 * 	the last sample period.
814 	 *
815 	 * We normalize core_busy, which was our actual percent
816 	 * performance to what we requested during the last sample
817 	 * period. The result will be a percentage of busy at a
818 	 * specified pstate.
819 	 */
820 	core_busy = cpu->sample.core_pct_busy;
821 	max_pstate = int_tofp(cpu->pstate.max_pstate);
822 	current_pstate = int_tofp(cpu->pstate.current_pstate);
823 	core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
824 
825 	/*
826 	 * Since we have a deferred timer, it will not fire unless
827 	 * we are in C0.  So, determine if the actual elapsed time
828 	 * is significantly greater (3x) than our sample interval.  If it
829 	 * is, then we were idle for a long enough period of time
830 	 * to adjust our busyness.
831 	 */
832 	sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
833 	duration_us = ktime_us_delta(cpu->sample.time,
834 				     cpu->last_sample_time);
835 	if (duration_us > sample_time * 3) {
836 		sample_ratio = div_fp(int_tofp(sample_time),
837 				      int_tofp(duration_us));
838 		core_busy = mul_fp(core_busy, sample_ratio);
839 	}
840 
841 	return core_busy;
842 }
843 
844 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
845 {
846 	int32_t busy_scaled;
847 	struct _pid *pid;
848 	signed int ctl;
849 	int from;
850 	struct sample *sample;
851 
852 	from = cpu->pstate.current_pstate;
853 
854 	pid = &cpu->pid;
855 	busy_scaled = intel_pstate_get_scaled_busy(cpu);
856 
857 	ctl = pid_calc(pid, busy_scaled);
858 
859 	/* Negative values of ctl increase the pstate and vice versa */
860 	intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
861 
862 	sample = &cpu->sample;
863 	trace_pstate_sample(fp_toint(sample->core_pct_busy),
864 		fp_toint(busy_scaled),
865 		from,
866 		cpu->pstate.current_pstate,
867 		sample->mperf,
868 		sample->aperf,
869 		sample->tsc,
870 		sample->freq);
871 }
872 
873 static void intel_hwp_timer_func(unsigned long __data)
874 {
875 	struct cpudata *cpu = (struct cpudata *) __data;
876 
877 	intel_pstate_sample(cpu);
878 	intel_hwp_set_sample_time(cpu);
879 }
880 
881 static void intel_pstate_timer_func(unsigned long __data)
882 {
883 	struct cpudata *cpu = (struct cpudata *) __data;
884 
885 	intel_pstate_sample(cpu);
886 
887 	intel_pstate_adjust_busy_pstate(cpu);
888 
889 	intel_pstate_set_sample_time(cpu);
890 }
891 
892 #define ICPU(model, policy) \
893 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
894 			(unsigned long)&policy }
895 
896 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
897 	ICPU(0x2a, core_params),
898 	ICPU(0x2d, core_params),
899 	ICPU(0x37, byt_params),
900 	ICPU(0x3a, core_params),
901 	ICPU(0x3c, core_params),
902 	ICPU(0x3d, core_params),
903 	ICPU(0x3e, core_params),
904 	ICPU(0x3f, core_params),
905 	ICPU(0x45, core_params),
906 	ICPU(0x46, core_params),
907 	ICPU(0x47, core_params),
908 	ICPU(0x4c, byt_params),
909 	ICPU(0x4e, core_params),
910 	ICPU(0x4f, core_params),
911 	ICPU(0x5e, core_params),
912 	ICPU(0x56, core_params),
913 	ICPU(0x57, knl_params),
914 	{}
915 };
916 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
917 
918 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
919 	ICPU(0x56, core_params),
920 	{}
921 };
922 
923 static int intel_pstate_init_cpu(unsigned int cpunum)
924 {
925 	struct cpudata *cpu;
926 
927 	if (!all_cpu_data[cpunum])
928 		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
929 					       GFP_KERNEL);
930 	if (!all_cpu_data[cpunum])
931 		return -ENOMEM;
932 
933 	cpu = all_cpu_data[cpunum];
934 
935 	cpu->cpu = cpunum;
936 
937 	if (hwp_active)
938 		intel_pstate_hwp_enable(cpu);
939 
940 	intel_pstate_get_cpu_pstates(cpu);
941 
942 	init_timer_deferrable(&cpu->timer);
943 	cpu->timer.data = (unsigned long)cpu;
944 	cpu->timer.expires = jiffies + HZ/100;
945 
946 	if (!hwp_active)
947 		cpu->timer.function = intel_pstate_timer_func;
948 	else
949 		cpu->timer.function = intel_hwp_timer_func;
950 
951 	intel_pstate_busy_pid_reset(cpu);
952 	intel_pstate_sample(cpu);
953 
954 	add_timer_on(&cpu->timer, cpunum);
955 
956 	pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
957 
958 	return 0;
959 }
960 
961 static unsigned int intel_pstate_get(unsigned int cpu_num)
962 {
963 	struct sample *sample;
964 	struct cpudata *cpu;
965 
966 	cpu = all_cpu_data[cpu_num];
967 	if (!cpu)
968 		return 0;
969 	sample = &cpu->sample;
970 	return sample->freq;
971 }
972 
973 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
974 {
975 	if (!policy->cpuinfo.max_freq)
976 		return -ENODEV;
977 
978 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
979 	    policy->max >= policy->cpuinfo.max_freq) {
980 		limits.min_policy_pct = 100;
981 		limits.min_perf_pct = 100;
982 		limits.min_perf = int_tofp(1);
983 		limits.max_policy_pct = 100;
984 		limits.max_perf_pct = 100;
985 		limits.max_perf = int_tofp(1);
986 		limits.no_turbo = 0;
987 		return 0;
988 	}
989 
990 	limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
991 	limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
992 	limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
993 	limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
994 
995 	limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
996 	limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
997 	limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
998 	limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
999 
1000 	if (hwp_active)
1001 		intel_pstate_hwp_set();
1002 
1003 	return 0;
1004 }
1005 
1006 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1007 {
1008 	cpufreq_verify_within_cpu_limits(policy);
1009 
1010 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1011 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1012 		return -EINVAL;
1013 
1014 	return 0;
1015 }
1016 
1017 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1018 {
1019 	int cpu_num = policy->cpu;
1020 	struct cpudata *cpu = all_cpu_data[cpu_num];
1021 
1022 	pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1023 
1024 	del_timer_sync(&all_cpu_data[cpu_num]->timer);
1025 	if (hwp_active)
1026 		return;
1027 
1028 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1029 }
1030 
1031 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1032 {
1033 	struct cpudata *cpu;
1034 	int rc;
1035 
1036 	rc = intel_pstate_init_cpu(policy->cpu);
1037 	if (rc)
1038 		return rc;
1039 
1040 	cpu = all_cpu_data[policy->cpu];
1041 
1042 	if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1043 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1044 	else
1045 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1046 
1047 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1048 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1049 
1050 	/* cpuinfo and default policy values */
1051 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1052 	policy->cpuinfo.max_freq =
1053 		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1054 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1055 	cpumask_set_cpu(policy->cpu, policy->cpus);
1056 
1057 	return 0;
1058 }
1059 
1060 static struct cpufreq_driver intel_pstate_driver = {
1061 	.flags		= CPUFREQ_CONST_LOOPS,
1062 	.verify		= intel_pstate_verify_policy,
1063 	.setpolicy	= intel_pstate_set_policy,
1064 	.get		= intel_pstate_get,
1065 	.init		= intel_pstate_cpu_init,
1066 	.stop_cpu	= intel_pstate_stop_cpu,
1067 	.name		= "intel_pstate",
1068 };
1069 
1070 static int __initdata no_load;
1071 static int __initdata no_hwp;
1072 static int __initdata hwp_only;
1073 static unsigned int force_load;
1074 
1075 static int intel_pstate_msrs_not_valid(void)
1076 {
1077 	if (!pstate_funcs.get_max() ||
1078 	    !pstate_funcs.get_min() ||
1079 	    !pstate_funcs.get_turbo())
1080 		return -ENODEV;
1081 
1082 	return 0;
1083 }
1084 
1085 static void copy_pid_params(struct pstate_adjust_policy *policy)
1086 {
1087 	pid_params.sample_rate_ms = policy->sample_rate_ms;
1088 	pid_params.p_gain_pct = policy->p_gain_pct;
1089 	pid_params.i_gain_pct = policy->i_gain_pct;
1090 	pid_params.d_gain_pct = policy->d_gain_pct;
1091 	pid_params.deadband = policy->deadband;
1092 	pid_params.setpoint = policy->setpoint;
1093 }
1094 
1095 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1096 {
1097 	pstate_funcs.get_max   = funcs->get_max;
1098 	pstate_funcs.get_min   = funcs->get_min;
1099 	pstate_funcs.get_turbo = funcs->get_turbo;
1100 	pstate_funcs.get_scaling = funcs->get_scaling;
1101 	pstate_funcs.set       = funcs->set;
1102 	pstate_funcs.get_vid   = funcs->get_vid;
1103 }
1104 
1105 #if IS_ENABLED(CONFIG_ACPI)
1106 #include <acpi/processor.h>
1107 
1108 static bool intel_pstate_no_acpi_pss(void)
1109 {
1110 	int i;
1111 
1112 	for_each_possible_cpu(i) {
1113 		acpi_status status;
1114 		union acpi_object *pss;
1115 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1116 		struct acpi_processor *pr = per_cpu(processors, i);
1117 
1118 		if (!pr)
1119 			continue;
1120 
1121 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1122 		if (ACPI_FAILURE(status))
1123 			continue;
1124 
1125 		pss = buffer.pointer;
1126 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1127 			kfree(pss);
1128 			return false;
1129 		}
1130 
1131 		kfree(pss);
1132 	}
1133 
1134 	return true;
1135 }
1136 
1137 static bool intel_pstate_has_acpi_ppc(void)
1138 {
1139 	int i;
1140 
1141 	for_each_possible_cpu(i) {
1142 		struct acpi_processor *pr = per_cpu(processors, i);
1143 
1144 		if (!pr)
1145 			continue;
1146 		if (acpi_has_method(pr->handle, "_PPC"))
1147 			return true;
1148 	}
1149 	return false;
1150 }
1151 
1152 enum {
1153 	PSS,
1154 	PPC,
1155 };
1156 
1157 struct hw_vendor_info {
1158 	u16  valid;
1159 	char oem_id[ACPI_OEM_ID_SIZE];
1160 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1161 	int  oem_pwr_table;
1162 };
1163 
1164 /* Hardware vendor-specific info that has its own power management modes */
1165 static struct hw_vendor_info vendor_info[] = {
1166 	{1, "HP    ", "ProLiant", PSS},
1167 	{1, "ORACLE", "X4-2    ", PPC},
1168 	{1, "ORACLE", "X4-2L   ", PPC},
1169 	{1, "ORACLE", "X4-2B   ", PPC},
1170 	{1, "ORACLE", "X3-2    ", PPC},
1171 	{1, "ORACLE", "X3-2L   ", PPC},
1172 	{1, "ORACLE", "X3-2B   ", PPC},
1173 	{1, "ORACLE", "X4470M2 ", PPC},
1174 	{1, "ORACLE", "X4270M3 ", PPC},
1175 	{1, "ORACLE", "X4270M2 ", PPC},
1176 	{1, "ORACLE", "X4170M2 ", PPC},
1177 	{0, "", ""},
1178 };
1179 
1180 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1181 {
1182 	struct acpi_table_header hdr;
1183 	struct hw_vendor_info *v_info;
1184 	const struct x86_cpu_id *id;
1185 	u64 misc_pwr;
1186 
1187 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1188 	if (id) {
1189 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1190 		if ( misc_pwr & (1 << 8))
1191 			return true;
1192 	}
1193 
1194 	if (acpi_disabled ||
1195 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1196 		return false;
1197 
1198 	for (v_info = vendor_info; v_info->valid; v_info++) {
1199 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1200 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1201 						ACPI_OEM_TABLE_ID_SIZE))
1202 			switch (v_info->oem_pwr_table) {
1203 			case PSS:
1204 				return intel_pstate_no_acpi_pss();
1205 			case PPC:
1206 				return intel_pstate_has_acpi_ppc() &&
1207 					(!force_load);
1208 			}
1209 	}
1210 
1211 	return false;
1212 }
1213 #else /* CONFIG_ACPI not enabled */
1214 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1215 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1216 #endif /* CONFIG_ACPI */
1217 
1218 static int __init intel_pstate_init(void)
1219 {
1220 	int cpu, rc = 0;
1221 	const struct x86_cpu_id *id;
1222 	struct cpu_defaults *cpu_def;
1223 
1224 	if (no_load)
1225 		return -ENODEV;
1226 
1227 	id = x86_match_cpu(intel_pstate_cpu_ids);
1228 	if (!id)
1229 		return -ENODEV;
1230 
1231 	/*
1232 	 * The Intel pstate driver will be ignored if the platform
1233 	 * firmware has its own power management modes.
1234 	 */
1235 	if (intel_pstate_platform_pwr_mgmt_exists())
1236 		return -ENODEV;
1237 
1238 	cpu_def = (struct cpu_defaults *)id->driver_data;
1239 
1240 	copy_pid_params(&cpu_def->pid_policy);
1241 	copy_cpu_funcs(&cpu_def->funcs);
1242 
1243 	if (intel_pstate_msrs_not_valid())
1244 		return -ENODEV;
1245 
1246 	pr_info("Intel P-state driver initializing.\n");
1247 
1248 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1249 	if (!all_cpu_data)
1250 		return -ENOMEM;
1251 
1252 	if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1253 		hwp_active++;
1254 
1255 	if (!hwp_active && hwp_only)
1256 		goto out;
1257 
1258 	rc = cpufreq_register_driver(&intel_pstate_driver);
1259 	if (rc)
1260 		goto out;
1261 
1262 	intel_pstate_debug_expose_params();
1263 	intel_pstate_sysfs_expose_params();
1264 
1265 	return rc;
1266 out:
1267 	get_online_cpus();
1268 	for_each_online_cpu(cpu) {
1269 		if (all_cpu_data[cpu]) {
1270 			del_timer_sync(&all_cpu_data[cpu]->timer);
1271 			kfree(all_cpu_data[cpu]);
1272 		}
1273 	}
1274 
1275 	put_online_cpus();
1276 	vfree(all_cpu_data);
1277 	return -ENODEV;
1278 }
1279 device_initcall(intel_pstate_init);
1280 
1281 static int __init intel_pstate_setup(char *str)
1282 {
1283 	if (!str)
1284 		return -EINVAL;
1285 
1286 	if (!strcmp(str, "disable"))
1287 		no_load = 1;
1288 	if (!strcmp(str, "no_hwp"))
1289 		no_hwp = 1;
1290 	if (!strcmp(str, "force"))
1291 		force_load = 1;
1292 	if (!strcmp(str, "hwp_only"))
1293 		hwp_only = 1;
1294 	return 0;
1295 }
1296 early_param("intel_pstate", intel_pstate_setup);
1297 
1298 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1299 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1300 MODULE_LICENSE("GPL");
1301