1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
41 #define INTEL_PSTATE_HWP_SAMPLING_INTERVAL	(50 * NSEC_PER_MSEC)
42 
43 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
45 
46 #ifdef CONFIG_ACPI
47 #include <acpi/processor.h>
48 #include <acpi/cppc_acpi.h>
49 #endif
50 
51 #define FRAC_BITS 8
52 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53 #define fp_toint(X) ((X) >> FRAC_BITS)
54 
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59 
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64 
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67 	return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69 
70 static inline int ceiling_fp(int32_t x)
71 {
72 	int mask, ret;
73 
74 	ret = fp_toint(x);
75 	mask = (1 << FRAC_BITS) - 1;
76 	if (x & mask)
77 		ret += 1;
78 	return ret;
79 }
80 
81 static inline int32_t percent_fp(int percent)
82 {
83 	return div_fp(percent, 100);
84 }
85 
86 static inline u64 mul_ext_fp(u64 x, u64 y)
87 {
88 	return (x * y) >> EXT_FRAC_BITS;
89 }
90 
91 static inline u64 div_ext_fp(u64 x, u64 y)
92 {
93 	return div64_u64(x << EXT_FRAC_BITS, y);
94 }
95 
96 static inline int32_t percent_ext_fp(int percent)
97 {
98 	return div_ext_fp(percent, 100);
99 }
100 
101 /**
102  * struct sample -	Store performance sample
103  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
104  *			performance during last sample period
105  * @busy_scaled:	Scaled busy value which is used to calculate next
106  *			P state. This can be different than core_avg_perf
107  *			to account for cpu idle period
108  * @aperf:		Difference of actual performance frequency clock count
109  *			read from APERF MSR between last and current sample
110  * @mperf:		Difference of maximum performance frequency clock count
111  *			read from MPERF MSR between last and current sample
112  * @tsc:		Difference of time stamp counter between last and
113  *			current sample
114  * @time:		Current time from scheduler
115  *
116  * This structure is used in the cpudata structure to store performance sample
117  * data for choosing next P State.
118  */
119 struct sample {
120 	int32_t core_avg_perf;
121 	int32_t busy_scaled;
122 	u64 aperf;
123 	u64 mperf;
124 	u64 tsc;
125 	u64 time;
126 };
127 
128 /**
129  * struct pstate_data - Store P state data
130  * @current_pstate:	Current requested P state
131  * @min_pstate:		Min P state possible for this platform
132  * @max_pstate:		Max P state possible for this platform
133  * @max_pstate_physical:This is physical Max P state for a processor
134  *			This can be higher than the max_pstate which can
135  *			be limited by platform thermal design power limits
136  * @scaling:		Scaling factor to  convert frequency to cpufreq
137  *			frequency units
138  * @turbo_pstate:	Max Turbo P state possible for this platform
139  * @max_freq:		@max_pstate frequency in cpufreq units
140  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
141  *
142  * Stores the per cpu model P state limits and current P state.
143  */
144 struct pstate_data {
145 	int	current_pstate;
146 	int	min_pstate;
147 	int	max_pstate;
148 	int	max_pstate_physical;
149 	int	scaling;
150 	int	turbo_pstate;
151 	unsigned int max_freq;
152 	unsigned int turbo_freq;
153 };
154 
155 /**
156  * struct vid_data -	Stores voltage information data
157  * @min:		VID data for this platform corresponding to
158  *			the lowest P state
159  * @max:		VID data corresponding to the highest P State.
160  * @turbo:		VID data for turbo P state
161  * @ratio:		Ratio of (vid max - vid min) /
162  *			(max P state - Min P State)
163  *
164  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
165  * This data is used in Atom platforms, where in addition to target P state,
166  * the voltage data needs to be specified to select next P State.
167  */
168 struct vid_data {
169 	int min;
170 	int max;
171 	int turbo;
172 	int32_t ratio;
173 };
174 
175 /**
176  * struct _pid -	Stores PID data
177  * @setpoint:		Target set point for busyness or performance
178  * @integral:		Storage for accumulated error values
179  * @p_gain:		PID proportional gain
180  * @i_gain:		PID integral gain
181  * @d_gain:		PID derivative gain
182  * @deadband:		PID deadband
183  * @last_err:		Last error storage for integral part of PID calculation
184  *
185  * Stores PID coefficients and last error for PID controller.
186  */
187 struct _pid {
188 	int setpoint;
189 	int32_t integral;
190 	int32_t p_gain;
191 	int32_t i_gain;
192 	int32_t d_gain;
193 	int deadband;
194 	int32_t last_err;
195 };
196 
197 /**
198  * struct global_params - Global parameters, mostly tunable via sysfs.
199  * @no_turbo:		Whether or not to use turbo P-states.
200  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
201  *			based on the MSR_IA32_MISC_ENABLE value and whether or
202  *			not the maximum reported turbo P-state is different from
203  *			the maximum reported non-turbo one.
204  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
205  *			P-state capacity.
206  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
207  *			P-state capacity.
208  */
209 struct global_params {
210 	bool no_turbo;
211 	bool turbo_disabled;
212 	int max_perf_pct;
213 	int min_perf_pct;
214 };
215 
216 /**
217  * struct cpudata -	Per CPU instance data storage
218  * @cpu:		CPU number for this instance data
219  * @policy:		CPUFreq policy value
220  * @update_util:	CPUFreq utility callback information
221  * @update_util_set:	CPUFreq utility callback is set
222  * @iowait_boost:	iowait-related boost fraction
223  * @last_update:	Time of the last update.
224  * @pstate:		Stores P state limits for this CPU
225  * @vid:		Stores VID limits for this CPU
226  * @pid:		Stores PID parameters for this CPU
227  * @last_sample_time:	Last Sample time
228  * @prev_aperf:		Last APERF value read from APERF MSR
229  * @prev_mperf:		Last MPERF value read from MPERF MSR
230  * @prev_tsc:		Last timestamp counter (TSC) value
231  * @prev_cummulative_iowait: IO Wait time difference from last and
232  *			current sample
233  * @sample:		Storage for storing last Sample data
234  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
235  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
236  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
237  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
238  * @epp_powersave:	Last saved HWP energy performance preference
239  *			(EPP) or energy performance bias (EPB),
240  *			when policy switched to performance
241  * @epp_policy:		Last saved policy used to set EPP/EPB
242  * @epp_default:	Power on default HWP energy performance
243  *			preference/bias
244  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
245  *			operation
246  *
247  * This structure stores per CPU instance data for all CPUs.
248  */
249 struct cpudata {
250 	int cpu;
251 
252 	unsigned int policy;
253 	struct update_util_data update_util;
254 	bool   update_util_set;
255 
256 	struct pstate_data pstate;
257 	struct vid_data vid;
258 	struct _pid pid;
259 
260 	u64	last_update;
261 	u64	last_sample_time;
262 	u64	prev_aperf;
263 	u64	prev_mperf;
264 	u64	prev_tsc;
265 	u64	prev_cummulative_iowait;
266 	struct sample sample;
267 	int32_t	min_perf_ratio;
268 	int32_t	max_perf_ratio;
269 #ifdef CONFIG_ACPI
270 	struct acpi_processor_performance acpi_perf_data;
271 	bool valid_pss_table;
272 #endif
273 	unsigned int iowait_boost;
274 	s16 epp_powersave;
275 	s16 epp_policy;
276 	s16 epp_default;
277 	s16 epp_saved;
278 };
279 
280 static struct cpudata **all_cpu_data;
281 
282 /**
283  * struct pstate_adjust_policy - Stores static PID configuration data
284  * @sample_rate_ms:	PID calculation sample rate in ms
285  * @sample_rate_ns:	Sample rate calculation in ns
286  * @deadband:		PID deadband
287  * @setpoint:		PID Setpoint
288  * @p_gain_pct:		PID proportional gain
289  * @i_gain_pct:		PID integral gain
290  * @d_gain_pct:		PID derivative gain
291  *
292  * Stores per CPU model static PID configuration data.
293  */
294 struct pstate_adjust_policy {
295 	int sample_rate_ms;
296 	s64 sample_rate_ns;
297 	int deadband;
298 	int setpoint;
299 	int p_gain_pct;
300 	int d_gain_pct;
301 	int i_gain_pct;
302 };
303 
304 /**
305  * struct pstate_funcs - Per CPU model specific callbacks
306  * @get_max:		Callback to get maximum non turbo effective P state
307  * @get_max_physical:	Callback to get maximum non turbo physical P state
308  * @get_min:		Callback to get minimum P state
309  * @get_turbo:		Callback to get turbo P state
310  * @get_scaling:	Callback to get frequency scaling factor
311  * @get_val:		Callback to convert P state to actual MSR write value
312  * @get_vid:		Callback to get VID data for Atom platforms
313  * @update_util:	Active mode utilization update callback.
314  *
315  * Core and Atom CPU models have different way to get P State limits. This
316  * structure is used to store those callbacks.
317  */
318 struct pstate_funcs {
319 	int (*get_max)(void);
320 	int (*get_max_physical)(void);
321 	int (*get_min)(void);
322 	int (*get_turbo)(void);
323 	int (*get_scaling)(void);
324 	u64 (*get_val)(struct cpudata*, int pstate);
325 	void (*get_vid)(struct cpudata *);
326 	void (*update_util)(struct update_util_data *data, u64 time,
327 			    unsigned int flags);
328 };
329 
330 static struct pstate_funcs pstate_funcs __read_mostly;
331 static struct pstate_adjust_policy pid_params __read_mostly = {
332 	.sample_rate_ms = 10,
333 	.sample_rate_ns = 10 * NSEC_PER_MSEC,
334 	.deadband = 0,
335 	.setpoint = 97,
336 	.p_gain_pct = 20,
337 	.d_gain_pct = 0,
338 	.i_gain_pct = 0,
339 };
340 
341 static int hwp_active __read_mostly;
342 static bool per_cpu_limits __read_mostly;
343 
344 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
345 
346 #ifdef CONFIG_ACPI
347 static bool acpi_ppc;
348 #endif
349 
350 static struct global_params global;
351 
352 static DEFINE_MUTEX(intel_pstate_driver_lock);
353 static DEFINE_MUTEX(intel_pstate_limits_lock);
354 
355 #ifdef CONFIG_ACPI
356 
357 static bool intel_pstate_get_ppc_enable_status(void)
358 {
359 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
360 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
361 		return true;
362 
363 	return acpi_ppc;
364 }
365 
366 #ifdef CONFIG_ACPI_CPPC_LIB
367 
368 /* The work item is needed to avoid CPU hotplug locking issues */
369 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
370 {
371 	sched_set_itmt_support();
372 }
373 
374 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
375 
376 static void intel_pstate_set_itmt_prio(int cpu)
377 {
378 	struct cppc_perf_caps cppc_perf;
379 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
380 	int ret;
381 
382 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
383 	if (ret)
384 		return;
385 
386 	/*
387 	 * The priorities can be set regardless of whether or not
388 	 * sched_set_itmt_support(true) has been called and it is valid to
389 	 * update them at any time after it has been called.
390 	 */
391 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
392 
393 	if (max_highest_perf <= min_highest_perf) {
394 		if (cppc_perf.highest_perf > max_highest_perf)
395 			max_highest_perf = cppc_perf.highest_perf;
396 
397 		if (cppc_perf.highest_perf < min_highest_perf)
398 			min_highest_perf = cppc_perf.highest_perf;
399 
400 		if (max_highest_perf > min_highest_perf) {
401 			/*
402 			 * This code can be run during CPU online under the
403 			 * CPU hotplug locks, so sched_set_itmt_support()
404 			 * cannot be called from here.  Queue up a work item
405 			 * to invoke it.
406 			 */
407 			schedule_work(&sched_itmt_work);
408 		}
409 	}
410 }
411 #else
412 static void intel_pstate_set_itmt_prio(int cpu)
413 {
414 }
415 #endif
416 
417 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
418 {
419 	struct cpudata *cpu;
420 	int ret;
421 	int i;
422 
423 	if (hwp_active) {
424 		intel_pstate_set_itmt_prio(policy->cpu);
425 		return;
426 	}
427 
428 	if (!intel_pstate_get_ppc_enable_status())
429 		return;
430 
431 	cpu = all_cpu_data[policy->cpu];
432 
433 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
434 						  policy->cpu);
435 	if (ret)
436 		return;
437 
438 	/*
439 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
440 	 * guarantee that the states returned by it map to the states in our
441 	 * list directly.
442 	 */
443 	if (cpu->acpi_perf_data.control_register.space_id !=
444 						ACPI_ADR_SPACE_FIXED_HARDWARE)
445 		goto err;
446 
447 	/*
448 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
449 	 * usual without taking _PSS into account
450 	 */
451 	if (cpu->acpi_perf_data.state_count < 2)
452 		goto err;
453 
454 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
455 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
456 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
457 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
458 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
459 			 (u32) cpu->acpi_perf_data.states[i].power,
460 			 (u32) cpu->acpi_perf_data.states[i].control);
461 	}
462 
463 	/*
464 	 * The _PSS table doesn't contain whole turbo frequency range.
465 	 * This just contains +1 MHZ above the max non turbo frequency,
466 	 * with control value corresponding to max turbo ratio. But
467 	 * when cpufreq set policy is called, it will call with this
468 	 * max frequency, which will cause a reduced performance as
469 	 * this driver uses real max turbo frequency as the max
470 	 * frequency. So correct this frequency in _PSS table to
471 	 * correct max turbo frequency based on the turbo state.
472 	 * Also need to convert to MHz as _PSS freq is in MHz.
473 	 */
474 	if (!global.turbo_disabled)
475 		cpu->acpi_perf_data.states[0].core_frequency =
476 					policy->cpuinfo.max_freq / 1000;
477 	cpu->valid_pss_table = true;
478 	pr_debug("_PPC limits will be enforced\n");
479 
480 	return;
481 
482  err:
483 	cpu->valid_pss_table = false;
484 	acpi_processor_unregister_performance(policy->cpu);
485 }
486 
487 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
488 {
489 	struct cpudata *cpu;
490 
491 	cpu = all_cpu_data[policy->cpu];
492 	if (!cpu->valid_pss_table)
493 		return;
494 
495 	acpi_processor_unregister_performance(policy->cpu);
496 }
497 #else
498 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
499 {
500 }
501 
502 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
503 {
504 }
505 #endif
506 
507 static signed int pid_calc(struct _pid *pid, int32_t busy)
508 {
509 	signed int result;
510 	int32_t pterm, dterm, fp_error;
511 	int32_t integral_limit;
512 
513 	fp_error = pid->setpoint - busy;
514 
515 	if (abs(fp_error) <= pid->deadband)
516 		return 0;
517 
518 	pterm = mul_fp(pid->p_gain, fp_error);
519 
520 	pid->integral += fp_error;
521 
522 	/*
523 	 * We limit the integral here so that it will never
524 	 * get higher than 30.  This prevents it from becoming
525 	 * too large an input over long periods of time and allows
526 	 * it to get factored out sooner.
527 	 *
528 	 * The value of 30 was chosen through experimentation.
529 	 */
530 	integral_limit = int_tofp(30);
531 	if (pid->integral > integral_limit)
532 		pid->integral = integral_limit;
533 	if (pid->integral < -integral_limit)
534 		pid->integral = -integral_limit;
535 
536 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
537 	pid->last_err = fp_error;
538 
539 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
540 	result = result + (1 << (FRAC_BITS-1));
541 	return (signed int)fp_toint(result);
542 }
543 
544 static inline void intel_pstate_pid_reset(struct cpudata *cpu)
545 {
546 	struct _pid *pid = &cpu->pid;
547 
548 	pid->p_gain = percent_fp(pid_params.p_gain_pct);
549 	pid->d_gain = percent_fp(pid_params.d_gain_pct);
550 	pid->i_gain = percent_fp(pid_params.i_gain_pct);
551 	pid->setpoint = int_tofp(pid_params.setpoint);
552 	pid->last_err  = pid->setpoint - int_tofp(100);
553 	pid->deadband  = int_tofp(pid_params.deadband);
554 	pid->integral  = 0;
555 }
556 
557 static inline void update_turbo_state(void)
558 {
559 	u64 misc_en;
560 	struct cpudata *cpu;
561 
562 	cpu = all_cpu_data[0];
563 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
564 	global.turbo_disabled =
565 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
566 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
567 }
568 
569 static int min_perf_pct_min(void)
570 {
571 	struct cpudata *cpu = all_cpu_data[0];
572 	int turbo_pstate = cpu->pstate.turbo_pstate;
573 
574 	return turbo_pstate ?
575 		DIV_ROUND_UP(cpu->pstate.min_pstate * 100, turbo_pstate) : 0;
576 }
577 
578 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
579 {
580 	u64 epb;
581 	int ret;
582 
583 	if (!static_cpu_has(X86_FEATURE_EPB))
584 		return -ENXIO;
585 
586 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
587 	if (ret)
588 		return (s16)ret;
589 
590 	return (s16)(epb & 0x0f);
591 }
592 
593 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
594 {
595 	s16 epp;
596 
597 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
598 		/*
599 		 * When hwp_req_data is 0, means that caller didn't read
600 		 * MSR_HWP_REQUEST, so need to read and get EPP.
601 		 */
602 		if (!hwp_req_data) {
603 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
604 					    &hwp_req_data);
605 			if (epp)
606 				return epp;
607 		}
608 		epp = (hwp_req_data >> 24) & 0xff;
609 	} else {
610 		/* When there is no EPP present, HWP uses EPB settings */
611 		epp = intel_pstate_get_epb(cpu_data);
612 	}
613 
614 	return epp;
615 }
616 
617 static int intel_pstate_set_epb(int cpu, s16 pref)
618 {
619 	u64 epb;
620 	int ret;
621 
622 	if (!static_cpu_has(X86_FEATURE_EPB))
623 		return -ENXIO;
624 
625 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
626 	if (ret)
627 		return ret;
628 
629 	epb = (epb & ~0x0f) | pref;
630 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
631 
632 	return 0;
633 }
634 
635 /*
636  * EPP/EPB display strings corresponding to EPP index in the
637  * energy_perf_strings[]
638  *	index		String
639  *-------------------------------------
640  *	0		default
641  *	1		performance
642  *	2		balance_performance
643  *	3		balance_power
644  *	4		power
645  */
646 static const char * const energy_perf_strings[] = {
647 	"default",
648 	"performance",
649 	"balance_performance",
650 	"balance_power",
651 	"power",
652 	NULL
653 };
654 
655 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
656 {
657 	s16 epp;
658 	int index = -EINVAL;
659 
660 	epp = intel_pstate_get_epp(cpu_data, 0);
661 	if (epp < 0)
662 		return epp;
663 
664 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
665 		/*
666 		 * Range:
667 		 *	0x00-0x3F	:	Performance
668 		 *	0x40-0x7F	:	Balance performance
669 		 *	0x80-0xBF	:	Balance power
670 		 *	0xC0-0xFF	:	Power
671 		 * The EPP is a 8 bit value, but our ranges restrict the
672 		 * value which can be set. Here only using top two bits
673 		 * effectively.
674 		 */
675 		index = (epp >> 6) + 1;
676 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
677 		/*
678 		 * Range:
679 		 *	0x00-0x03	:	Performance
680 		 *	0x04-0x07	:	Balance performance
681 		 *	0x08-0x0B	:	Balance power
682 		 *	0x0C-0x0F	:	Power
683 		 * The EPB is a 4 bit value, but our ranges restrict the
684 		 * value which can be set. Here only using top two bits
685 		 * effectively.
686 		 */
687 		index = (epp >> 2) + 1;
688 	}
689 
690 	return index;
691 }
692 
693 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
694 					      int pref_index)
695 {
696 	int epp = -EINVAL;
697 	int ret;
698 
699 	if (!pref_index)
700 		epp = cpu_data->epp_default;
701 
702 	mutex_lock(&intel_pstate_limits_lock);
703 
704 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
705 		u64 value;
706 
707 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
708 		if (ret)
709 			goto return_pref;
710 
711 		value &= ~GENMASK_ULL(31, 24);
712 
713 		/*
714 		 * If epp is not default, convert from index into
715 		 * energy_perf_strings to epp value, by shifting 6
716 		 * bits left to use only top two bits in epp.
717 		 * The resultant epp need to shifted by 24 bits to
718 		 * epp position in MSR_HWP_REQUEST.
719 		 */
720 		if (epp == -EINVAL)
721 			epp = (pref_index - 1) << 6;
722 
723 		value |= (u64)epp << 24;
724 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
725 	} else {
726 		if (epp == -EINVAL)
727 			epp = (pref_index - 1) << 2;
728 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
729 	}
730 return_pref:
731 	mutex_unlock(&intel_pstate_limits_lock);
732 
733 	return ret;
734 }
735 
736 static ssize_t show_energy_performance_available_preferences(
737 				struct cpufreq_policy *policy, char *buf)
738 {
739 	int i = 0;
740 	int ret = 0;
741 
742 	while (energy_perf_strings[i] != NULL)
743 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
744 
745 	ret += sprintf(&buf[ret], "\n");
746 
747 	return ret;
748 }
749 
750 cpufreq_freq_attr_ro(energy_performance_available_preferences);
751 
752 static ssize_t store_energy_performance_preference(
753 		struct cpufreq_policy *policy, const char *buf, size_t count)
754 {
755 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
756 	char str_preference[21];
757 	int ret, i = 0;
758 
759 	ret = sscanf(buf, "%20s", str_preference);
760 	if (ret != 1)
761 		return -EINVAL;
762 
763 	while (energy_perf_strings[i] != NULL) {
764 		if (!strcmp(str_preference, energy_perf_strings[i])) {
765 			intel_pstate_set_energy_pref_index(cpu_data, i);
766 			return count;
767 		}
768 		++i;
769 	}
770 
771 	return -EINVAL;
772 }
773 
774 static ssize_t show_energy_performance_preference(
775 				struct cpufreq_policy *policy, char *buf)
776 {
777 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
778 	int preference;
779 
780 	preference = intel_pstate_get_energy_pref_index(cpu_data);
781 	if (preference < 0)
782 		return preference;
783 
784 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
785 }
786 
787 cpufreq_freq_attr_rw(energy_performance_preference);
788 
789 static struct freq_attr *hwp_cpufreq_attrs[] = {
790 	&energy_performance_preference,
791 	&energy_performance_available_preferences,
792 	NULL,
793 };
794 
795 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
796 				     int *current_max)
797 {
798 	u64 cap;
799 
800 	rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
801 	if (global.no_turbo)
802 		*current_max = HWP_GUARANTEED_PERF(cap);
803 	else
804 		*current_max = HWP_HIGHEST_PERF(cap);
805 
806 	*phy_max = HWP_HIGHEST_PERF(cap);
807 }
808 
809 static void intel_pstate_hwp_set(unsigned int cpu)
810 {
811 	struct cpudata *cpu_data = all_cpu_data[cpu];
812 	int max, min;
813 	u64 value;
814 	s16 epp;
815 
816 	max = cpu_data->max_perf_ratio;
817 	min = cpu_data->min_perf_ratio;
818 
819 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
820 		min = max;
821 
822 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
823 
824 	value &= ~HWP_MIN_PERF(~0L);
825 	value |= HWP_MIN_PERF(min);
826 
827 	value &= ~HWP_MAX_PERF(~0L);
828 	value |= HWP_MAX_PERF(max);
829 
830 	if (cpu_data->epp_policy == cpu_data->policy)
831 		goto skip_epp;
832 
833 	cpu_data->epp_policy = cpu_data->policy;
834 
835 	if (cpu_data->epp_saved >= 0) {
836 		epp = cpu_data->epp_saved;
837 		cpu_data->epp_saved = -EINVAL;
838 		goto update_epp;
839 	}
840 
841 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
842 		epp = intel_pstate_get_epp(cpu_data, value);
843 		cpu_data->epp_powersave = epp;
844 		/* If EPP read was failed, then don't try to write */
845 		if (epp < 0)
846 			goto skip_epp;
847 
848 		epp = 0;
849 	} else {
850 		/* skip setting EPP, when saved value is invalid */
851 		if (cpu_data->epp_powersave < 0)
852 			goto skip_epp;
853 
854 		/*
855 		 * No need to restore EPP when it is not zero. This
856 		 * means:
857 		 *  - Policy is not changed
858 		 *  - user has manually changed
859 		 *  - Error reading EPB
860 		 */
861 		epp = intel_pstate_get_epp(cpu_data, value);
862 		if (epp)
863 			goto skip_epp;
864 
865 		epp = cpu_data->epp_powersave;
866 	}
867 update_epp:
868 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
869 		value &= ~GENMASK_ULL(31, 24);
870 		value |= (u64)epp << 24;
871 	} else {
872 		intel_pstate_set_epb(cpu, epp);
873 	}
874 skip_epp:
875 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
876 }
877 
878 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
879 {
880 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
881 
882 	if (!hwp_active)
883 		return 0;
884 
885 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
886 
887 	return 0;
888 }
889 
890 static int intel_pstate_resume(struct cpufreq_policy *policy)
891 {
892 	if (!hwp_active)
893 		return 0;
894 
895 	mutex_lock(&intel_pstate_limits_lock);
896 
897 	all_cpu_data[policy->cpu]->epp_policy = 0;
898 	intel_pstate_hwp_set(policy->cpu);
899 
900 	mutex_unlock(&intel_pstate_limits_lock);
901 
902 	return 0;
903 }
904 
905 static void intel_pstate_update_policies(void)
906 {
907 	int cpu;
908 
909 	for_each_possible_cpu(cpu)
910 		cpufreq_update_policy(cpu);
911 }
912 
913 /************************** debugfs begin ************************/
914 static int pid_param_set(void *data, u64 val)
915 {
916 	unsigned int cpu;
917 
918 	*(u32 *)data = val;
919 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
920 	for_each_possible_cpu(cpu)
921 		if (all_cpu_data[cpu])
922 			intel_pstate_pid_reset(all_cpu_data[cpu]);
923 
924 	return 0;
925 }
926 
927 static int pid_param_get(void *data, u64 *val)
928 {
929 	*val = *(u32 *)data;
930 	return 0;
931 }
932 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
933 
934 static struct dentry *debugfs_parent;
935 
936 struct pid_param {
937 	char *name;
938 	void *value;
939 	struct dentry *dentry;
940 };
941 
942 static struct pid_param pid_files[] = {
943 	{"sample_rate_ms", &pid_params.sample_rate_ms, },
944 	{"d_gain_pct", &pid_params.d_gain_pct, },
945 	{"i_gain_pct", &pid_params.i_gain_pct, },
946 	{"deadband", &pid_params.deadband, },
947 	{"setpoint", &pid_params.setpoint, },
948 	{"p_gain_pct", &pid_params.p_gain_pct, },
949 	{NULL, NULL, }
950 };
951 
952 static void intel_pstate_debug_expose_params(void)
953 {
954 	int i;
955 
956 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
957 	if (IS_ERR_OR_NULL(debugfs_parent))
958 		return;
959 
960 	for (i = 0; pid_files[i].name; i++) {
961 		struct dentry *dentry;
962 
963 		dentry = debugfs_create_file(pid_files[i].name, 0660,
964 					     debugfs_parent, pid_files[i].value,
965 					     &fops_pid_param);
966 		if (!IS_ERR(dentry))
967 			pid_files[i].dentry = dentry;
968 	}
969 }
970 
971 static void intel_pstate_debug_hide_params(void)
972 {
973 	int i;
974 
975 	if (IS_ERR_OR_NULL(debugfs_parent))
976 		return;
977 
978 	for (i = 0; pid_files[i].name; i++) {
979 		debugfs_remove(pid_files[i].dentry);
980 		pid_files[i].dentry = NULL;
981 	}
982 
983 	debugfs_remove(debugfs_parent);
984 	debugfs_parent = NULL;
985 }
986 
987 /************************** debugfs end ************************/
988 
989 /************************** sysfs begin ************************/
990 #define show_one(file_name, object)					\
991 	static ssize_t show_##file_name					\
992 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
993 	{								\
994 		return sprintf(buf, "%u\n", global.object);		\
995 	}
996 
997 static ssize_t intel_pstate_show_status(char *buf);
998 static int intel_pstate_update_status(const char *buf, size_t size);
999 
1000 static ssize_t show_status(struct kobject *kobj,
1001 			   struct attribute *attr, char *buf)
1002 {
1003 	ssize_t ret;
1004 
1005 	mutex_lock(&intel_pstate_driver_lock);
1006 	ret = intel_pstate_show_status(buf);
1007 	mutex_unlock(&intel_pstate_driver_lock);
1008 
1009 	return ret;
1010 }
1011 
1012 static ssize_t store_status(struct kobject *a, struct attribute *b,
1013 			    const char *buf, size_t count)
1014 {
1015 	char *p = memchr(buf, '\n', count);
1016 	int ret;
1017 
1018 	mutex_lock(&intel_pstate_driver_lock);
1019 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1020 	mutex_unlock(&intel_pstate_driver_lock);
1021 
1022 	return ret < 0 ? ret : count;
1023 }
1024 
1025 static ssize_t show_turbo_pct(struct kobject *kobj,
1026 				struct attribute *attr, char *buf)
1027 {
1028 	struct cpudata *cpu;
1029 	int total, no_turbo, turbo_pct;
1030 	uint32_t turbo_fp;
1031 
1032 	mutex_lock(&intel_pstate_driver_lock);
1033 
1034 	if (!intel_pstate_driver) {
1035 		mutex_unlock(&intel_pstate_driver_lock);
1036 		return -EAGAIN;
1037 	}
1038 
1039 	cpu = all_cpu_data[0];
1040 
1041 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1042 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1043 	turbo_fp = div_fp(no_turbo, total);
1044 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1045 
1046 	mutex_unlock(&intel_pstate_driver_lock);
1047 
1048 	return sprintf(buf, "%u\n", turbo_pct);
1049 }
1050 
1051 static ssize_t show_num_pstates(struct kobject *kobj,
1052 				struct attribute *attr, char *buf)
1053 {
1054 	struct cpudata *cpu;
1055 	int total;
1056 
1057 	mutex_lock(&intel_pstate_driver_lock);
1058 
1059 	if (!intel_pstate_driver) {
1060 		mutex_unlock(&intel_pstate_driver_lock);
1061 		return -EAGAIN;
1062 	}
1063 
1064 	cpu = all_cpu_data[0];
1065 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1066 
1067 	mutex_unlock(&intel_pstate_driver_lock);
1068 
1069 	return sprintf(buf, "%u\n", total);
1070 }
1071 
1072 static ssize_t show_no_turbo(struct kobject *kobj,
1073 			     struct attribute *attr, char *buf)
1074 {
1075 	ssize_t ret;
1076 
1077 	mutex_lock(&intel_pstate_driver_lock);
1078 
1079 	if (!intel_pstate_driver) {
1080 		mutex_unlock(&intel_pstate_driver_lock);
1081 		return -EAGAIN;
1082 	}
1083 
1084 	update_turbo_state();
1085 	if (global.turbo_disabled)
1086 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1087 	else
1088 		ret = sprintf(buf, "%u\n", global.no_turbo);
1089 
1090 	mutex_unlock(&intel_pstate_driver_lock);
1091 
1092 	return ret;
1093 }
1094 
1095 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1096 			      const char *buf, size_t count)
1097 {
1098 	unsigned int input;
1099 	int ret;
1100 
1101 	ret = sscanf(buf, "%u", &input);
1102 	if (ret != 1)
1103 		return -EINVAL;
1104 
1105 	mutex_lock(&intel_pstate_driver_lock);
1106 
1107 	if (!intel_pstate_driver) {
1108 		mutex_unlock(&intel_pstate_driver_lock);
1109 		return -EAGAIN;
1110 	}
1111 
1112 	mutex_lock(&intel_pstate_limits_lock);
1113 
1114 	update_turbo_state();
1115 	if (global.turbo_disabled) {
1116 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1117 		mutex_unlock(&intel_pstate_limits_lock);
1118 		mutex_unlock(&intel_pstate_driver_lock);
1119 		return -EPERM;
1120 	}
1121 
1122 	global.no_turbo = clamp_t(int, input, 0, 1);
1123 
1124 	if (global.no_turbo) {
1125 		struct cpudata *cpu = all_cpu_data[0];
1126 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1127 
1128 		/* Squash the global minimum into the permitted range. */
1129 		if (global.min_perf_pct > pct)
1130 			global.min_perf_pct = pct;
1131 	}
1132 
1133 	mutex_unlock(&intel_pstate_limits_lock);
1134 
1135 	intel_pstate_update_policies();
1136 
1137 	mutex_unlock(&intel_pstate_driver_lock);
1138 
1139 	return count;
1140 }
1141 
1142 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1143 				  const char *buf, size_t count)
1144 {
1145 	unsigned int input;
1146 	int ret;
1147 
1148 	ret = sscanf(buf, "%u", &input);
1149 	if (ret != 1)
1150 		return -EINVAL;
1151 
1152 	mutex_lock(&intel_pstate_driver_lock);
1153 
1154 	if (!intel_pstate_driver) {
1155 		mutex_unlock(&intel_pstate_driver_lock);
1156 		return -EAGAIN;
1157 	}
1158 
1159 	mutex_lock(&intel_pstate_limits_lock);
1160 
1161 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1162 
1163 	mutex_unlock(&intel_pstate_limits_lock);
1164 
1165 	intel_pstate_update_policies();
1166 
1167 	mutex_unlock(&intel_pstate_driver_lock);
1168 
1169 	return count;
1170 }
1171 
1172 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1173 				  const char *buf, size_t count)
1174 {
1175 	unsigned int input;
1176 	int ret;
1177 
1178 	ret = sscanf(buf, "%u", &input);
1179 	if (ret != 1)
1180 		return -EINVAL;
1181 
1182 	mutex_lock(&intel_pstate_driver_lock);
1183 
1184 	if (!intel_pstate_driver) {
1185 		mutex_unlock(&intel_pstate_driver_lock);
1186 		return -EAGAIN;
1187 	}
1188 
1189 	mutex_lock(&intel_pstate_limits_lock);
1190 
1191 	global.min_perf_pct = clamp_t(int, input,
1192 				      min_perf_pct_min(), global.max_perf_pct);
1193 
1194 	mutex_unlock(&intel_pstate_limits_lock);
1195 
1196 	intel_pstate_update_policies();
1197 
1198 	mutex_unlock(&intel_pstate_driver_lock);
1199 
1200 	return count;
1201 }
1202 
1203 show_one(max_perf_pct, max_perf_pct);
1204 show_one(min_perf_pct, min_perf_pct);
1205 
1206 define_one_global_rw(status);
1207 define_one_global_rw(no_turbo);
1208 define_one_global_rw(max_perf_pct);
1209 define_one_global_rw(min_perf_pct);
1210 define_one_global_ro(turbo_pct);
1211 define_one_global_ro(num_pstates);
1212 
1213 static struct attribute *intel_pstate_attributes[] = {
1214 	&status.attr,
1215 	&no_turbo.attr,
1216 	&turbo_pct.attr,
1217 	&num_pstates.attr,
1218 	NULL
1219 };
1220 
1221 static struct attribute_group intel_pstate_attr_group = {
1222 	.attrs = intel_pstate_attributes,
1223 };
1224 
1225 static void __init intel_pstate_sysfs_expose_params(void)
1226 {
1227 	struct kobject *intel_pstate_kobject;
1228 	int rc;
1229 
1230 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1231 						&cpu_subsys.dev_root->kobj);
1232 	if (WARN_ON(!intel_pstate_kobject))
1233 		return;
1234 
1235 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1236 	if (WARN_ON(rc))
1237 		return;
1238 
1239 	/*
1240 	 * If per cpu limits are enforced there are no global limits, so
1241 	 * return without creating max/min_perf_pct attributes
1242 	 */
1243 	if (per_cpu_limits)
1244 		return;
1245 
1246 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1247 	WARN_ON(rc);
1248 
1249 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1250 	WARN_ON(rc);
1251 
1252 }
1253 /************************** sysfs end ************************/
1254 
1255 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1256 {
1257 	/* First disable HWP notification interrupt as we don't process them */
1258 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1259 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1260 
1261 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1262 	cpudata->epp_policy = 0;
1263 	if (cpudata->epp_default == -EINVAL)
1264 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1265 }
1266 
1267 #define MSR_IA32_POWER_CTL_BIT_EE	19
1268 
1269 /* Disable energy efficiency optimization */
1270 static void intel_pstate_disable_ee(int cpu)
1271 {
1272 	u64 power_ctl;
1273 	int ret;
1274 
1275 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1276 	if (ret)
1277 		return;
1278 
1279 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1280 		pr_info("Disabling energy efficiency optimization\n");
1281 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1282 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1283 	}
1284 }
1285 
1286 static int atom_get_min_pstate(void)
1287 {
1288 	u64 value;
1289 
1290 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1291 	return (value >> 8) & 0x7F;
1292 }
1293 
1294 static int atom_get_max_pstate(void)
1295 {
1296 	u64 value;
1297 
1298 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1299 	return (value >> 16) & 0x7F;
1300 }
1301 
1302 static int atom_get_turbo_pstate(void)
1303 {
1304 	u64 value;
1305 
1306 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1307 	return value & 0x7F;
1308 }
1309 
1310 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1311 {
1312 	u64 val;
1313 	int32_t vid_fp;
1314 	u32 vid;
1315 
1316 	val = (u64)pstate << 8;
1317 	if (global.no_turbo && !global.turbo_disabled)
1318 		val |= (u64)1 << 32;
1319 
1320 	vid_fp = cpudata->vid.min + mul_fp(
1321 		int_tofp(pstate - cpudata->pstate.min_pstate),
1322 		cpudata->vid.ratio);
1323 
1324 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1325 	vid = ceiling_fp(vid_fp);
1326 
1327 	if (pstate > cpudata->pstate.max_pstate)
1328 		vid = cpudata->vid.turbo;
1329 
1330 	return val | vid;
1331 }
1332 
1333 static int silvermont_get_scaling(void)
1334 {
1335 	u64 value;
1336 	int i;
1337 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1338 	static int silvermont_freq_table[] = {
1339 		83300, 100000, 133300, 116700, 80000};
1340 
1341 	rdmsrl(MSR_FSB_FREQ, value);
1342 	i = value & 0x7;
1343 	WARN_ON(i > 4);
1344 
1345 	return silvermont_freq_table[i];
1346 }
1347 
1348 static int airmont_get_scaling(void)
1349 {
1350 	u64 value;
1351 	int i;
1352 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1353 	static int airmont_freq_table[] = {
1354 		83300, 100000, 133300, 116700, 80000,
1355 		93300, 90000, 88900, 87500};
1356 
1357 	rdmsrl(MSR_FSB_FREQ, value);
1358 	i = value & 0xF;
1359 	WARN_ON(i > 8);
1360 
1361 	return airmont_freq_table[i];
1362 }
1363 
1364 static void atom_get_vid(struct cpudata *cpudata)
1365 {
1366 	u64 value;
1367 
1368 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1369 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1370 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1371 	cpudata->vid.ratio = div_fp(
1372 		cpudata->vid.max - cpudata->vid.min,
1373 		int_tofp(cpudata->pstate.max_pstate -
1374 			cpudata->pstate.min_pstate));
1375 
1376 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1377 	cpudata->vid.turbo = value & 0x7f;
1378 }
1379 
1380 static int core_get_min_pstate(void)
1381 {
1382 	u64 value;
1383 
1384 	rdmsrl(MSR_PLATFORM_INFO, value);
1385 	return (value >> 40) & 0xFF;
1386 }
1387 
1388 static int core_get_max_pstate_physical(void)
1389 {
1390 	u64 value;
1391 
1392 	rdmsrl(MSR_PLATFORM_INFO, value);
1393 	return (value >> 8) & 0xFF;
1394 }
1395 
1396 static int core_get_tdp_ratio(u64 plat_info)
1397 {
1398 	/* Check how many TDP levels present */
1399 	if (plat_info & 0x600000000) {
1400 		u64 tdp_ctrl;
1401 		u64 tdp_ratio;
1402 		int tdp_msr;
1403 		int err;
1404 
1405 		/* Get the TDP level (0, 1, 2) to get ratios */
1406 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1407 		if (err)
1408 			return err;
1409 
1410 		/* TDP MSR are continuous starting at 0x648 */
1411 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1412 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1413 		if (err)
1414 			return err;
1415 
1416 		/* For level 1 and 2, bits[23:16] contain the ratio */
1417 		if (tdp_ctrl & 0x03)
1418 			tdp_ratio >>= 16;
1419 
1420 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1421 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1422 
1423 		return (int)tdp_ratio;
1424 	}
1425 
1426 	return -ENXIO;
1427 }
1428 
1429 static int core_get_max_pstate(void)
1430 {
1431 	u64 tar;
1432 	u64 plat_info;
1433 	int max_pstate;
1434 	int tdp_ratio;
1435 	int err;
1436 
1437 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1438 	max_pstate = (plat_info >> 8) & 0xFF;
1439 
1440 	tdp_ratio = core_get_tdp_ratio(plat_info);
1441 	if (tdp_ratio <= 0)
1442 		return max_pstate;
1443 
1444 	if (hwp_active) {
1445 		/* Turbo activation ratio is not used on HWP platforms */
1446 		return tdp_ratio;
1447 	}
1448 
1449 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1450 	if (!err) {
1451 		int tar_levels;
1452 
1453 		/* Do some sanity checking for safety */
1454 		tar_levels = tar & 0xff;
1455 		if (tdp_ratio - 1 == tar_levels) {
1456 			max_pstate = tar_levels;
1457 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1458 		}
1459 	}
1460 
1461 	return max_pstate;
1462 }
1463 
1464 static int core_get_turbo_pstate(void)
1465 {
1466 	u64 value;
1467 	int nont, ret;
1468 
1469 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1470 	nont = core_get_max_pstate();
1471 	ret = (value) & 255;
1472 	if (ret <= nont)
1473 		ret = nont;
1474 	return ret;
1475 }
1476 
1477 static inline int core_get_scaling(void)
1478 {
1479 	return 100000;
1480 }
1481 
1482 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1483 {
1484 	u64 val;
1485 
1486 	val = (u64)pstate << 8;
1487 	if (global.no_turbo && !global.turbo_disabled)
1488 		val |= (u64)1 << 32;
1489 
1490 	return val;
1491 }
1492 
1493 static int knl_get_turbo_pstate(void)
1494 {
1495 	u64 value;
1496 	int nont, ret;
1497 
1498 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1499 	nont = core_get_max_pstate();
1500 	ret = (((value) >> 8) & 0xFF);
1501 	if (ret <= nont)
1502 		ret = nont;
1503 	return ret;
1504 }
1505 
1506 static int intel_pstate_get_base_pstate(struct cpudata *cpu)
1507 {
1508 	return global.no_turbo || global.turbo_disabled ?
1509 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1510 }
1511 
1512 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1513 {
1514 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1515 	cpu->pstate.current_pstate = pstate;
1516 	/*
1517 	 * Generally, there is no guarantee that this code will always run on
1518 	 * the CPU being updated, so force the register update to run on the
1519 	 * right CPU.
1520 	 */
1521 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1522 		      pstate_funcs.get_val(cpu, pstate));
1523 }
1524 
1525 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1526 {
1527 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1528 }
1529 
1530 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1531 {
1532 	int pstate;
1533 
1534 	update_turbo_state();
1535 	pstate = intel_pstate_get_base_pstate(cpu);
1536 	pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1537 	intel_pstate_set_pstate(cpu, pstate);
1538 }
1539 
1540 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1541 {
1542 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1543 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1544 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1545 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1546 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1547 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1548 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1549 
1550 	if (pstate_funcs.get_vid)
1551 		pstate_funcs.get_vid(cpu);
1552 
1553 	intel_pstate_set_min_pstate(cpu);
1554 }
1555 
1556 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1557 {
1558 	struct sample *sample = &cpu->sample;
1559 
1560 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1561 }
1562 
1563 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1564 {
1565 	u64 aperf, mperf;
1566 	unsigned long flags;
1567 	u64 tsc;
1568 
1569 	local_irq_save(flags);
1570 	rdmsrl(MSR_IA32_APERF, aperf);
1571 	rdmsrl(MSR_IA32_MPERF, mperf);
1572 	tsc = rdtsc();
1573 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1574 		local_irq_restore(flags);
1575 		return false;
1576 	}
1577 	local_irq_restore(flags);
1578 
1579 	cpu->last_sample_time = cpu->sample.time;
1580 	cpu->sample.time = time;
1581 	cpu->sample.aperf = aperf;
1582 	cpu->sample.mperf = mperf;
1583 	cpu->sample.tsc =  tsc;
1584 	cpu->sample.aperf -= cpu->prev_aperf;
1585 	cpu->sample.mperf -= cpu->prev_mperf;
1586 	cpu->sample.tsc -= cpu->prev_tsc;
1587 
1588 	cpu->prev_aperf = aperf;
1589 	cpu->prev_mperf = mperf;
1590 	cpu->prev_tsc = tsc;
1591 	/*
1592 	 * First time this function is invoked in a given cycle, all of the
1593 	 * previous sample data fields are equal to zero or stale and they must
1594 	 * be populated with meaningful numbers for things to work, so assume
1595 	 * that sample.time will always be reset before setting the utilization
1596 	 * update hook and make the caller skip the sample then.
1597 	 */
1598 	if (cpu->last_sample_time) {
1599 		intel_pstate_calc_avg_perf(cpu);
1600 		return true;
1601 	}
1602 	return false;
1603 }
1604 
1605 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1606 {
1607 	return mul_ext_fp(cpu->sample.core_avg_perf,
1608 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1609 }
1610 
1611 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1612 {
1613 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1614 			  cpu->sample.core_avg_perf);
1615 }
1616 
1617 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1618 {
1619 	struct sample *sample = &cpu->sample;
1620 	int32_t busy_frac, boost;
1621 	int target, avg_pstate;
1622 
1623 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1624 		return cpu->pstate.turbo_pstate;
1625 
1626 	busy_frac = div_fp(sample->mperf, sample->tsc);
1627 
1628 	boost = cpu->iowait_boost;
1629 	cpu->iowait_boost >>= 1;
1630 
1631 	if (busy_frac < boost)
1632 		busy_frac = boost;
1633 
1634 	sample->busy_scaled = busy_frac * 100;
1635 
1636 	target = global.no_turbo || global.turbo_disabled ?
1637 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1638 	target += target >> 2;
1639 	target = mul_fp(target, busy_frac);
1640 	if (target < cpu->pstate.min_pstate)
1641 		target = cpu->pstate.min_pstate;
1642 
1643 	/*
1644 	 * If the average P-state during the previous cycle was higher than the
1645 	 * current target, add 50% of the difference to the target to reduce
1646 	 * possible performance oscillations and offset possible performance
1647 	 * loss related to moving the workload from one CPU to another within
1648 	 * a package/module.
1649 	 */
1650 	avg_pstate = get_avg_pstate(cpu);
1651 	if (avg_pstate > target)
1652 		target += (avg_pstate - target) >> 1;
1653 
1654 	return target;
1655 }
1656 
1657 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1658 {
1659 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1660 	u64 duration_ns;
1661 
1662 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE)
1663 		return cpu->pstate.turbo_pstate;
1664 
1665 	/*
1666 	 * perf_scaled is the ratio of the average P-state during the last
1667 	 * sampling period to the P-state requested last time (in percent).
1668 	 *
1669 	 * That measures the system's response to the previous P-state
1670 	 * selection.
1671 	 */
1672 	max_pstate = cpu->pstate.max_pstate_physical;
1673 	current_pstate = cpu->pstate.current_pstate;
1674 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1675 			       div_fp(100 * max_pstate, current_pstate));
1676 
1677 	/*
1678 	 * Since our utilization update callback will not run unless we are
1679 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1680 	 * than our sample interval.  If it is, then we were idle for a long
1681 	 * enough period of time to adjust our performance metric.
1682 	 */
1683 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1684 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1685 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1686 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1687 	} else {
1688 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1689 		if (sample_ratio < int_tofp(1))
1690 			perf_scaled = 0;
1691 	}
1692 
1693 	cpu->sample.busy_scaled = perf_scaled;
1694 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1695 }
1696 
1697 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1698 {
1699 	int max_pstate = intel_pstate_get_base_pstate(cpu);
1700 	int min_pstate;
1701 
1702 	min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1703 	max_pstate = max(min_pstate, cpu->max_perf_ratio);
1704 	return clamp_t(int, pstate, min_pstate, max_pstate);
1705 }
1706 
1707 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1708 {
1709 	if (pstate == cpu->pstate.current_pstate)
1710 		return;
1711 
1712 	cpu->pstate.current_pstate = pstate;
1713 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1714 }
1715 
1716 static void intel_pstate_adjust_pstate(struct cpudata *cpu, int target_pstate)
1717 {
1718 	int from = cpu->pstate.current_pstate;
1719 	struct sample *sample;
1720 
1721 	update_turbo_state();
1722 
1723 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1724 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1725 	intel_pstate_update_pstate(cpu, target_pstate);
1726 
1727 	sample = &cpu->sample;
1728 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1729 		fp_toint(sample->busy_scaled),
1730 		from,
1731 		cpu->pstate.current_pstate,
1732 		sample->mperf,
1733 		sample->aperf,
1734 		sample->tsc,
1735 		get_avg_frequency(cpu),
1736 		fp_toint(cpu->iowait_boost * 100));
1737 }
1738 
1739 static void intel_pstate_update_util_hwp(struct update_util_data *data,
1740 					 u64 time, unsigned int flags)
1741 {
1742 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1743 	u64 delta_ns = time - cpu->sample.time;
1744 
1745 	if ((s64)delta_ns >= INTEL_PSTATE_HWP_SAMPLING_INTERVAL)
1746 		intel_pstate_sample(cpu, time);
1747 }
1748 
1749 static void intel_pstate_update_util_pid(struct update_util_data *data,
1750 					 u64 time, unsigned int flags)
1751 {
1752 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1753 	u64 delta_ns = time - cpu->sample.time;
1754 
1755 	if ((s64)delta_ns < pid_params.sample_rate_ns)
1756 		return;
1757 
1758 	if (intel_pstate_sample(cpu, time)) {
1759 		int target_pstate;
1760 
1761 		target_pstate = get_target_pstate_use_performance(cpu);
1762 		intel_pstate_adjust_pstate(cpu, target_pstate);
1763 	}
1764 }
1765 
1766 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1767 				     unsigned int flags)
1768 {
1769 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1770 	u64 delta_ns;
1771 
1772 	if (flags & SCHED_CPUFREQ_IOWAIT) {
1773 		cpu->iowait_boost = int_tofp(1);
1774 	} else if (cpu->iowait_boost) {
1775 		/* Clear iowait_boost if the CPU may have been idle. */
1776 		delta_ns = time - cpu->last_update;
1777 		if (delta_ns > TICK_NSEC)
1778 			cpu->iowait_boost = 0;
1779 	}
1780 	cpu->last_update = time;
1781 	delta_ns = time - cpu->sample.time;
1782 	if ((s64)delta_ns < INTEL_PSTATE_DEFAULT_SAMPLING_INTERVAL)
1783 		return;
1784 
1785 	if (intel_pstate_sample(cpu, time)) {
1786 		int target_pstate;
1787 
1788 		target_pstate = get_target_pstate_use_cpu_load(cpu);
1789 		intel_pstate_adjust_pstate(cpu, target_pstate);
1790 	}
1791 }
1792 
1793 static struct pstate_funcs core_funcs = {
1794 	.get_max = core_get_max_pstate,
1795 	.get_max_physical = core_get_max_pstate_physical,
1796 	.get_min = core_get_min_pstate,
1797 	.get_turbo = core_get_turbo_pstate,
1798 	.get_scaling = core_get_scaling,
1799 	.get_val = core_get_val,
1800 	.update_util = intel_pstate_update_util_pid,
1801 };
1802 
1803 static const struct pstate_funcs silvermont_funcs = {
1804 	.get_max = atom_get_max_pstate,
1805 	.get_max_physical = atom_get_max_pstate,
1806 	.get_min = atom_get_min_pstate,
1807 	.get_turbo = atom_get_turbo_pstate,
1808 	.get_val = atom_get_val,
1809 	.get_scaling = silvermont_get_scaling,
1810 	.get_vid = atom_get_vid,
1811 	.update_util = intel_pstate_update_util,
1812 };
1813 
1814 static const struct pstate_funcs airmont_funcs = {
1815 	.get_max = atom_get_max_pstate,
1816 	.get_max_physical = atom_get_max_pstate,
1817 	.get_min = atom_get_min_pstate,
1818 	.get_turbo = atom_get_turbo_pstate,
1819 	.get_val = atom_get_val,
1820 	.get_scaling = airmont_get_scaling,
1821 	.get_vid = atom_get_vid,
1822 	.update_util = intel_pstate_update_util,
1823 };
1824 
1825 static const struct pstate_funcs knl_funcs = {
1826 	.get_max = core_get_max_pstate,
1827 	.get_max_physical = core_get_max_pstate_physical,
1828 	.get_min = core_get_min_pstate,
1829 	.get_turbo = knl_get_turbo_pstate,
1830 	.get_scaling = core_get_scaling,
1831 	.get_val = core_get_val,
1832 	.update_util = intel_pstate_update_util_pid,
1833 };
1834 
1835 static const struct pstate_funcs bxt_funcs = {
1836 	.get_max = core_get_max_pstate,
1837 	.get_max_physical = core_get_max_pstate_physical,
1838 	.get_min = core_get_min_pstate,
1839 	.get_turbo = core_get_turbo_pstate,
1840 	.get_scaling = core_get_scaling,
1841 	.get_val = core_get_val,
1842 	.update_util = intel_pstate_update_util,
1843 };
1844 
1845 #define ICPU(model, policy) \
1846 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1847 			(unsigned long)&policy }
1848 
1849 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1850 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs),
1851 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs),
1852 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_funcs),
1853 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs),
1854 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs),
1855 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs),
1856 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs),
1857 	ICPU(INTEL_FAM6_HASWELL_X,		core_funcs),
1858 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs),
1859 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs),
1860 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs),
1861 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs),
1862 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs),
1863 	ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs),
1864 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs),
1865 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs),
1866 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs),
1867 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs),
1868 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_funcs),
1869 	ICPU(INTEL_FAM6_ATOM_GEMINI_LAKE,       bxt_funcs),
1870 	{}
1871 };
1872 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1873 
1874 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1875 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs),
1876 	ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1877 	ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1878 	{}
1879 };
1880 
1881 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1882 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs),
1883 	{}
1884 };
1885 
1886 static bool pid_in_use(void);
1887 
1888 static int intel_pstate_init_cpu(unsigned int cpunum)
1889 {
1890 	struct cpudata *cpu;
1891 
1892 	cpu = all_cpu_data[cpunum];
1893 
1894 	if (!cpu) {
1895 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1896 		if (!cpu)
1897 			return -ENOMEM;
1898 
1899 		all_cpu_data[cpunum] = cpu;
1900 
1901 		cpu->epp_default = -EINVAL;
1902 		cpu->epp_powersave = -EINVAL;
1903 		cpu->epp_saved = -EINVAL;
1904 	}
1905 
1906 	cpu = all_cpu_data[cpunum];
1907 
1908 	cpu->cpu = cpunum;
1909 
1910 	if (hwp_active) {
1911 		const struct x86_cpu_id *id;
1912 
1913 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1914 		if (id)
1915 			intel_pstate_disable_ee(cpunum);
1916 
1917 		intel_pstate_hwp_enable(cpu);
1918 	} else if (pid_in_use()) {
1919 		intel_pstate_pid_reset(cpu);
1920 	}
1921 
1922 	intel_pstate_get_cpu_pstates(cpu);
1923 
1924 	pr_debug("controlling: cpu %d\n", cpunum);
1925 
1926 	return 0;
1927 }
1928 
1929 static unsigned int intel_pstate_get(unsigned int cpu_num)
1930 {
1931 	struct cpudata *cpu = all_cpu_data[cpu_num];
1932 
1933 	return cpu ? get_avg_frequency(cpu) : 0;
1934 }
1935 
1936 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1937 {
1938 	struct cpudata *cpu = all_cpu_data[cpu_num];
1939 
1940 	if (cpu->update_util_set)
1941 		return;
1942 
1943 	/* Prevent intel_pstate_update_util() from using stale data. */
1944 	cpu->sample.time = 0;
1945 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1946 				     pstate_funcs.update_util);
1947 	cpu->update_util_set = true;
1948 }
1949 
1950 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1951 {
1952 	struct cpudata *cpu_data = all_cpu_data[cpu];
1953 
1954 	if (!cpu_data->update_util_set)
1955 		return;
1956 
1957 	cpufreq_remove_update_util_hook(cpu);
1958 	cpu_data->update_util_set = false;
1959 	synchronize_sched();
1960 }
1961 
1962 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1963 {
1964 	return global.turbo_disabled || global.no_turbo ?
1965 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1966 }
1967 
1968 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1969 					    struct cpudata *cpu)
1970 {
1971 	int max_freq = intel_pstate_get_max_freq(cpu);
1972 	int32_t max_policy_perf, min_policy_perf;
1973 	int max_state, turbo_max;
1974 
1975 	/*
1976 	 * HWP needs some special consideration, because on BDX the
1977 	 * HWP_REQUEST uses abstract value to represent performance
1978 	 * rather than pure ratios.
1979 	 */
1980 	if (hwp_active) {
1981 		intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
1982 	} else {
1983 		max_state = intel_pstate_get_base_pstate(cpu);
1984 		turbo_max = cpu->pstate.turbo_pstate;
1985 	}
1986 
1987 	max_policy_perf = max_state * policy->max / max_freq;
1988 	if (policy->max == policy->min) {
1989 		min_policy_perf = max_policy_perf;
1990 	} else {
1991 		min_policy_perf = max_state * policy->min / max_freq;
1992 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1993 					  0, max_policy_perf);
1994 	}
1995 
1996 	pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
1997 		 policy->cpu, max_state,
1998 		 min_policy_perf, max_policy_perf);
1999 
2000 	/* Normalize user input to [min_perf, max_perf] */
2001 	if (per_cpu_limits) {
2002 		cpu->min_perf_ratio = min_policy_perf;
2003 		cpu->max_perf_ratio = max_policy_perf;
2004 	} else {
2005 		int32_t global_min, global_max;
2006 
2007 		/* Global limits are in percent of the maximum turbo P-state. */
2008 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2009 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2010 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2011 
2012 		pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu,
2013 			 global_min, global_max);
2014 
2015 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2016 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2017 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2018 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2019 
2020 		/* Make sure min_perf <= max_perf */
2021 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2022 					  cpu->max_perf_ratio);
2023 
2024 	}
2025 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu,
2026 		 cpu->max_perf_ratio,
2027 		 cpu->min_perf_ratio);
2028 }
2029 
2030 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2031 {
2032 	struct cpudata *cpu;
2033 
2034 	if (!policy->cpuinfo.max_freq)
2035 		return -ENODEV;
2036 
2037 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2038 		 policy->cpuinfo.max_freq, policy->max);
2039 
2040 	cpu = all_cpu_data[policy->cpu];
2041 	cpu->policy = policy->policy;
2042 
2043 	mutex_lock(&intel_pstate_limits_lock);
2044 
2045 	intel_pstate_update_perf_limits(policy, cpu);
2046 
2047 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2048 		/*
2049 		 * NOHZ_FULL CPUs need this as the governor callback may not
2050 		 * be invoked on them.
2051 		 */
2052 		intel_pstate_clear_update_util_hook(policy->cpu);
2053 		intel_pstate_max_within_limits(cpu);
2054 	}
2055 
2056 	intel_pstate_set_update_util_hook(policy->cpu);
2057 
2058 	if (hwp_active)
2059 		intel_pstate_hwp_set(policy->cpu);
2060 
2061 	mutex_unlock(&intel_pstate_limits_lock);
2062 
2063 	return 0;
2064 }
2065 
2066 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2067 					 struct cpudata *cpu)
2068 {
2069 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2070 	    policy->max < policy->cpuinfo.max_freq &&
2071 	    policy->max > cpu->pstate.max_freq) {
2072 		pr_debug("policy->max > max non turbo frequency\n");
2073 		policy->max = policy->cpuinfo.max_freq;
2074 	}
2075 }
2076 
2077 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2078 {
2079 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2080 
2081 	update_turbo_state();
2082 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2083 				     intel_pstate_get_max_freq(cpu));
2084 
2085 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2086 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2087 		return -EINVAL;
2088 
2089 	intel_pstate_adjust_policy_max(policy, cpu);
2090 
2091 	return 0;
2092 }
2093 
2094 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2095 {
2096 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2097 }
2098 
2099 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2100 {
2101 	pr_debug("CPU %d exiting\n", policy->cpu);
2102 
2103 	intel_pstate_clear_update_util_hook(policy->cpu);
2104 	if (hwp_active)
2105 		intel_pstate_hwp_save_state(policy);
2106 	else
2107 		intel_cpufreq_stop_cpu(policy);
2108 }
2109 
2110 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2111 {
2112 	intel_pstate_exit_perf_limits(policy);
2113 
2114 	policy->fast_switch_possible = false;
2115 
2116 	return 0;
2117 }
2118 
2119 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2120 {
2121 	struct cpudata *cpu;
2122 	int rc;
2123 
2124 	rc = intel_pstate_init_cpu(policy->cpu);
2125 	if (rc)
2126 		return rc;
2127 
2128 	cpu = all_cpu_data[policy->cpu];
2129 
2130 	cpu->max_perf_ratio = 0xFF;
2131 	cpu->min_perf_ratio = 0;
2132 
2133 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2134 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2135 
2136 	/* cpuinfo and default policy values */
2137 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2138 	update_turbo_state();
2139 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2140 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2141 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2142 
2143 	intel_pstate_init_acpi_perf_limits(policy);
2144 	cpumask_set_cpu(policy->cpu, policy->cpus);
2145 
2146 	policy->fast_switch_possible = true;
2147 
2148 	return 0;
2149 }
2150 
2151 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2152 {
2153 	int ret = __intel_pstate_cpu_init(policy);
2154 
2155 	if (ret)
2156 		return ret;
2157 
2158 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2159 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2160 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2161 	else
2162 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2163 
2164 	return 0;
2165 }
2166 
2167 static struct cpufreq_driver intel_pstate = {
2168 	.flags		= CPUFREQ_CONST_LOOPS,
2169 	.verify		= intel_pstate_verify_policy,
2170 	.setpolicy	= intel_pstate_set_policy,
2171 	.suspend	= intel_pstate_hwp_save_state,
2172 	.resume		= intel_pstate_resume,
2173 	.get		= intel_pstate_get,
2174 	.init		= intel_pstate_cpu_init,
2175 	.exit		= intel_pstate_cpu_exit,
2176 	.stop_cpu	= intel_pstate_stop_cpu,
2177 	.name		= "intel_pstate",
2178 };
2179 
2180 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2181 {
2182 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2183 
2184 	update_turbo_state();
2185 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2186 				     intel_pstate_get_max_freq(cpu));
2187 
2188 	intel_pstate_adjust_policy_max(policy, cpu);
2189 
2190 	intel_pstate_update_perf_limits(policy, cpu);
2191 
2192 	return 0;
2193 }
2194 
2195 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2196 				unsigned int target_freq,
2197 				unsigned int relation)
2198 {
2199 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2200 	struct cpufreq_freqs freqs;
2201 	int target_pstate;
2202 
2203 	update_turbo_state();
2204 
2205 	freqs.old = policy->cur;
2206 	freqs.new = target_freq;
2207 
2208 	cpufreq_freq_transition_begin(policy, &freqs);
2209 	switch (relation) {
2210 	case CPUFREQ_RELATION_L:
2211 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2212 		break;
2213 	case CPUFREQ_RELATION_H:
2214 		target_pstate = freqs.new / cpu->pstate.scaling;
2215 		break;
2216 	default:
2217 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2218 		break;
2219 	}
2220 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2221 	if (target_pstate != cpu->pstate.current_pstate) {
2222 		cpu->pstate.current_pstate = target_pstate;
2223 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2224 			      pstate_funcs.get_val(cpu, target_pstate));
2225 	}
2226 	freqs.new = target_pstate * cpu->pstate.scaling;
2227 	cpufreq_freq_transition_end(policy, &freqs, false);
2228 
2229 	return 0;
2230 }
2231 
2232 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2233 					      unsigned int target_freq)
2234 {
2235 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2236 	int target_pstate;
2237 
2238 	update_turbo_state();
2239 
2240 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2241 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2242 	intel_pstate_update_pstate(cpu, target_pstate);
2243 	return target_pstate * cpu->pstate.scaling;
2244 }
2245 
2246 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2247 {
2248 	int ret = __intel_pstate_cpu_init(policy);
2249 
2250 	if (ret)
2251 		return ret;
2252 
2253 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2254 	policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2255 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2256 	policy->cur = policy->cpuinfo.min_freq;
2257 
2258 	return 0;
2259 }
2260 
2261 static struct cpufreq_driver intel_cpufreq = {
2262 	.flags		= CPUFREQ_CONST_LOOPS,
2263 	.verify		= intel_cpufreq_verify_policy,
2264 	.target		= intel_cpufreq_target,
2265 	.fast_switch	= intel_cpufreq_fast_switch,
2266 	.init		= intel_cpufreq_cpu_init,
2267 	.exit		= intel_pstate_cpu_exit,
2268 	.stop_cpu	= intel_cpufreq_stop_cpu,
2269 	.name		= "intel_cpufreq",
2270 };
2271 
2272 static struct cpufreq_driver *default_driver = &intel_pstate;
2273 
2274 static bool pid_in_use(void)
2275 {
2276 	return intel_pstate_driver == &intel_pstate &&
2277 		pstate_funcs.update_util == intel_pstate_update_util_pid;
2278 }
2279 
2280 static void intel_pstate_driver_cleanup(void)
2281 {
2282 	unsigned int cpu;
2283 
2284 	get_online_cpus();
2285 	for_each_online_cpu(cpu) {
2286 		if (all_cpu_data[cpu]) {
2287 			if (intel_pstate_driver == &intel_pstate)
2288 				intel_pstate_clear_update_util_hook(cpu);
2289 
2290 			kfree(all_cpu_data[cpu]);
2291 			all_cpu_data[cpu] = NULL;
2292 		}
2293 	}
2294 	put_online_cpus();
2295 	intel_pstate_driver = NULL;
2296 }
2297 
2298 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2299 {
2300 	int ret;
2301 
2302 	memset(&global, 0, sizeof(global));
2303 	global.max_perf_pct = 100;
2304 
2305 	intel_pstate_driver = driver;
2306 	ret = cpufreq_register_driver(intel_pstate_driver);
2307 	if (ret) {
2308 		intel_pstate_driver_cleanup();
2309 		return ret;
2310 	}
2311 
2312 	global.min_perf_pct = min_perf_pct_min();
2313 
2314 	if (pid_in_use())
2315 		intel_pstate_debug_expose_params();
2316 
2317 	return 0;
2318 }
2319 
2320 static int intel_pstate_unregister_driver(void)
2321 {
2322 	if (hwp_active)
2323 		return -EBUSY;
2324 
2325 	if (pid_in_use())
2326 		intel_pstate_debug_hide_params();
2327 
2328 	cpufreq_unregister_driver(intel_pstate_driver);
2329 	intel_pstate_driver_cleanup();
2330 
2331 	return 0;
2332 }
2333 
2334 static ssize_t intel_pstate_show_status(char *buf)
2335 {
2336 	if (!intel_pstate_driver)
2337 		return sprintf(buf, "off\n");
2338 
2339 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2340 					"active" : "passive");
2341 }
2342 
2343 static int intel_pstate_update_status(const char *buf, size_t size)
2344 {
2345 	int ret;
2346 
2347 	if (size == 3 && !strncmp(buf, "off", size))
2348 		return intel_pstate_driver ?
2349 			intel_pstate_unregister_driver() : -EINVAL;
2350 
2351 	if (size == 6 && !strncmp(buf, "active", size)) {
2352 		if (intel_pstate_driver) {
2353 			if (intel_pstate_driver == &intel_pstate)
2354 				return 0;
2355 
2356 			ret = intel_pstate_unregister_driver();
2357 			if (ret)
2358 				return ret;
2359 		}
2360 
2361 		return intel_pstate_register_driver(&intel_pstate);
2362 	}
2363 
2364 	if (size == 7 && !strncmp(buf, "passive", size)) {
2365 		if (intel_pstate_driver) {
2366 			if (intel_pstate_driver == &intel_cpufreq)
2367 				return 0;
2368 
2369 			ret = intel_pstate_unregister_driver();
2370 			if (ret)
2371 				return ret;
2372 		}
2373 
2374 		return intel_pstate_register_driver(&intel_cpufreq);
2375 	}
2376 
2377 	return -EINVAL;
2378 }
2379 
2380 static int no_load __initdata;
2381 static int no_hwp __initdata;
2382 static int hwp_only __initdata;
2383 static unsigned int force_load __initdata;
2384 
2385 static int __init intel_pstate_msrs_not_valid(void)
2386 {
2387 	if (!pstate_funcs.get_max() ||
2388 	    !pstate_funcs.get_min() ||
2389 	    !pstate_funcs.get_turbo())
2390 		return -ENODEV;
2391 
2392 	return 0;
2393 }
2394 
2395 #ifdef CONFIG_ACPI
2396 static void intel_pstate_use_acpi_profile(void)
2397 {
2398 	switch (acpi_gbl_FADT.preferred_profile) {
2399 	case PM_MOBILE:
2400 	case PM_TABLET:
2401 	case PM_APPLIANCE_PC:
2402 	case PM_DESKTOP:
2403 	case PM_WORKSTATION:
2404 		pstate_funcs.update_util = intel_pstate_update_util;
2405 	}
2406 }
2407 #else
2408 static void intel_pstate_use_acpi_profile(void)
2409 {
2410 }
2411 #endif
2412 
2413 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2414 {
2415 	pstate_funcs.get_max   = funcs->get_max;
2416 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2417 	pstate_funcs.get_min   = funcs->get_min;
2418 	pstate_funcs.get_turbo = funcs->get_turbo;
2419 	pstate_funcs.get_scaling = funcs->get_scaling;
2420 	pstate_funcs.get_val   = funcs->get_val;
2421 	pstate_funcs.get_vid   = funcs->get_vid;
2422 	pstate_funcs.update_util = funcs->update_util;
2423 
2424 	intel_pstate_use_acpi_profile();
2425 }
2426 
2427 #ifdef CONFIG_ACPI
2428 
2429 static bool __init intel_pstate_no_acpi_pss(void)
2430 {
2431 	int i;
2432 
2433 	for_each_possible_cpu(i) {
2434 		acpi_status status;
2435 		union acpi_object *pss;
2436 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2437 		struct acpi_processor *pr = per_cpu(processors, i);
2438 
2439 		if (!pr)
2440 			continue;
2441 
2442 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2443 		if (ACPI_FAILURE(status))
2444 			continue;
2445 
2446 		pss = buffer.pointer;
2447 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2448 			kfree(pss);
2449 			return false;
2450 		}
2451 
2452 		kfree(pss);
2453 	}
2454 
2455 	return true;
2456 }
2457 
2458 static bool __init intel_pstate_has_acpi_ppc(void)
2459 {
2460 	int i;
2461 
2462 	for_each_possible_cpu(i) {
2463 		struct acpi_processor *pr = per_cpu(processors, i);
2464 
2465 		if (!pr)
2466 			continue;
2467 		if (acpi_has_method(pr->handle, "_PPC"))
2468 			return true;
2469 	}
2470 	return false;
2471 }
2472 
2473 enum {
2474 	PSS,
2475 	PPC,
2476 };
2477 
2478 struct hw_vendor_info {
2479 	u16  valid;
2480 	char oem_id[ACPI_OEM_ID_SIZE];
2481 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2482 	int  oem_pwr_table;
2483 };
2484 
2485 /* Hardware vendor-specific info that has its own power management modes */
2486 static struct hw_vendor_info vendor_info[] __initdata = {
2487 	{1, "HP    ", "ProLiant", PSS},
2488 	{1, "ORACLE", "X4-2    ", PPC},
2489 	{1, "ORACLE", "X4-2L   ", PPC},
2490 	{1, "ORACLE", "X4-2B   ", PPC},
2491 	{1, "ORACLE", "X3-2    ", PPC},
2492 	{1, "ORACLE", "X3-2L   ", PPC},
2493 	{1, "ORACLE", "X3-2B   ", PPC},
2494 	{1, "ORACLE", "X4470M2 ", PPC},
2495 	{1, "ORACLE", "X4270M3 ", PPC},
2496 	{1, "ORACLE", "X4270M2 ", PPC},
2497 	{1, "ORACLE", "X4170M2 ", PPC},
2498 	{1, "ORACLE", "X4170 M3", PPC},
2499 	{1, "ORACLE", "X4275 M3", PPC},
2500 	{1, "ORACLE", "X6-2    ", PPC},
2501 	{1, "ORACLE", "Sudbury ", PPC},
2502 	{0, "", ""},
2503 };
2504 
2505 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2506 {
2507 	struct acpi_table_header hdr;
2508 	struct hw_vendor_info *v_info;
2509 	const struct x86_cpu_id *id;
2510 	u64 misc_pwr;
2511 
2512 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2513 	if (id) {
2514 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2515 		if ( misc_pwr & (1 << 8))
2516 			return true;
2517 	}
2518 
2519 	if (acpi_disabled ||
2520 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2521 		return false;
2522 
2523 	for (v_info = vendor_info; v_info->valid; v_info++) {
2524 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2525 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
2526 						ACPI_OEM_TABLE_ID_SIZE))
2527 			switch (v_info->oem_pwr_table) {
2528 			case PSS:
2529 				return intel_pstate_no_acpi_pss();
2530 			case PPC:
2531 				return intel_pstate_has_acpi_ppc() &&
2532 					(!force_load);
2533 			}
2534 	}
2535 
2536 	return false;
2537 }
2538 
2539 static void intel_pstate_request_control_from_smm(void)
2540 {
2541 	/*
2542 	 * It may be unsafe to request P-states control from SMM if _PPC support
2543 	 * has not been enabled.
2544 	 */
2545 	if (acpi_ppc)
2546 		acpi_processor_pstate_control();
2547 }
2548 #else /* CONFIG_ACPI not enabled */
2549 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2550 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2551 static inline void intel_pstate_request_control_from_smm(void) {}
2552 #endif /* CONFIG_ACPI */
2553 
2554 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2555 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2556 	{}
2557 };
2558 
2559 static int __init intel_pstate_init(void)
2560 {
2561 	int rc;
2562 
2563 	if (no_load)
2564 		return -ENODEV;
2565 
2566 	if (x86_match_cpu(hwp_support_ids)) {
2567 		copy_cpu_funcs(&core_funcs);
2568 		if (no_hwp) {
2569 			pstate_funcs.update_util = intel_pstate_update_util;
2570 		} else {
2571 			hwp_active++;
2572 			intel_pstate.attr = hwp_cpufreq_attrs;
2573 			pstate_funcs.update_util = intel_pstate_update_util_hwp;
2574 			goto hwp_cpu_matched;
2575 		}
2576 	} else {
2577 		const struct x86_cpu_id *id;
2578 
2579 		id = x86_match_cpu(intel_pstate_cpu_ids);
2580 		if (!id)
2581 			return -ENODEV;
2582 
2583 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2584 	}
2585 
2586 	if (intel_pstate_msrs_not_valid())
2587 		return -ENODEV;
2588 
2589 hwp_cpu_matched:
2590 	/*
2591 	 * The Intel pstate driver will be ignored if the platform
2592 	 * firmware has its own power management modes.
2593 	 */
2594 	if (intel_pstate_platform_pwr_mgmt_exists())
2595 		return -ENODEV;
2596 
2597 	if (!hwp_active && hwp_only)
2598 		return -ENOTSUPP;
2599 
2600 	pr_info("Intel P-state driver initializing\n");
2601 
2602 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2603 	if (!all_cpu_data)
2604 		return -ENOMEM;
2605 
2606 	intel_pstate_request_control_from_smm();
2607 
2608 	intel_pstate_sysfs_expose_params();
2609 
2610 	mutex_lock(&intel_pstate_driver_lock);
2611 	rc = intel_pstate_register_driver(default_driver);
2612 	mutex_unlock(&intel_pstate_driver_lock);
2613 	if (rc)
2614 		return rc;
2615 
2616 	if (hwp_active)
2617 		pr_info("HWP enabled\n");
2618 
2619 	return 0;
2620 }
2621 device_initcall(intel_pstate_init);
2622 
2623 static int __init intel_pstate_setup(char *str)
2624 {
2625 	if (!str)
2626 		return -EINVAL;
2627 
2628 	if (!strcmp(str, "disable")) {
2629 		no_load = 1;
2630 	} else if (!strcmp(str, "passive")) {
2631 		pr_info("Passive mode enabled\n");
2632 		default_driver = &intel_cpufreq;
2633 		no_hwp = 1;
2634 	}
2635 	if (!strcmp(str, "no_hwp")) {
2636 		pr_info("HWP disabled\n");
2637 		no_hwp = 1;
2638 	}
2639 	if (!strcmp(str, "force"))
2640 		force_load = 1;
2641 	if (!strcmp(str, "hwp_only"))
2642 		hwp_only = 1;
2643 	if (!strcmp(str, "per_cpu_perf_limits"))
2644 		per_cpu_limits = true;
2645 
2646 #ifdef CONFIG_ACPI
2647 	if (!strcmp(str, "support_acpi_ppc"))
2648 		acpi_ppc = true;
2649 #endif
2650 
2651 	return 0;
2652 }
2653 early_param("intel_pstate", intel_pstate_setup);
2654 
2655 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2656 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2657 MODULE_LICENSE("GPL");
2658