1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 
39 #define ATOM_RATIOS		0x66a
40 #define ATOM_VIDS		0x66b
41 #define ATOM_TURBO_RATIOS	0x66c
42 #define ATOM_TURBO_VIDS		0x66d
43 
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #endif
47 
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51 
52 #define EXT_BITS 6
53 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54 
55 static inline int32_t mul_fp(int32_t x, int32_t y)
56 {
57 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
58 }
59 
60 static inline int32_t div_fp(s64 x, s64 y)
61 {
62 	return div64_s64((int64_t)x << FRAC_BITS, y);
63 }
64 
65 static inline int ceiling_fp(int32_t x)
66 {
67 	int mask, ret;
68 
69 	ret = fp_toint(x);
70 	mask = (1 << FRAC_BITS) - 1;
71 	if (x & mask)
72 		ret += 1;
73 	return ret;
74 }
75 
76 static inline u64 mul_ext_fp(u64 x, u64 y)
77 {
78 	return (x * y) >> EXT_FRAC_BITS;
79 }
80 
81 static inline u64 div_ext_fp(u64 x, u64 y)
82 {
83 	return div64_u64(x << EXT_FRAC_BITS, y);
84 }
85 
86 /**
87  * struct sample -	Store performance sample
88  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
89  *			performance during last sample period
90  * @busy_scaled:	Scaled busy value which is used to calculate next
91  *			P state. This can be different than core_avg_perf
92  *			to account for cpu idle period
93  * @aperf:		Difference of actual performance frequency clock count
94  *			read from APERF MSR between last and current sample
95  * @mperf:		Difference of maximum performance frequency clock count
96  *			read from MPERF MSR between last and current sample
97  * @tsc:		Difference of time stamp counter between last and
98  *			current sample
99  * @freq:		Effective frequency calculated from APERF/MPERF
100  * @time:		Current time from scheduler
101  *
102  * This structure is used in the cpudata structure to store performance sample
103  * data for choosing next P State.
104  */
105 struct sample {
106 	int32_t core_avg_perf;
107 	int32_t busy_scaled;
108 	u64 aperf;
109 	u64 mperf;
110 	u64 tsc;
111 	int freq;
112 	u64 time;
113 };
114 
115 /**
116  * struct pstate_data - Store P state data
117  * @current_pstate:	Current requested P state
118  * @min_pstate:		Min P state possible for this platform
119  * @max_pstate:		Max P state possible for this platform
120  * @max_pstate_physical:This is physical Max P state for a processor
121  *			This can be higher than the max_pstate which can
122  *			be limited by platform thermal design power limits
123  * @scaling:		Scaling factor to  convert frequency to cpufreq
124  *			frequency units
125  * @turbo_pstate:	Max Turbo P state possible for this platform
126  *
127  * Stores the per cpu model P state limits and current P state.
128  */
129 struct pstate_data {
130 	int	current_pstate;
131 	int	min_pstate;
132 	int	max_pstate;
133 	int	max_pstate_physical;
134 	int	scaling;
135 	int	turbo_pstate;
136 };
137 
138 /**
139  * struct vid_data -	Stores voltage information data
140  * @min:		VID data for this platform corresponding to
141  *			the lowest P state
142  * @max:		VID data corresponding to the highest P State.
143  * @turbo:		VID data for turbo P state
144  * @ratio:		Ratio of (vid max - vid min) /
145  *			(max P state - Min P State)
146  *
147  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
148  * This data is used in Atom platforms, where in addition to target P state,
149  * the voltage data needs to be specified to select next P State.
150  */
151 struct vid_data {
152 	int min;
153 	int max;
154 	int turbo;
155 	int32_t ratio;
156 };
157 
158 /**
159  * struct _pid -	Stores PID data
160  * @setpoint:		Target set point for busyness or performance
161  * @integral:		Storage for accumulated error values
162  * @p_gain:		PID proportional gain
163  * @i_gain:		PID integral gain
164  * @d_gain:		PID derivative gain
165  * @deadband:		PID deadband
166  * @last_err:		Last error storage for integral part of PID calculation
167  *
168  * Stores PID coefficients and last error for PID controller.
169  */
170 struct _pid {
171 	int setpoint;
172 	int32_t integral;
173 	int32_t p_gain;
174 	int32_t i_gain;
175 	int32_t d_gain;
176 	int deadband;
177 	int32_t last_err;
178 };
179 
180 /**
181  * struct cpudata -	Per CPU instance data storage
182  * @cpu:		CPU number for this instance data
183  * @update_util:	CPUFreq utility callback information
184  * @update_util_set:	CPUFreq utility callback is set
185  * @pstate:		Stores P state limits for this CPU
186  * @vid:		Stores VID limits for this CPU
187  * @pid:		Stores PID parameters for this CPU
188  * @last_sample_time:	Last Sample time
189  * @prev_aperf:		Last APERF value read from APERF MSR
190  * @prev_mperf:		Last MPERF value read from MPERF MSR
191  * @prev_tsc:		Last timestamp counter (TSC) value
192  * @prev_cummulative_iowait: IO Wait time difference from last and
193  *			current sample
194  * @sample:		Storage for storing last Sample data
195  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
196  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
197  *
198  * This structure stores per CPU instance data for all CPUs.
199  */
200 struct cpudata {
201 	int cpu;
202 
203 	struct update_util_data update_util;
204 	bool   update_util_set;
205 
206 	struct pstate_data pstate;
207 	struct vid_data vid;
208 	struct _pid pid;
209 
210 	u64	last_sample_time;
211 	u64	prev_aperf;
212 	u64	prev_mperf;
213 	u64	prev_tsc;
214 	u64	prev_cummulative_iowait;
215 	struct sample sample;
216 #ifdef CONFIG_ACPI
217 	struct acpi_processor_performance acpi_perf_data;
218 	bool valid_pss_table;
219 #endif
220 };
221 
222 static struct cpudata **all_cpu_data;
223 
224 /**
225  * struct pid_adjust_policy - Stores static PID configuration data
226  * @sample_rate_ms:	PID calculation sample rate in ms
227  * @sample_rate_ns:	Sample rate calculation in ns
228  * @deadband:		PID deadband
229  * @setpoint:		PID Setpoint
230  * @p_gain_pct:		PID proportional gain
231  * @i_gain_pct:		PID integral gain
232  * @d_gain_pct:		PID derivative gain
233  *
234  * Stores per CPU model static PID configuration data.
235  */
236 struct pstate_adjust_policy {
237 	int sample_rate_ms;
238 	s64 sample_rate_ns;
239 	int deadband;
240 	int setpoint;
241 	int p_gain_pct;
242 	int d_gain_pct;
243 	int i_gain_pct;
244 };
245 
246 /**
247  * struct pstate_funcs - Per CPU model specific callbacks
248  * @get_max:		Callback to get maximum non turbo effective P state
249  * @get_max_physical:	Callback to get maximum non turbo physical P state
250  * @get_min:		Callback to get minimum P state
251  * @get_turbo:		Callback to get turbo P state
252  * @get_scaling:	Callback to get frequency scaling factor
253  * @get_val:		Callback to convert P state to actual MSR write value
254  * @get_vid:		Callback to get VID data for Atom platforms
255  * @get_target_pstate:	Callback to a function to calculate next P state to use
256  *
257  * Core and Atom CPU models have different way to get P State limits. This
258  * structure is used to store those callbacks.
259  */
260 struct pstate_funcs {
261 	int (*get_max)(void);
262 	int (*get_max_physical)(void);
263 	int (*get_min)(void);
264 	int (*get_turbo)(void);
265 	int (*get_scaling)(void);
266 	u64 (*get_val)(struct cpudata*, int pstate);
267 	void (*get_vid)(struct cpudata *);
268 	int32_t (*get_target_pstate)(struct cpudata *);
269 };
270 
271 /**
272  * struct cpu_defaults- Per CPU model default config data
273  * @pid_policy:	PID config data
274  * @funcs:		Callback function data
275  */
276 struct cpu_defaults {
277 	struct pstate_adjust_policy pid_policy;
278 	struct pstate_funcs funcs;
279 };
280 
281 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
282 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
283 
284 static struct pstate_adjust_policy pid_params;
285 static struct pstate_funcs pstate_funcs;
286 static int hwp_active;
287 
288 #ifdef CONFIG_ACPI
289 static bool acpi_ppc;
290 #endif
291 
292 /**
293  * struct perf_limits - Store user and policy limits
294  * @no_turbo:		User requested turbo state from intel_pstate sysfs
295  * @turbo_disabled:	Platform turbo status either from msr
296  *			MSR_IA32_MISC_ENABLE or when maximum available pstate
297  *			matches the maximum turbo pstate
298  * @max_perf_pct:	Effective maximum performance limit in percentage, this
299  *			is minimum of either limits enforced by cpufreq policy
300  *			or limits from user set limits via intel_pstate sysfs
301  * @min_perf_pct:	Effective minimum performance limit in percentage, this
302  *			is maximum of either limits enforced by cpufreq policy
303  *			or limits from user set limits via intel_pstate sysfs
304  * @max_perf:		This is a scaled value between 0 to 255 for max_perf_pct
305  *			This value is used to limit max pstate
306  * @min_perf:		This is a scaled value between 0 to 255 for min_perf_pct
307  *			This value is used to limit min pstate
308  * @max_policy_pct:	The maximum performance in percentage enforced by
309  *			cpufreq setpolicy interface
310  * @max_sysfs_pct:	The maximum performance in percentage enforced by
311  *			intel pstate sysfs interface
312  * @min_policy_pct:	The minimum performance in percentage enforced by
313  *			cpufreq setpolicy interface
314  * @min_sysfs_pct:	The minimum performance in percentage enforced by
315  *			intel pstate sysfs interface
316  *
317  * Storage for user and policy defined limits.
318  */
319 struct perf_limits {
320 	int no_turbo;
321 	int turbo_disabled;
322 	int max_perf_pct;
323 	int min_perf_pct;
324 	int32_t max_perf;
325 	int32_t min_perf;
326 	int max_policy_pct;
327 	int max_sysfs_pct;
328 	int min_policy_pct;
329 	int min_sysfs_pct;
330 };
331 
332 static struct perf_limits performance_limits = {
333 	.no_turbo = 0,
334 	.turbo_disabled = 0,
335 	.max_perf_pct = 100,
336 	.max_perf = int_tofp(1),
337 	.min_perf_pct = 100,
338 	.min_perf = int_tofp(1),
339 	.max_policy_pct = 100,
340 	.max_sysfs_pct = 100,
341 	.min_policy_pct = 0,
342 	.min_sysfs_pct = 0,
343 };
344 
345 static struct perf_limits powersave_limits = {
346 	.no_turbo = 0,
347 	.turbo_disabled = 0,
348 	.max_perf_pct = 100,
349 	.max_perf = int_tofp(1),
350 	.min_perf_pct = 0,
351 	.min_perf = 0,
352 	.max_policy_pct = 100,
353 	.max_sysfs_pct = 100,
354 	.min_policy_pct = 0,
355 	.min_sysfs_pct = 0,
356 };
357 
358 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
359 static struct perf_limits *limits = &performance_limits;
360 #else
361 static struct perf_limits *limits = &powersave_limits;
362 #endif
363 
364 #ifdef CONFIG_ACPI
365 
366 static bool intel_pstate_get_ppc_enable_status(void)
367 {
368 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
369 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
370 		return true;
371 
372 	return acpi_ppc;
373 }
374 
375 /*
376  * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
377  * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
378  * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
379  * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
380  * target ratio 0x17. The _PSS control value stores in a format which can be
381  * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
382  * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
383  * This function converts the _PSS control value to intel pstate driver format
384  * for comparison and assignment.
385  */
386 static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
387 {
388 	return cpu->acpi_perf_data.states[index].control >> 8;
389 }
390 
391 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
392 {
393 	struct cpudata *cpu;
394 	int turbo_pss_ctl;
395 	int ret;
396 	int i;
397 
398 	if (hwp_active)
399 		return;
400 
401 	if (!intel_pstate_get_ppc_enable_status())
402 		return;
403 
404 	cpu = all_cpu_data[policy->cpu];
405 
406 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
407 						  policy->cpu);
408 	if (ret)
409 		return;
410 
411 	/*
412 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
413 	 * guarantee that the states returned by it map to the states in our
414 	 * list directly.
415 	 */
416 	if (cpu->acpi_perf_data.control_register.space_id !=
417 						ACPI_ADR_SPACE_FIXED_HARDWARE)
418 		goto err;
419 
420 	/*
421 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
422 	 * usual without taking _PSS into account
423 	 */
424 	if (cpu->acpi_perf_data.state_count < 2)
425 		goto err;
426 
427 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
428 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
429 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
430 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
431 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
432 			 (u32) cpu->acpi_perf_data.states[i].power,
433 			 (u32) cpu->acpi_perf_data.states[i].control);
434 	}
435 
436 	/*
437 	 * The _PSS table doesn't contain whole turbo frequency range.
438 	 * This just contains +1 MHZ above the max non turbo frequency,
439 	 * with control value corresponding to max turbo ratio. But
440 	 * when cpufreq set policy is called, it will call with this
441 	 * max frequency, which will cause a reduced performance as
442 	 * this driver uses real max turbo frequency as the max
443 	 * frequency. So correct this frequency in _PSS table to
444 	 * correct max turbo frequency based on the turbo ratio.
445 	 * Also need to convert to MHz as _PSS freq is in MHz.
446 	 */
447 	turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
448 	if (turbo_pss_ctl > cpu->pstate.max_pstate)
449 		cpu->acpi_perf_data.states[0].core_frequency =
450 					policy->cpuinfo.max_freq / 1000;
451 	cpu->valid_pss_table = true;
452 	pr_debug("_PPC limits will be enforced\n");
453 
454 	return;
455 
456  err:
457 	cpu->valid_pss_table = false;
458 	acpi_processor_unregister_performance(policy->cpu);
459 }
460 
461 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
462 {
463 	struct cpudata *cpu;
464 
465 	cpu = all_cpu_data[policy->cpu];
466 	if (!cpu->valid_pss_table)
467 		return;
468 
469 	acpi_processor_unregister_performance(policy->cpu);
470 }
471 
472 #else
473 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
474 {
475 }
476 
477 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
478 {
479 }
480 #endif
481 
482 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
483 			     int deadband, int integral) {
484 	pid->setpoint = int_tofp(setpoint);
485 	pid->deadband  = int_tofp(deadband);
486 	pid->integral  = int_tofp(integral);
487 	pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
488 }
489 
490 static inline void pid_p_gain_set(struct _pid *pid, int percent)
491 {
492 	pid->p_gain = div_fp(percent, 100);
493 }
494 
495 static inline void pid_i_gain_set(struct _pid *pid, int percent)
496 {
497 	pid->i_gain = div_fp(percent, 100);
498 }
499 
500 static inline void pid_d_gain_set(struct _pid *pid, int percent)
501 {
502 	pid->d_gain = div_fp(percent, 100);
503 }
504 
505 static signed int pid_calc(struct _pid *pid, int32_t busy)
506 {
507 	signed int result;
508 	int32_t pterm, dterm, fp_error;
509 	int32_t integral_limit;
510 
511 	fp_error = pid->setpoint - busy;
512 
513 	if (abs(fp_error) <= pid->deadband)
514 		return 0;
515 
516 	pterm = mul_fp(pid->p_gain, fp_error);
517 
518 	pid->integral += fp_error;
519 
520 	/*
521 	 * We limit the integral here so that it will never
522 	 * get higher than 30.  This prevents it from becoming
523 	 * too large an input over long periods of time and allows
524 	 * it to get factored out sooner.
525 	 *
526 	 * The value of 30 was chosen through experimentation.
527 	 */
528 	integral_limit = int_tofp(30);
529 	if (pid->integral > integral_limit)
530 		pid->integral = integral_limit;
531 	if (pid->integral < -integral_limit)
532 		pid->integral = -integral_limit;
533 
534 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
535 	pid->last_err = fp_error;
536 
537 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
538 	result = result + (1 << (FRAC_BITS-1));
539 	return (signed int)fp_toint(result);
540 }
541 
542 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
543 {
544 	pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
545 	pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
546 	pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
547 
548 	pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
549 }
550 
551 static inline void intel_pstate_reset_all_pid(void)
552 {
553 	unsigned int cpu;
554 
555 	for_each_online_cpu(cpu) {
556 		if (all_cpu_data[cpu])
557 			intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
558 	}
559 }
560 
561 static inline void update_turbo_state(void)
562 {
563 	u64 misc_en;
564 	struct cpudata *cpu;
565 
566 	cpu = all_cpu_data[0];
567 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
568 	limits->turbo_disabled =
569 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
570 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
571 }
572 
573 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
574 {
575 	int min, hw_min, max, hw_max, cpu, range, adj_range;
576 	u64 value, cap;
577 
578 	rdmsrl(MSR_HWP_CAPABILITIES, cap);
579 	hw_min = HWP_LOWEST_PERF(cap);
580 	hw_max = HWP_HIGHEST_PERF(cap);
581 	range = hw_max - hw_min;
582 
583 	for_each_cpu(cpu, cpumask) {
584 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
585 		adj_range = limits->min_perf_pct * range / 100;
586 		min = hw_min + adj_range;
587 		value &= ~HWP_MIN_PERF(~0L);
588 		value |= HWP_MIN_PERF(min);
589 
590 		adj_range = limits->max_perf_pct * range / 100;
591 		max = hw_min + adj_range;
592 		if (limits->no_turbo) {
593 			hw_max = HWP_GUARANTEED_PERF(cap);
594 			if (hw_max < max)
595 				max = hw_max;
596 		}
597 
598 		value &= ~HWP_MAX_PERF(~0L);
599 		value |= HWP_MAX_PERF(max);
600 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
601 	}
602 }
603 
604 static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
605 {
606 	if (hwp_active)
607 		intel_pstate_hwp_set(policy->cpus);
608 
609 	return 0;
610 }
611 
612 static void intel_pstate_hwp_set_online_cpus(void)
613 {
614 	get_online_cpus();
615 	intel_pstate_hwp_set(cpu_online_mask);
616 	put_online_cpus();
617 }
618 
619 /************************** debugfs begin ************************/
620 static int pid_param_set(void *data, u64 val)
621 {
622 	*(u32 *)data = val;
623 	intel_pstate_reset_all_pid();
624 	return 0;
625 }
626 
627 static int pid_param_get(void *data, u64 *val)
628 {
629 	*val = *(u32 *)data;
630 	return 0;
631 }
632 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
633 
634 struct pid_param {
635 	char *name;
636 	void *value;
637 };
638 
639 static struct pid_param pid_files[] = {
640 	{"sample_rate_ms", &pid_params.sample_rate_ms},
641 	{"d_gain_pct", &pid_params.d_gain_pct},
642 	{"i_gain_pct", &pid_params.i_gain_pct},
643 	{"deadband", &pid_params.deadband},
644 	{"setpoint", &pid_params.setpoint},
645 	{"p_gain_pct", &pid_params.p_gain_pct},
646 	{NULL, NULL}
647 };
648 
649 static void __init intel_pstate_debug_expose_params(void)
650 {
651 	struct dentry *debugfs_parent;
652 	int i = 0;
653 
654 	if (hwp_active)
655 		return;
656 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
657 	if (IS_ERR_OR_NULL(debugfs_parent))
658 		return;
659 	while (pid_files[i].name) {
660 		debugfs_create_file(pid_files[i].name, 0660,
661 				    debugfs_parent, pid_files[i].value,
662 				    &fops_pid_param);
663 		i++;
664 	}
665 }
666 
667 /************************** debugfs end ************************/
668 
669 /************************** sysfs begin ************************/
670 #define show_one(file_name, object)					\
671 	static ssize_t show_##file_name					\
672 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
673 	{								\
674 		return sprintf(buf, "%u\n", limits->object);		\
675 	}
676 
677 static ssize_t show_turbo_pct(struct kobject *kobj,
678 				struct attribute *attr, char *buf)
679 {
680 	struct cpudata *cpu;
681 	int total, no_turbo, turbo_pct;
682 	uint32_t turbo_fp;
683 
684 	cpu = all_cpu_data[0];
685 
686 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
687 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
688 	turbo_fp = div_fp(no_turbo, total);
689 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
690 	return sprintf(buf, "%u\n", turbo_pct);
691 }
692 
693 static ssize_t show_num_pstates(struct kobject *kobj,
694 				struct attribute *attr, char *buf)
695 {
696 	struct cpudata *cpu;
697 	int total;
698 
699 	cpu = all_cpu_data[0];
700 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
701 	return sprintf(buf, "%u\n", total);
702 }
703 
704 static ssize_t show_no_turbo(struct kobject *kobj,
705 			     struct attribute *attr, char *buf)
706 {
707 	ssize_t ret;
708 
709 	update_turbo_state();
710 	if (limits->turbo_disabled)
711 		ret = sprintf(buf, "%u\n", limits->turbo_disabled);
712 	else
713 		ret = sprintf(buf, "%u\n", limits->no_turbo);
714 
715 	return ret;
716 }
717 
718 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
719 			      const char *buf, size_t count)
720 {
721 	unsigned int input;
722 	int ret;
723 
724 	ret = sscanf(buf, "%u", &input);
725 	if (ret != 1)
726 		return -EINVAL;
727 
728 	update_turbo_state();
729 	if (limits->turbo_disabled) {
730 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
731 		return -EPERM;
732 	}
733 
734 	limits->no_turbo = clamp_t(int, input, 0, 1);
735 
736 	if (hwp_active)
737 		intel_pstate_hwp_set_online_cpus();
738 
739 	return count;
740 }
741 
742 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
743 				  const char *buf, size_t count)
744 {
745 	unsigned int input;
746 	int ret;
747 
748 	ret = sscanf(buf, "%u", &input);
749 	if (ret != 1)
750 		return -EINVAL;
751 
752 	limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
753 	limits->max_perf_pct = min(limits->max_policy_pct,
754 				   limits->max_sysfs_pct);
755 	limits->max_perf_pct = max(limits->min_policy_pct,
756 				   limits->max_perf_pct);
757 	limits->max_perf_pct = max(limits->min_perf_pct,
758 				   limits->max_perf_pct);
759 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
760 
761 	if (hwp_active)
762 		intel_pstate_hwp_set_online_cpus();
763 	return count;
764 }
765 
766 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
767 				  const char *buf, size_t count)
768 {
769 	unsigned int input;
770 	int ret;
771 
772 	ret = sscanf(buf, "%u", &input);
773 	if (ret != 1)
774 		return -EINVAL;
775 
776 	limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
777 	limits->min_perf_pct = max(limits->min_policy_pct,
778 				   limits->min_sysfs_pct);
779 	limits->min_perf_pct = min(limits->max_policy_pct,
780 				   limits->min_perf_pct);
781 	limits->min_perf_pct = min(limits->max_perf_pct,
782 				   limits->min_perf_pct);
783 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
784 
785 	if (hwp_active)
786 		intel_pstate_hwp_set_online_cpus();
787 	return count;
788 }
789 
790 show_one(max_perf_pct, max_perf_pct);
791 show_one(min_perf_pct, min_perf_pct);
792 
793 define_one_global_rw(no_turbo);
794 define_one_global_rw(max_perf_pct);
795 define_one_global_rw(min_perf_pct);
796 define_one_global_ro(turbo_pct);
797 define_one_global_ro(num_pstates);
798 
799 static struct attribute *intel_pstate_attributes[] = {
800 	&no_turbo.attr,
801 	&max_perf_pct.attr,
802 	&min_perf_pct.attr,
803 	&turbo_pct.attr,
804 	&num_pstates.attr,
805 	NULL
806 };
807 
808 static struct attribute_group intel_pstate_attr_group = {
809 	.attrs = intel_pstate_attributes,
810 };
811 
812 static void __init intel_pstate_sysfs_expose_params(void)
813 {
814 	struct kobject *intel_pstate_kobject;
815 	int rc;
816 
817 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
818 						&cpu_subsys.dev_root->kobj);
819 	BUG_ON(!intel_pstate_kobject);
820 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
821 	BUG_ON(rc);
822 }
823 /************************** sysfs end ************************/
824 
825 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
826 {
827 	/* First disable HWP notification interrupt as we don't process them */
828 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
829 
830 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
831 }
832 
833 static int atom_get_min_pstate(void)
834 {
835 	u64 value;
836 
837 	rdmsrl(ATOM_RATIOS, value);
838 	return (value >> 8) & 0x7F;
839 }
840 
841 static int atom_get_max_pstate(void)
842 {
843 	u64 value;
844 
845 	rdmsrl(ATOM_RATIOS, value);
846 	return (value >> 16) & 0x7F;
847 }
848 
849 static int atom_get_turbo_pstate(void)
850 {
851 	u64 value;
852 
853 	rdmsrl(ATOM_TURBO_RATIOS, value);
854 	return value & 0x7F;
855 }
856 
857 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
858 {
859 	u64 val;
860 	int32_t vid_fp;
861 	u32 vid;
862 
863 	val = (u64)pstate << 8;
864 	if (limits->no_turbo && !limits->turbo_disabled)
865 		val |= (u64)1 << 32;
866 
867 	vid_fp = cpudata->vid.min + mul_fp(
868 		int_tofp(pstate - cpudata->pstate.min_pstate),
869 		cpudata->vid.ratio);
870 
871 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
872 	vid = ceiling_fp(vid_fp);
873 
874 	if (pstate > cpudata->pstate.max_pstate)
875 		vid = cpudata->vid.turbo;
876 
877 	return val | vid;
878 }
879 
880 static int silvermont_get_scaling(void)
881 {
882 	u64 value;
883 	int i;
884 	/* Defined in Table 35-6 from SDM (Sept 2015) */
885 	static int silvermont_freq_table[] = {
886 		83300, 100000, 133300, 116700, 80000};
887 
888 	rdmsrl(MSR_FSB_FREQ, value);
889 	i = value & 0x7;
890 	WARN_ON(i > 4);
891 
892 	return silvermont_freq_table[i];
893 }
894 
895 static int airmont_get_scaling(void)
896 {
897 	u64 value;
898 	int i;
899 	/* Defined in Table 35-10 from SDM (Sept 2015) */
900 	static int airmont_freq_table[] = {
901 		83300, 100000, 133300, 116700, 80000,
902 		93300, 90000, 88900, 87500};
903 
904 	rdmsrl(MSR_FSB_FREQ, value);
905 	i = value & 0xF;
906 	WARN_ON(i > 8);
907 
908 	return airmont_freq_table[i];
909 }
910 
911 static void atom_get_vid(struct cpudata *cpudata)
912 {
913 	u64 value;
914 
915 	rdmsrl(ATOM_VIDS, value);
916 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
917 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
918 	cpudata->vid.ratio = div_fp(
919 		cpudata->vid.max - cpudata->vid.min,
920 		int_tofp(cpudata->pstate.max_pstate -
921 			cpudata->pstate.min_pstate));
922 
923 	rdmsrl(ATOM_TURBO_VIDS, value);
924 	cpudata->vid.turbo = value & 0x7f;
925 }
926 
927 static int core_get_min_pstate(void)
928 {
929 	u64 value;
930 
931 	rdmsrl(MSR_PLATFORM_INFO, value);
932 	return (value >> 40) & 0xFF;
933 }
934 
935 static int core_get_max_pstate_physical(void)
936 {
937 	u64 value;
938 
939 	rdmsrl(MSR_PLATFORM_INFO, value);
940 	return (value >> 8) & 0xFF;
941 }
942 
943 static int core_get_max_pstate(void)
944 {
945 	u64 tar;
946 	u64 plat_info;
947 	int max_pstate;
948 	int err;
949 
950 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
951 	max_pstate = (plat_info >> 8) & 0xFF;
952 
953 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
954 	if (!err) {
955 		/* Do some sanity checking for safety */
956 		if (plat_info & 0x600000000) {
957 			u64 tdp_ctrl;
958 			u64 tdp_ratio;
959 			int tdp_msr;
960 
961 			err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
962 			if (err)
963 				goto skip_tar;
964 
965 			tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
966 			err = rdmsrl_safe(tdp_msr, &tdp_ratio);
967 			if (err)
968 				goto skip_tar;
969 
970 			/* For level 1 and 2, bits[23:16] contain the ratio */
971 			if (tdp_ctrl)
972 				tdp_ratio >>= 16;
973 
974 			tdp_ratio &= 0xff; /* ratios are only 8 bits long */
975 			if (tdp_ratio - 1 == tar) {
976 				max_pstate = tar;
977 				pr_debug("max_pstate=TAC %x\n", max_pstate);
978 			} else {
979 				goto skip_tar;
980 			}
981 		}
982 	}
983 
984 skip_tar:
985 	return max_pstate;
986 }
987 
988 static int core_get_turbo_pstate(void)
989 {
990 	u64 value;
991 	int nont, ret;
992 
993 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
994 	nont = core_get_max_pstate();
995 	ret = (value) & 255;
996 	if (ret <= nont)
997 		ret = nont;
998 	return ret;
999 }
1000 
1001 static inline int core_get_scaling(void)
1002 {
1003 	return 100000;
1004 }
1005 
1006 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1007 {
1008 	u64 val;
1009 
1010 	val = (u64)pstate << 8;
1011 	if (limits->no_turbo && !limits->turbo_disabled)
1012 		val |= (u64)1 << 32;
1013 
1014 	return val;
1015 }
1016 
1017 static int knl_get_turbo_pstate(void)
1018 {
1019 	u64 value;
1020 	int nont, ret;
1021 
1022 	rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
1023 	nont = core_get_max_pstate();
1024 	ret = (((value) >> 8) & 0xFF);
1025 	if (ret <= nont)
1026 		ret = nont;
1027 	return ret;
1028 }
1029 
1030 static struct cpu_defaults core_params = {
1031 	.pid_policy = {
1032 		.sample_rate_ms = 10,
1033 		.deadband = 0,
1034 		.setpoint = 97,
1035 		.p_gain_pct = 20,
1036 		.d_gain_pct = 0,
1037 		.i_gain_pct = 0,
1038 	},
1039 	.funcs = {
1040 		.get_max = core_get_max_pstate,
1041 		.get_max_physical = core_get_max_pstate_physical,
1042 		.get_min = core_get_min_pstate,
1043 		.get_turbo = core_get_turbo_pstate,
1044 		.get_scaling = core_get_scaling,
1045 		.get_val = core_get_val,
1046 		.get_target_pstate = get_target_pstate_use_performance,
1047 	},
1048 };
1049 
1050 static struct cpu_defaults silvermont_params = {
1051 	.pid_policy = {
1052 		.sample_rate_ms = 10,
1053 		.deadband = 0,
1054 		.setpoint = 60,
1055 		.p_gain_pct = 14,
1056 		.d_gain_pct = 0,
1057 		.i_gain_pct = 4,
1058 	},
1059 	.funcs = {
1060 		.get_max = atom_get_max_pstate,
1061 		.get_max_physical = atom_get_max_pstate,
1062 		.get_min = atom_get_min_pstate,
1063 		.get_turbo = atom_get_turbo_pstate,
1064 		.get_val = atom_get_val,
1065 		.get_scaling = silvermont_get_scaling,
1066 		.get_vid = atom_get_vid,
1067 		.get_target_pstate = get_target_pstate_use_cpu_load,
1068 	},
1069 };
1070 
1071 static struct cpu_defaults airmont_params = {
1072 	.pid_policy = {
1073 		.sample_rate_ms = 10,
1074 		.deadband = 0,
1075 		.setpoint = 60,
1076 		.p_gain_pct = 14,
1077 		.d_gain_pct = 0,
1078 		.i_gain_pct = 4,
1079 	},
1080 	.funcs = {
1081 		.get_max = atom_get_max_pstate,
1082 		.get_max_physical = atom_get_max_pstate,
1083 		.get_min = atom_get_min_pstate,
1084 		.get_turbo = atom_get_turbo_pstate,
1085 		.get_val = atom_get_val,
1086 		.get_scaling = airmont_get_scaling,
1087 		.get_vid = atom_get_vid,
1088 		.get_target_pstate = get_target_pstate_use_cpu_load,
1089 	},
1090 };
1091 
1092 static struct cpu_defaults knl_params = {
1093 	.pid_policy = {
1094 		.sample_rate_ms = 10,
1095 		.deadband = 0,
1096 		.setpoint = 97,
1097 		.p_gain_pct = 20,
1098 		.d_gain_pct = 0,
1099 		.i_gain_pct = 0,
1100 	},
1101 	.funcs = {
1102 		.get_max = core_get_max_pstate,
1103 		.get_max_physical = core_get_max_pstate_physical,
1104 		.get_min = core_get_min_pstate,
1105 		.get_turbo = knl_get_turbo_pstate,
1106 		.get_scaling = core_get_scaling,
1107 		.get_val = core_get_val,
1108 		.get_target_pstate = get_target_pstate_use_performance,
1109 	},
1110 };
1111 
1112 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1113 {
1114 	int max_perf = cpu->pstate.turbo_pstate;
1115 	int max_perf_adj;
1116 	int min_perf;
1117 
1118 	if (limits->no_turbo || limits->turbo_disabled)
1119 		max_perf = cpu->pstate.max_pstate;
1120 
1121 	/*
1122 	 * performance can be limited by user through sysfs, by cpufreq
1123 	 * policy, or by cpu specific default values determined through
1124 	 * experimentation.
1125 	 */
1126 	max_perf_adj = fp_toint(max_perf * limits->max_perf);
1127 	*max = clamp_t(int, max_perf_adj,
1128 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1129 
1130 	min_perf = fp_toint(max_perf * limits->min_perf);
1131 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1132 }
1133 
1134 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1135 {
1136 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1137 	cpu->pstate.current_pstate = pstate;
1138 }
1139 
1140 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1141 {
1142 	int pstate = cpu->pstate.min_pstate;
1143 
1144 	intel_pstate_record_pstate(cpu, pstate);
1145 	/*
1146 	 * Generally, there is no guarantee that this code will always run on
1147 	 * the CPU being updated, so force the register update to run on the
1148 	 * right CPU.
1149 	 */
1150 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1151 		      pstate_funcs.get_val(cpu, pstate));
1152 }
1153 
1154 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1155 {
1156 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1157 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1158 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1159 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1160 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1161 
1162 	if (pstate_funcs.get_vid)
1163 		pstate_funcs.get_vid(cpu);
1164 
1165 	intel_pstate_set_min_pstate(cpu);
1166 }
1167 
1168 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1169 {
1170 	struct sample *sample = &cpu->sample;
1171 
1172 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1173 }
1174 
1175 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1176 {
1177 	u64 aperf, mperf;
1178 	unsigned long flags;
1179 	u64 tsc;
1180 
1181 	local_irq_save(flags);
1182 	rdmsrl(MSR_IA32_APERF, aperf);
1183 	rdmsrl(MSR_IA32_MPERF, mperf);
1184 	tsc = rdtsc();
1185 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1186 		local_irq_restore(flags);
1187 		return false;
1188 	}
1189 	local_irq_restore(flags);
1190 
1191 	cpu->last_sample_time = cpu->sample.time;
1192 	cpu->sample.time = time;
1193 	cpu->sample.aperf = aperf;
1194 	cpu->sample.mperf = mperf;
1195 	cpu->sample.tsc =  tsc;
1196 	cpu->sample.aperf -= cpu->prev_aperf;
1197 	cpu->sample.mperf -= cpu->prev_mperf;
1198 	cpu->sample.tsc -= cpu->prev_tsc;
1199 
1200 	cpu->prev_aperf = aperf;
1201 	cpu->prev_mperf = mperf;
1202 	cpu->prev_tsc = tsc;
1203 	/*
1204 	 * First time this function is invoked in a given cycle, all of the
1205 	 * previous sample data fields are equal to zero or stale and they must
1206 	 * be populated with meaningful numbers for things to work, so assume
1207 	 * that sample.time will always be reset before setting the utilization
1208 	 * update hook and make the caller skip the sample then.
1209 	 */
1210 	return !!cpu->last_sample_time;
1211 }
1212 
1213 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1214 {
1215 	return mul_ext_fp(cpu->sample.core_avg_perf,
1216 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1217 }
1218 
1219 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1220 {
1221 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1222 			  cpu->sample.core_avg_perf);
1223 }
1224 
1225 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1226 {
1227 	struct sample *sample = &cpu->sample;
1228 	u64 cummulative_iowait, delta_iowait_us;
1229 	u64 delta_iowait_mperf;
1230 	u64 mperf, now;
1231 	int32_t cpu_load;
1232 
1233 	cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1234 
1235 	/*
1236 	 * Convert iowait time into number of IO cycles spent at max_freq.
1237 	 * IO is considered as busy only for the cpu_load algorithm. For
1238 	 * performance this is not needed since we always try to reach the
1239 	 * maximum P-State, so we are already boosting the IOs.
1240 	 */
1241 	delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1242 	delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1243 		cpu->pstate.max_pstate, MSEC_PER_SEC);
1244 
1245 	mperf = cpu->sample.mperf + delta_iowait_mperf;
1246 	cpu->prev_cummulative_iowait = cummulative_iowait;
1247 
1248 	/*
1249 	 * The load can be estimated as the ratio of the mperf counter
1250 	 * running at a constant frequency during active periods
1251 	 * (C0) and the time stamp counter running at the same frequency
1252 	 * also during C-states.
1253 	 */
1254 	cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1255 	cpu->sample.busy_scaled = cpu_load;
1256 
1257 	return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1258 }
1259 
1260 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1261 {
1262 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1263 	u64 duration_ns;
1264 
1265 	/*
1266 	 * perf_scaled is the average performance during the last sampling
1267 	 * period scaled by the ratio of the maximum P-state to the P-state
1268 	 * requested last time (in percent).  That measures the system's
1269 	 * response to the previous P-state selection.
1270 	 */
1271 	max_pstate = cpu->pstate.max_pstate_physical;
1272 	current_pstate = cpu->pstate.current_pstate;
1273 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1274 			       div_fp(100 * max_pstate, current_pstate));
1275 
1276 	/*
1277 	 * Since our utilization update callback will not run unless we are
1278 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1279 	 * than our sample interval.  If it is, then we were idle for a long
1280 	 * enough period of time to adjust our performance metric.
1281 	 */
1282 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1283 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1284 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1285 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1286 	} else {
1287 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1288 		if (sample_ratio < int_tofp(1))
1289 			perf_scaled = 0;
1290 	}
1291 
1292 	cpu->sample.busy_scaled = perf_scaled;
1293 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1294 }
1295 
1296 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1297 {
1298 	int max_perf, min_perf;
1299 
1300 	update_turbo_state();
1301 
1302 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1303 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1304 	if (pstate == cpu->pstate.current_pstate)
1305 		return;
1306 
1307 	intel_pstate_record_pstate(cpu, pstate);
1308 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1309 }
1310 
1311 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1312 {
1313 	int from, target_pstate;
1314 	struct sample *sample;
1315 
1316 	from = cpu->pstate.current_pstate;
1317 
1318 	target_pstate = pstate_funcs.get_target_pstate(cpu);
1319 
1320 	intel_pstate_update_pstate(cpu, target_pstate);
1321 
1322 	sample = &cpu->sample;
1323 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1324 		fp_toint(sample->busy_scaled),
1325 		from,
1326 		cpu->pstate.current_pstate,
1327 		sample->mperf,
1328 		sample->aperf,
1329 		sample->tsc,
1330 		get_avg_frequency(cpu));
1331 }
1332 
1333 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1334 				     unsigned long util, unsigned long max)
1335 {
1336 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1337 	u64 delta_ns = time - cpu->sample.time;
1338 
1339 	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1340 		bool sample_taken = intel_pstate_sample(cpu, time);
1341 
1342 		if (sample_taken) {
1343 			intel_pstate_calc_avg_perf(cpu);
1344 			if (!hwp_active)
1345 				intel_pstate_adjust_busy_pstate(cpu);
1346 		}
1347 	}
1348 }
1349 
1350 #define ICPU(model, policy) \
1351 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1352 			(unsigned long)&policy }
1353 
1354 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1355 	ICPU(0x2a, core_params),
1356 	ICPU(0x2d, core_params),
1357 	ICPU(0x37, silvermont_params),
1358 	ICPU(0x3a, core_params),
1359 	ICPU(0x3c, core_params),
1360 	ICPU(0x3d, core_params),
1361 	ICPU(0x3e, core_params),
1362 	ICPU(0x3f, core_params),
1363 	ICPU(0x45, core_params),
1364 	ICPU(0x46, core_params),
1365 	ICPU(0x47, core_params),
1366 	ICPU(0x4c, airmont_params),
1367 	ICPU(0x4e, core_params),
1368 	ICPU(0x4f, core_params),
1369 	ICPU(0x5e, core_params),
1370 	ICPU(0x56, core_params),
1371 	ICPU(0x57, knl_params),
1372 	{}
1373 };
1374 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1375 
1376 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1377 	ICPU(0x56, core_params),
1378 	{}
1379 };
1380 
1381 static int intel_pstate_init_cpu(unsigned int cpunum)
1382 {
1383 	struct cpudata *cpu;
1384 
1385 	if (!all_cpu_data[cpunum])
1386 		all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1387 					       GFP_KERNEL);
1388 	if (!all_cpu_data[cpunum])
1389 		return -ENOMEM;
1390 
1391 	cpu = all_cpu_data[cpunum];
1392 
1393 	cpu->cpu = cpunum;
1394 
1395 	if (hwp_active) {
1396 		intel_pstate_hwp_enable(cpu);
1397 		pid_params.sample_rate_ms = 50;
1398 		pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1399 	}
1400 
1401 	intel_pstate_get_cpu_pstates(cpu);
1402 
1403 	intel_pstate_busy_pid_reset(cpu);
1404 
1405 	pr_debug("controlling: cpu %d\n", cpunum);
1406 
1407 	return 0;
1408 }
1409 
1410 static unsigned int intel_pstate_get(unsigned int cpu_num)
1411 {
1412 	struct cpudata *cpu = all_cpu_data[cpu_num];
1413 
1414 	return cpu ? get_avg_frequency(cpu) : 0;
1415 }
1416 
1417 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1418 {
1419 	struct cpudata *cpu = all_cpu_data[cpu_num];
1420 
1421 	/* Prevent intel_pstate_update_util() from using stale data. */
1422 	cpu->sample.time = 0;
1423 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1424 				     intel_pstate_update_util);
1425 	cpu->update_util_set = true;
1426 }
1427 
1428 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1429 {
1430 	struct cpudata *cpu_data = all_cpu_data[cpu];
1431 
1432 	if (!cpu_data->update_util_set)
1433 		return;
1434 
1435 	cpufreq_remove_update_util_hook(cpu);
1436 	cpu_data->update_util_set = false;
1437 	synchronize_sched();
1438 }
1439 
1440 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1441 {
1442 	limits->no_turbo = 0;
1443 	limits->turbo_disabled = 0;
1444 	limits->max_perf_pct = 100;
1445 	limits->max_perf = int_tofp(1);
1446 	limits->min_perf_pct = 100;
1447 	limits->min_perf = int_tofp(1);
1448 	limits->max_policy_pct = 100;
1449 	limits->max_sysfs_pct = 100;
1450 	limits->min_policy_pct = 0;
1451 	limits->min_sysfs_pct = 0;
1452 }
1453 
1454 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1455 {
1456 	struct cpudata *cpu;
1457 
1458 	if (!policy->cpuinfo.max_freq)
1459 		return -ENODEV;
1460 
1461 	intel_pstate_clear_update_util_hook(policy->cpu);
1462 
1463 	cpu = all_cpu_data[0];
1464 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
1465 	    policy->max < policy->cpuinfo.max_freq &&
1466 	    policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1467 		pr_debug("policy->max > max non turbo frequency\n");
1468 		policy->max = policy->cpuinfo.max_freq;
1469 	}
1470 
1471 	if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1472 		limits = &performance_limits;
1473 		if (policy->max >= policy->cpuinfo.max_freq) {
1474 			pr_debug("set performance\n");
1475 			intel_pstate_set_performance_limits(limits);
1476 			goto out;
1477 		}
1478 	} else {
1479 		pr_debug("set powersave\n");
1480 		limits = &powersave_limits;
1481 	}
1482 
1483 	limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1484 	limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1485 	limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1486 					      policy->cpuinfo.max_freq);
1487 	limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1488 
1489 	/* Normalize user input to [min_policy_pct, max_policy_pct] */
1490 	limits->min_perf_pct = max(limits->min_policy_pct,
1491 				   limits->min_sysfs_pct);
1492 	limits->min_perf_pct = min(limits->max_policy_pct,
1493 				   limits->min_perf_pct);
1494 	limits->max_perf_pct = min(limits->max_policy_pct,
1495 				   limits->max_sysfs_pct);
1496 	limits->max_perf_pct = max(limits->min_policy_pct,
1497 				   limits->max_perf_pct);
1498 	limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1499 
1500 	/* Make sure min_perf_pct <= max_perf_pct */
1501 	limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1502 
1503 	limits->min_perf = div_fp(limits->min_perf_pct, 100);
1504 	limits->max_perf = div_fp(limits->max_perf_pct, 100);
1505 
1506  out:
1507 	intel_pstate_set_update_util_hook(policy->cpu);
1508 
1509 	intel_pstate_hwp_set_policy(policy);
1510 
1511 	return 0;
1512 }
1513 
1514 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1515 {
1516 	cpufreq_verify_within_cpu_limits(policy);
1517 
1518 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1519 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1520 		return -EINVAL;
1521 
1522 	return 0;
1523 }
1524 
1525 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1526 {
1527 	int cpu_num = policy->cpu;
1528 	struct cpudata *cpu = all_cpu_data[cpu_num];
1529 
1530 	pr_debug("CPU %d exiting\n", cpu_num);
1531 
1532 	intel_pstate_clear_update_util_hook(cpu_num);
1533 
1534 	if (hwp_active)
1535 		return;
1536 
1537 	intel_pstate_set_min_pstate(cpu);
1538 }
1539 
1540 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1541 {
1542 	struct cpudata *cpu;
1543 	int rc;
1544 
1545 	rc = intel_pstate_init_cpu(policy->cpu);
1546 	if (rc)
1547 		return rc;
1548 
1549 	cpu = all_cpu_data[policy->cpu];
1550 
1551 	if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1552 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1553 	else
1554 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
1555 
1556 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1557 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1558 
1559 	/* cpuinfo and default policy values */
1560 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1561 	policy->cpuinfo.max_freq =
1562 		cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1563 	intel_pstate_init_acpi_perf_limits(policy);
1564 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1565 	cpumask_set_cpu(policy->cpu, policy->cpus);
1566 
1567 	return 0;
1568 }
1569 
1570 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1571 {
1572 	intel_pstate_exit_perf_limits(policy);
1573 
1574 	return 0;
1575 }
1576 
1577 static struct cpufreq_driver intel_pstate_driver = {
1578 	.flags		= CPUFREQ_CONST_LOOPS,
1579 	.verify		= intel_pstate_verify_policy,
1580 	.setpolicy	= intel_pstate_set_policy,
1581 	.resume		= intel_pstate_hwp_set_policy,
1582 	.get		= intel_pstate_get,
1583 	.init		= intel_pstate_cpu_init,
1584 	.exit		= intel_pstate_cpu_exit,
1585 	.stop_cpu	= intel_pstate_stop_cpu,
1586 	.name		= "intel_pstate",
1587 };
1588 
1589 static int __initdata no_load;
1590 static int __initdata no_hwp;
1591 static int __initdata hwp_only;
1592 static unsigned int force_load;
1593 
1594 static int intel_pstate_msrs_not_valid(void)
1595 {
1596 	if (!pstate_funcs.get_max() ||
1597 	    !pstate_funcs.get_min() ||
1598 	    !pstate_funcs.get_turbo())
1599 		return -ENODEV;
1600 
1601 	return 0;
1602 }
1603 
1604 static void copy_pid_params(struct pstate_adjust_policy *policy)
1605 {
1606 	pid_params.sample_rate_ms = policy->sample_rate_ms;
1607 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1608 	pid_params.p_gain_pct = policy->p_gain_pct;
1609 	pid_params.i_gain_pct = policy->i_gain_pct;
1610 	pid_params.d_gain_pct = policy->d_gain_pct;
1611 	pid_params.deadband = policy->deadband;
1612 	pid_params.setpoint = policy->setpoint;
1613 }
1614 
1615 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1616 {
1617 	pstate_funcs.get_max   = funcs->get_max;
1618 	pstate_funcs.get_max_physical = funcs->get_max_physical;
1619 	pstate_funcs.get_min   = funcs->get_min;
1620 	pstate_funcs.get_turbo = funcs->get_turbo;
1621 	pstate_funcs.get_scaling = funcs->get_scaling;
1622 	pstate_funcs.get_val   = funcs->get_val;
1623 	pstate_funcs.get_vid   = funcs->get_vid;
1624 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1625 
1626 }
1627 
1628 #ifdef CONFIG_ACPI
1629 
1630 static bool intel_pstate_no_acpi_pss(void)
1631 {
1632 	int i;
1633 
1634 	for_each_possible_cpu(i) {
1635 		acpi_status status;
1636 		union acpi_object *pss;
1637 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1638 		struct acpi_processor *pr = per_cpu(processors, i);
1639 
1640 		if (!pr)
1641 			continue;
1642 
1643 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1644 		if (ACPI_FAILURE(status))
1645 			continue;
1646 
1647 		pss = buffer.pointer;
1648 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1649 			kfree(pss);
1650 			return false;
1651 		}
1652 
1653 		kfree(pss);
1654 	}
1655 
1656 	return true;
1657 }
1658 
1659 static bool intel_pstate_has_acpi_ppc(void)
1660 {
1661 	int i;
1662 
1663 	for_each_possible_cpu(i) {
1664 		struct acpi_processor *pr = per_cpu(processors, i);
1665 
1666 		if (!pr)
1667 			continue;
1668 		if (acpi_has_method(pr->handle, "_PPC"))
1669 			return true;
1670 	}
1671 	return false;
1672 }
1673 
1674 enum {
1675 	PSS,
1676 	PPC,
1677 };
1678 
1679 struct hw_vendor_info {
1680 	u16  valid;
1681 	char oem_id[ACPI_OEM_ID_SIZE];
1682 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1683 	int  oem_pwr_table;
1684 };
1685 
1686 /* Hardware vendor-specific info that has its own power management modes */
1687 static struct hw_vendor_info vendor_info[] = {
1688 	{1, "HP    ", "ProLiant", PSS},
1689 	{1, "ORACLE", "X4-2    ", PPC},
1690 	{1, "ORACLE", "X4-2L   ", PPC},
1691 	{1, "ORACLE", "X4-2B   ", PPC},
1692 	{1, "ORACLE", "X3-2    ", PPC},
1693 	{1, "ORACLE", "X3-2L   ", PPC},
1694 	{1, "ORACLE", "X3-2B   ", PPC},
1695 	{1, "ORACLE", "X4470M2 ", PPC},
1696 	{1, "ORACLE", "X4270M3 ", PPC},
1697 	{1, "ORACLE", "X4270M2 ", PPC},
1698 	{1, "ORACLE", "X4170M2 ", PPC},
1699 	{1, "ORACLE", "X4170 M3", PPC},
1700 	{1, "ORACLE", "X4275 M3", PPC},
1701 	{1, "ORACLE", "X6-2    ", PPC},
1702 	{1, "ORACLE", "Sudbury ", PPC},
1703 	{0, "", ""},
1704 };
1705 
1706 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1707 {
1708 	struct acpi_table_header hdr;
1709 	struct hw_vendor_info *v_info;
1710 	const struct x86_cpu_id *id;
1711 	u64 misc_pwr;
1712 
1713 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1714 	if (id) {
1715 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1716 		if ( misc_pwr & (1 << 8))
1717 			return true;
1718 	}
1719 
1720 	if (acpi_disabled ||
1721 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1722 		return false;
1723 
1724 	for (v_info = vendor_info; v_info->valid; v_info++) {
1725 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1726 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
1727 						ACPI_OEM_TABLE_ID_SIZE))
1728 			switch (v_info->oem_pwr_table) {
1729 			case PSS:
1730 				return intel_pstate_no_acpi_pss();
1731 			case PPC:
1732 				return intel_pstate_has_acpi_ppc() &&
1733 					(!force_load);
1734 			}
1735 	}
1736 
1737 	return false;
1738 }
1739 #else /* CONFIG_ACPI not enabled */
1740 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1741 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1742 #endif /* CONFIG_ACPI */
1743 
1744 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1745 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1746 	{}
1747 };
1748 
1749 static int __init intel_pstate_init(void)
1750 {
1751 	int cpu, rc = 0;
1752 	const struct x86_cpu_id *id;
1753 	struct cpu_defaults *cpu_def;
1754 
1755 	if (no_load)
1756 		return -ENODEV;
1757 
1758 	if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1759 		copy_cpu_funcs(&core_params.funcs);
1760 		hwp_active++;
1761 		goto hwp_cpu_matched;
1762 	}
1763 
1764 	id = x86_match_cpu(intel_pstate_cpu_ids);
1765 	if (!id)
1766 		return -ENODEV;
1767 
1768 	cpu_def = (struct cpu_defaults *)id->driver_data;
1769 
1770 	copy_pid_params(&cpu_def->pid_policy);
1771 	copy_cpu_funcs(&cpu_def->funcs);
1772 
1773 	if (intel_pstate_msrs_not_valid())
1774 		return -ENODEV;
1775 
1776 hwp_cpu_matched:
1777 	/*
1778 	 * The Intel pstate driver will be ignored if the platform
1779 	 * firmware has its own power management modes.
1780 	 */
1781 	if (intel_pstate_platform_pwr_mgmt_exists())
1782 		return -ENODEV;
1783 
1784 	pr_info("Intel P-state driver initializing\n");
1785 
1786 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1787 	if (!all_cpu_data)
1788 		return -ENOMEM;
1789 
1790 	if (!hwp_active && hwp_only)
1791 		goto out;
1792 
1793 	rc = cpufreq_register_driver(&intel_pstate_driver);
1794 	if (rc)
1795 		goto out;
1796 
1797 	intel_pstate_debug_expose_params();
1798 	intel_pstate_sysfs_expose_params();
1799 
1800 	if (hwp_active)
1801 		pr_info("HWP enabled\n");
1802 
1803 	return rc;
1804 out:
1805 	get_online_cpus();
1806 	for_each_online_cpu(cpu) {
1807 		if (all_cpu_data[cpu]) {
1808 			intel_pstate_clear_update_util_hook(cpu);
1809 			kfree(all_cpu_data[cpu]);
1810 		}
1811 	}
1812 
1813 	put_online_cpus();
1814 	vfree(all_cpu_data);
1815 	return -ENODEV;
1816 }
1817 device_initcall(intel_pstate_init);
1818 
1819 static int __init intel_pstate_setup(char *str)
1820 {
1821 	if (!str)
1822 		return -EINVAL;
1823 
1824 	if (!strcmp(str, "disable"))
1825 		no_load = 1;
1826 	if (!strcmp(str, "no_hwp")) {
1827 		pr_info("HWP disabled\n");
1828 		no_hwp = 1;
1829 	}
1830 	if (!strcmp(str, "force"))
1831 		force_load = 1;
1832 	if (!strcmp(str, "hwp_only"))
1833 		hwp_only = 1;
1834 
1835 #ifdef CONFIG_ACPI
1836 	if (!strcmp(str, "support_acpi_ppc"))
1837 		acpi_ppc = true;
1838 #endif
1839 
1840 	return 0;
1841 }
1842 early_param("intel_pstate", intel_pstate_setup);
1843 
1844 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1845 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1846 MODULE_LICENSE("GPL");
1847