1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29 
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35 #include "../drivers/thermal/intel/thermal_interrupt.h"
36 
37 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
38 
39 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
42 
43 #ifdef CONFIG_ACPI
44 #include <acpi/processor.h>
45 #include <acpi/cppc_acpi.h>
46 #endif
47 
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51 
52 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
53 
54 #define EXT_BITS 6
55 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
56 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
57 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
58 
59 static inline int32_t mul_fp(int32_t x, int32_t y)
60 {
61 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
62 }
63 
64 static inline int32_t div_fp(s64 x, s64 y)
65 {
66 	return div64_s64((int64_t)x << FRAC_BITS, y);
67 }
68 
69 static inline int ceiling_fp(int32_t x)
70 {
71 	int mask, ret;
72 
73 	ret = fp_toint(x);
74 	mask = (1 << FRAC_BITS) - 1;
75 	if (x & mask)
76 		ret += 1;
77 	return ret;
78 }
79 
80 static inline u64 mul_ext_fp(u64 x, u64 y)
81 {
82 	return (x * y) >> EXT_FRAC_BITS;
83 }
84 
85 static inline u64 div_ext_fp(u64 x, u64 y)
86 {
87 	return div64_u64(x << EXT_FRAC_BITS, y);
88 }
89 
90 /**
91  * struct sample -	Store performance sample
92  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
93  *			performance during last sample period
94  * @busy_scaled:	Scaled busy value which is used to calculate next
95  *			P state. This can be different than core_avg_perf
96  *			to account for cpu idle period
97  * @aperf:		Difference of actual performance frequency clock count
98  *			read from APERF MSR between last and current sample
99  * @mperf:		Difference of maximum performance frequency clock count
100  *			read from MPERF MSR between last and current sample
101  * @tsc:		Difference of time stamp counter between last and
102  *			current sample
103  * @time:		Current time from scheduler
104  *
105  * This structure is used in the cpudata structure to store performance sample
106  * data for choosing next P State.
107  */
108 struct sample {
109 	int32_t core_avg_perf;
110 	int32_t busy_scaled;
111 	u64 aperf;
112 	u64 mperf;
113 	u64 tsc;
114 	u64 time;
115 };
116 
117 /**
118  * struct pstate_data - Store P state data
119  * @current_pstate:	Current requested P state
120  * @min_pstate:		Min P state possible for this platform
121  * @max_pstate:		Max P state possible for this platform
122  * @max_pstate_physical:This is physical Max P state for a processor
123  *			This can be higher than the max_pstate which can
124  *			be limited by platform thermal design power limits
125  * @perf_ctl_scaling:	PERF_CTL P-state to frequency scaling factor
126  * @scaling:		Scaling factor between performance and frequency
127  * @turbo_pstate:	Max Turbo P state possible for this platform
128  * @min_freq:		@min_pstate frequency in cpufreq units
129  * @max_freq:		@max_pstate frequency in cpufreq units
130  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
131  *
132  * Stores the per cpu model P state limits and current P state.
133  */
134 struct pstate_data {
135 	int	current_pstate;
136 	int	min_pstate;
137 	int	max_pstate;
138 	int	max_pstate_physical;
139 	int	perf_ctl_scaling;
140 	int	scaling;
141 	int	turbo_pstate;
142 	unsigned int min_freq;
143 	unsigned int max_freq;
144 	unsigned int turbo_freq;
145 };
146 
147 /**
148  * struct vid_data -	Stores voltage information data
149  * @min:		VID data for this platform corresponding to
150  *			the lowest P state
151  * @max:		VID data corresponding to the highest P State.
152  * @turbo:		VID data for turbo P state
153  * @ratio:		Ratio of (vid max - vid min) /
154  *			(max P state - Min P State)
155  *
156  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
157  * This data is used in Atom platforms, where in addition to target P state,
158  * the voltage data needs to be specified to select next P State.
159  */
160 struct vid_data {
161 	int min;
162 	int max;
163 	int turbo;
164 	int32_t ratio;
165 };
166 
167 /**
168  * struct global_params - Global parameters, mostly tunable via sysfs.
169  * @no_turbo:		Whether or not to use turbo P-states.
170  * @turbo_disabled:	Whether or not turbo P-states are available at all,
171  *			based on the MSR_IA32_MISC_ENABLE value and whether or
172  *			not the maximum reported turbo P-state is different from
173  *			the maximum reported non-turbo one.
174  * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
175  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
176  *			P-state capacity.
177  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
178  *			P-state capacity.
179  */
180 struct global_params {
181 	bool no_turbo;
182 	bool turbo_disabled;
183 	bool turbo_disabled_mf;
184 	int max_perf_pct;
185 	int min_perf_pct;
186 };
187 
188 /**
189  * struct cpudata -	Per CPU instance data storage
190  * @cpu:		CPU number for this instance data
191  * @policy:		CPUFreq policy value
192  * @update_util:	CPUFreq utility callback information
193  * @update_util_set:	CPUFreq utility callback is set
194  * @iowait_boost:	iowait-related boost fraction
195  * @last_update:	Time of the last update.
196  * @pstate:		Stores P state limits for this CPU
197  * @vid:		Stores VID limits for this CPU
198  * @last_sample_time:	Last Sample time
199  * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
200  * @prev_aperf:		Last APERF value read from APERF MSR
201  * @prev_mperf:		Last MPERF value read from MPERF MSR
202  * @prev_tsc:		Last timestamp counter (TSC) value
203  * @prev_cummulative_iowait: IO Wait time difference from last and
204  *			current sample
205  * @sample:		Storage for storing last Sample data
206  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
207  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
208  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
209  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
210  * @epp_powersave:	Last saved HWP energy performance preference
211  *			(EPP) or energy performance bias (EPB),
212  *			when policy switched to performance
213  * @epp_policy:		Last saved policy used to set EPP/EPB
214  * @epp_default:	Power on default HWP energy performance
215  *			preference/bias
216  * @epp_cached		Cached HWP energy-performance preference value
217  * @hwp_req_cached:	Cached value of the last HWP Request MSR
218  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
219  * @last_io_update:	Last time when IO wake flag was set
220  * @sched_flags:	Store scheduler flags for possible cross CPU update
221  * @hwp_boost_min:	Last HWP boosted min performance
222  * @suspended:		Whether or not the driver has been suspended.
223  * @hwp_notify_work:	workqueue for HWP notifications.
224  *
225  * This structure stores per CPU instance data for all CPUs.
226  */
227 struct cpudata {
228 	int cpu;
229 
230 	unsigned int policy;
231 	struct update_util_data update_util;
232 	bool   update_util_set;
233 
234 	struct pstate_data pstate;
235 	struct vid_data vid;
236 
237 	u64	last_update;
238 	u64	last_sample_time;
239 	u64	aperf_mperf_shift;
240 	u64	prev_aperf;
241 	u64	prev_mperf;
242 	u64	prev_tsc;
243 	u64	prev_cummulative_iowait;
244 	struct sample sample;
245 	int32_t	min_perf_ratio;
246 	int32_t	max_perf_ratio;
247 #ifdef CONFIG_ACPI
248 	struct acpi_processor_performance acpi_perf_data;
249 	bool valid_pss_table;
250 #endif
251 	unsigned int iowait_boost;
252 	s16 epp_powersave;
253 	s16 epp_policy;
254 	s16 epp_default;
255 	s16 epp_cached;
256 	u64 hwp_req_cached;
257 	u64 hwp_cap_cached;
258 	u64 last_io_update;
259 	unsigned int sched_flags;
260 	u32 hwp_boost_min;
261 	bool suspended;
262 	struct delayed_work hwp_notify_work;
263 };
264 
265 static struct cpudata **all_cpu_data;
266 
267 /**
268  * struct pstate_funcs - Per CPU model specific callbacks
269  * @get_max:		Callback to get maximum non turbo effective P state
270  * @get_max_physical:	Callback to get maximum non turbo physical P state
271  * @get_min:		Callback to get minimum P state
272  * @get_turbo:		Callback to get turbo P state
273  * @get_scaling:	Callback to get frequency scaling factor
274  * @get_cpu_scaling:	Get frequency scaling factor for a given cpu
275  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
276  * @get_val:		Callback to convert P state to actual MSR write value
277  * @get_vid:		Callback to get VID data for Atom platforms
278  *
279  * Core and Atom CPU models have different way to get P State limits. This
280  * structure is used to store those callbacks.
281  */
282 struct pstate_funcs {
283 	int (*get_max)(void);
284 	int (*get_max_physical)(void);
285 	int (*get_min)(void);
286 	int (*get_turbo)(void);
287 	int (*get_scaling)(void);
288 	int (*get_cpu_scaling)(int cpu);
289 	int (*get_aperf_mperf_shift)(void);
290 	u64 (*get_val)(struct cpudata*, int pstate);
291 	void (*get_vid)(struct cpudata *);
292 };
293 
294 static struct pstate_funcs pstate_funcs __read_mostly;
295 
296 static int hwp_active __read_mostly;
297 static int hwp_mode_bdw __read_mostly;
298 static bool per_cpu_limits __read_mostly;
299 static bool hwp_boost __read_mostly;
300 
301 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
302 
303 #ifdef CONFIG_ACPI
304 static bool acpi_ppc;
305 #endif
306 
307 static struct global_params global;
308 
309 static DEFINE_MUTEX(intel_pstate_driver_lock);
310 static DEFINE_MUTEX(intel_pstate_limits_lock);
311 
312 #ifdef CONFIG_ACPI
313 
314 static bool intel_pstate_acpi_pm_profile_server(void)
315 {
316 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
317 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
318 		return true;
319 
320 	return false;
321 }
322 
323 static bool intel_pstate_get_ppc_enable_status(void)
324 {
325 	if (intel_pstate_acpi_pm_profile_server())
326 		return true;
327 
328 	return acpi_ppc;
329 }
330 
331 #ifdef CONFIG_ACPI_CPPC_LIB
332 
333 /* The work item is needed to avoid CPU hotplug locking issues */
334 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
335 {
336 	sched_set_itmt_support();
337 }
338 
339 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
340 
341 static void intel_pstate_set_itmt_prio(int cpu)
342 {
343 	struct cppc_perf_caps cppc_perf;
344 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
345 	int ret;
346 
347 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
348 	if (ret)
349 		return;
350 
351 	/*
352 	 * The priorities can be set regardless of whether or not
353 	 * sched_set_itmt_support(true) has been called and it is valid to
354 	 * update them at any time after it has been called.
355 	 */
356 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
357 
358 	if (max_highest_perf <= min_highest_perf) {
359 		if (cppc_perf.highest_perf > max_highest_perf)
360 			max_highest_perf = cppc_perf.highest_perf;
361 
362 		if (cppc_perf.highest_perf < min_highest_perf)
363 			min_highest_perf = cppc_perf.highest_perf;
364 
365 		if (max_highest_perf > min_highest_perf) {
366 			/*
367 			 * This code can be run during CPU online under the
368 			 * CPU hotplug locks, so sched_set_itmt_support()
369 			 * cannot be called from here.  Queue up a work item
370 			 * to invoke it.
371 			 */
372 			schedule_work(&sched_itmt_work);
373 		}
374 	}
375 }
376 
377 static int intel_pstate_get_cppc_guaranteed(int cpu)
378 {
379 	struct cppc_perf_caps cppc_perf;
380 	int ret;
381 
382 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
383 	if (ret)
384 		return ret;
385 
386 	if (cppc_perf.guaranteed_perf)
387 		return cppc_perf.guaranteed_perf;
388 
389 	return cppc_perf.nominal_perf;
390 }
391 
392 static u32 intel_pstate_cppc_nominal(int cpu)
393 {
394 	u64 nominal_perf;
395 
396 	if (cppc_get_nominal_perf(cpu, &nominal_perf))
397 		return 0;
398 
399 	return nominal_perf;
400 }
401 #else /* CONFIG_ACPI_CPPC_LIB */
402 static inline void intel_pstate_set_itmt_prio(int cpu)
403 {
404 }
405 #endif /* CONFIG_ACPI_CPPC_LIB */
406 
407 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
408 {
409 	struct cpudata *cpu;
410 	int ret;
411 	int i;
412 
413 	if (hwp_active) {
414 		intel_pstate_set_itmt_prio(policy->cpu);
415 		return;
416 	}
417 
418 	if (!intel_pstate_get_ppc_enable_status())
419 		return;
420 
421 	cpu = all_cpu_data[policy->cpu];
422 
423 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
424 						  policy->cpu);
425 	if (ret)
426 		return;
427 
428 	/*
429 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
430 	 * guarantee that the states returned by it map to the states in our
431 	 * list directly.
432 	 */
433 	if (cpu->acpi_perf_data.control_register.space_id !=
434 						ACPI_ADR_SPACE_FIXED_HARDWARE)
435 		goto err;
436 
437 	/*
438 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
439 	 * usual without taking _PSS into account
440 	 */
441 	if (cpu->acpi_perf_data.state_count < 2)
442 		goto err;
443 
444 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
445 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
446 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
447 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
448 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
449 			 (u32) cpu->acpi_perf_data.states[i].power,
450 			 (u32) cpu->acpi_perf_data.states[i].control);
451 	}
452 
453 	/*
454 	 * The _PSS table doesn't contain whole turbo frequency range.
455 	 * This just contains +1 MHZ above the max non turbo frequency,
456 	 * with control value corresponding to max turbo ratio. But
457 	 * when cpufreq set policy is called, it will call with this
458 	 * max frequency, which will cause a reduced performance as
459 	 * this driver uses real max turbo frequency as the max
460 	 * frequency. So correct this frequency in _PSS table to
461 	 * correct max turbo frequency based on the turbo state.
462 	 * Also need to convert to MHz as _PSS freq is in MHz.
463 	 */
464 	if (!global.turbo_disabled)
465 		cpu->acpi_perf_data.states[0].core_frequency =
466 					policy->cpuinfo.max_freq / 1000;
467 	cpu->valid_pss_table = true;
468 	pr_debug("_PPC limits will be enforced\n");
469 
470 	return;
471 
472  err:
473 	cpu->valid_pss_table = false;
474 	acpi_processor_unregister_performance(policy->cpu);
475 }
476 
477 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
478 {
479 	struct cpudata *cpu;
480 
481 	cpu = all_cpu_data[policy->cpu];
482 	if (!cpu->valid_pss_table)
483 		return;
484 
485 	acpi_processor_unregister_performance(policy->cpu);
486 }
487 #else /* CONFIG_ACPI */
488 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
489 {
490 }
491 
492 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
493 {
494 }
495 
496 static inline bool intel_pstate_acpi_pm_profile_server(void)
497 {
498 	return false;
499 }
500 #endif /* CONFIG_ACPI */
501 
502 #ifndef CONFIG_ACPI_CPPC_LIB
503 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
504 {
505 	return -ENOTSUPP;
506 }
507 #endif /* CONFIG_ACPI_CPPC_LIB */
508 
509 /**
510  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
511  * @cpu: Target CPU.
512  *
513  * On hybrid processors, HWP may expose more performance levels than there are
514  * P-states accessible through the PERF_CTL interface.  If that happens, the
515  * scaling factor between HWP performance levels and CPU frequency will be less
516  * than the scaling factor between P-state values and CPU frequency.
517  *
518  * In that case, adjust the CPU parameters used in computations accordingly.
519  */
520 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
521 {
522 	int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
523 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
524 	int perf_ctl_turbo = pstate_funcs.get_turbo();
525 	int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
526 	int scaling = cpu->pstate.scaling;
527 
528 	pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
529 	pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, pstate_funcs.get_max());
530 	pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
531 	pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
532 	pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
533 	pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
534 	pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
535 
536 	/*
537 	 * If the product of the HWP performance scaling factor and the HWP_CAP
538 	 * highest performance is greater than the maximum turbo frequency
539 	 * corresponding to the pstate_funcs.get_turbo() return value, the
540 	 * scaling factor is too high, so recompute it to make the HWP_CAP
541 	 * highest performance correspond to the maximum turbo frequency.
542 	 */
543 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
544 	if (turbo_freq < cpu->pstate.turbo_freq) {
545 		cpu->pstate.turbo_freq = turbo_freq;
546 		scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
547 		cpu->pstate.scaling = scaling;
548 
549 		pr_debug("CPU%d: refined HWP-to-frequency scaling factor: %d\n",
550 			 cpu->cpu, scaling);
551 	}
552 
553 	cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
554 					 perf_ctl_scaling);
555 
556 	cpu->pstate.max_pstate_physical =
557 			DIV_ROUND_UP(perf_ctl_max_phys * perf_ctl_scaling,
558 				     scaling);
559 
560 	cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
561 	/*
562 	 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
563 	 * the effective range of HWP performance levels.
564 	 */
565 	cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
566 }
567 
568 static inline void update_turbo_state(void)
569 {
570 	u64 misc_en;
571 	struct cpudata *cpu;
572 
573 	cpu = all_cpu_data[0];
574 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
575 	global.turbo_disabled =
576 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
577 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
578 }
579 
580 static int min_perf_pct_min(void)
581 {
582 	struct cpudata *cpu = all_cpu_data[0];
583 	int turbo_pstate = cpu->pstate.turbo_pstate;
584 
585 	return turbo_pstate ?
586 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
587 }
588 
589 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
590 {
591 	u64 epb;
592 	int ret;
593 
594 	if (!boot_cpu_has(X86_FEATURE_EPB))
595 		return -ENXIO;
596 
597 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
598 	if (ret)
599 		return (s16)ret;
600 
601 	return (s16)(epb & 0x0f);
602 }
603 
604 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
605 {
606 	s16 epp;
607 
608 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
609 		/*
610 		 * When hwp_req_data is 0, means that caller didn't read
611 		 * MSR_HWP_REQUEST, so need to read and get EPP.
612 		 */
613 		if (!hwp_req_data) {
614 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
615 					    &hwp_req_data);
616 			if (epp)
617 				return epp;
618 		}
619 		epp = (hwp_req_data >> 24) & 0xff;
620 	} else {
621 		/* When there is no EPP present, HWP uses EPB settings */
622 		epp = intel_pstate_get_epb(cpu_data);
623 	}
624 
625 	return epp;
626 }
627 
628 static int intel_pstate_set_epb(int cpu, s16 pref)
629 {
630 	u64 epb;
631 	int ret;
632 
633 	if (!boot_cpu_has(X86_FEATURE_EPB))
634 		return -ENXIO;
635 
636 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
637 	if (ret)
638 		return ret;
639 
640 	epb = (epb & ~0x0f) | pref;
641 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
642 
643 	return 0;
644 }
645 
646 /*
647  * EPP/EPB display strings corresponding to EPP index in the
648  * energy_perf_strings[]
649  *	index		String
650  *-------------------------------------
651  *	0		default
652  *	1		performance
653  *	2		balance_performance
654  *	3		balance_power
655  *	4		power
656  */
657 static const char * const energy_perf_strings[] = {
658 	"default",
659 	"performance",
660 	"balance_performance",
661 	"balance_power",
662 	"power",
663 	NULL
664 };
665 static const unsigned int epp_values[] = {
666 	HWP_EPP_PERFORMANCE,
667 	HWP_EPP_BALANCE_PERFORMANCE,
668 	HWP_EPP_BALANCE_POWERSAVE,
669 	HWP_EPP_POWERSAVE
670 };
671 
672 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
673 {
674 	s16 epp;
675 	int index = -EINVAL;
676 
677 	*raw_epp = 0;
678 	epp = intel_pstate_get_epp(cpu_data, 0);
679 	if (epp < 0)
680 		return epp;
681 
682 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
683 		if (epp == HWP_EPP_PERFORMANCE)
684 			return 1;
685 		if (epp == HWP_EPP_BALANCE_PERFORMANCE)
686 			return 2;
687 		if (epp == HWP_EPP_BALANCE_POWERSAVE)
688 			return 3;
689 		if (epp == HWP_EPP_POWERSAVE)
690 			return 4;
691 		*raw_epp = epp;
692 		return 0;
693 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
694 		/*
695 		 * Range:
696 		 *	0x00-0x03	:	Performance
697 		 *	0x04-0x07	:	Balance performance
698 		 *	0x08-0x0B	:	Balance power
699 		 *	0x0C-0x0F	:	Power
700 		 * The EPB is a 4 bit value, but our ranges restrict the
701 		 * value which can be set. Here only using top two bits
702 		 * effectively.
703 		 */
704 		index = (epp >> 2) + 1;
705 	}
706 
707 	return index;
708 }
709 
710 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
711 {
712 	int ret;
713 
714 	/*
715 	 * Use the cached HWP Request MSR value, because in the active mode the
716 	 * register itself may be updated by intel_pstate_hwp_boost_up() or
717 	 * intel_pstate_hwp_boost_down() at any time.
718 	 */
719 	u64 value = READ_ONCE(cpu->hwp_req_cached);
720 
721 	value &= ~GENMASK_ULL(31, 24);
722 	value |= (u64)epp << 24;
723 	/*
724 	 * The only other updater of hwp_req_cached in the active mode,
725 	 * intel_pstate_hwp_set(), is called under the same lock as this
726 	 * function, so it cannot run in parallel with the update below.
727 	 */
728 	WRITE_ONCE(cpu->hwp_req_cached, value);
729 	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
730 	if (!ret)
731 		cpu->epp_cached = epp;
732 
733 	return ret;
734 }
735 
736 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
737 					      int pref_index, bool use_raw,
738 					      u32 raw_epp)
739 {
740 	int epp = -EINVAL;
741 	int ret;
742 
743 	if (!pref_index)
744 		epp = cpu_data->epp_default;
745 
746 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
747 		if (use_raw)
748 			epp = raw_epp;
749 		else if (epp == -EINVAL)
750 			epp = epp_values[pref_index - 1];
751 
752 		/*
753 		 * To avoid confusion, refuse to set EPP to any values different
754 		 * from 0 (performance) if the current policy is "performance",
755 		 * because those values would be overridden.
756 		 */
757 		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
758 			return -EBUSY;
759 
760 		ret = intel_pstate_set_epp(cpu_data, epp);
761 	} else {
762 		if (epp == -EINVAL)
763 			epp = (pref_index - 1) << 2;
764 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
765 	}
766 
767 	return ret;
768 }
769 
770 static ssize_t show_energy_performance_available_preferences(
771 				struct cpufreq_policy *policy, char *buf)
772 {
773 	int i = 0;
774 	int ret = 0;
775 
776 	while (energy_perf_strings[i] != NULL)
777 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
778 
779 	ret += sprintf(&buf[ret], "\n");
780 
781 	return ret;
782 }
783 
784 cpufreq_freq_attr_ro(energy_performance_available_preferences);
785 
786 static struct cpufreq_driver intel_pstate;
787 
788 static ssize_t store_energy_performance_preference(
789 		struct cpufreq_policy *policy, const char *buf, size_t count)
790 {
791 	struct cpudata *cpu = all_cpu_data[policy->cpu];
792 	char str_preference[21];
793 	bool raw = false;
794 	ssize_t ret;
795 	u32 epp = 0;
796 
797 	ret = sscanf(buf, "%20s", str_preference);
798 	if (ret != 1)
799 		return -EINVAL;
800 
801 	ret = match_string(energy_perf_strings, -1, str_preference);
802 	if (ret < 0) {
803 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
804 			return ret;
805 
806 		ret = kstrtouint(buf, 10, &epp);
807 		if (ret)
808 			return ret;
809 
810 		if (epp > 255)
811 			return -EINVAL;
812 
813 		raw = true;
814 	}
815 
816 	/*
817 	 * This function runs with the policy R/W semaphore held, which
818 	 * guarantees that the driver pointer will not change while it is
819 	 * running.
820 	 */
821 	if (!intel_pstate_driver)
822 		return -EAGAIN;
823 
824 	mutex_lock(&intel_pstate_limits_lock);
825 
826 	if (intel_pstate_driver == &intel_pstate) {
827 		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
828 	} else {
829 		/*
830 		 * In the passive mode the governor needs to be stopped on the
831 		 * target CPU before the EPP update and restarted after it,
832 		 * which is super-heavy-weight, so make sure it is worth doing
833 		 * upfront.
834 		 */
835 		if (!raw)
836 			epp = ret ? epp_values[ret - 1] : cpu->epp_default;
837 
838 		if (cpu->epp_cached != epp) {
839 			int err;
840 
841 			cpufreq_stop_governor(policy);
842 			ret = intel_pstate_set_epp(cpu, epp);
843 			err = cpufreq_start_governor(policy);
844 			if (!ret)
845 				ret = err;
846 		}
847 	}
848 
849 	mutex_unlock(&intel_pstate_limits_lock);
850 
851 	return ret ?: count;
852 }
853 
854 static ssize_t show_energy_performance_preference(
855 				struct cpufreq_policy *policy, char *buf)
856 {
857 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
858 	int preference, raw_epp;
859 
860 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
861 	if (preference < 0)
862 		return preference;
863 
864 	if (raw_epp)
865 		return  sprintf(buf, "%d\n", raw_epp);
866 	else
867 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
868 }
869 
870 cpufreq_freq_attr_rw(energy_performance_preference);
871 
872 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
873 {
874 	struct cpudata *cpu = all_cpu_data[policy->cpu];
875 	int ratio, freq;
876 
877 	ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
878 	if (ratio <= 0) {
879 		u64 cap;
880 
881 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
882 		ratio = HWP_GUARANTEED_PERF(cap);
883 	}
884 
885 	freq = ratio * cpu->pstate.scaling;
886 	if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
887 		freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
888 
889 	return sprintf(buf, "%d\n", freq);
890 }
891 
892 cpufreq_freq_attr_ro(base_frequency);
893 
894 static struct freq_attr *hwp_cpufreq_attrs[] = {
895 	&energy_performance_preference,
896 	&energy_performance_available_preferences,
897 	&base_frequency,
898 	NULL,
899 };
900 
901 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
902 {
903 	u64 cap;
904 
905 	rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
906 	WRITE_ONCE(cpu->hwp_cap_cached, cap);
907 	cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
908 	cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
909 }
910 
911 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
912 {
913 	int scaling = cpu->pstate.scaling;
914 
915 	__intel_pstate_get_hwp_cap(cpu);
916 
917 	cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
918 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
919 	if (scaling != cpu->pstate.perf_ctl_scaling) {
920 		int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
921 
922 		cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
923 						 perf_ctl_scaling);
924 		cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
925 						   perf_ctl_scaling);
926 	}
927 }
928 
929 static void intel_pstate_hwp_set(unsigned int cpu)
930 {
931 	struct cpudata *cpu_data = all_cpu_data[cpu];
932 	int max, min;
933 	u64 value;
934 	s16 epp;
935 
936 	max = cpu_data->max_perf_ratio;
937 	min = cpu_data->min_perf_ratio;
938 
939 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
940 		min = max;
941 
942 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
943 
944 	value &= ~HWP_MIN_PERF(~0L);
945 	value |= HWP_MIN_PERF(min);
946 
947 	value &= ~HWP_MAX_PERF(~0L);
948 	value |= HWP_MAX_PERF(max);
949 
950 	if (cpu_data->epp_policy == cpu_data->policy)
951 		goto skip_epp;
952 
953 	cpu_data->epp_policy = cpu_data->policy;
954 
955 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
956 		epp = intel_pstate_get_epp(cpu_data, value);
957 		cpu_data->epp_powersave = epp;
958 		/* If EPP read was failed, then don't try to write */
959 		if (epp < 0)
960 			goto skip_epp;
961 
962 		epp = 0;
963 	} else {
964 		/* skip setting EPP, when saved value is invalid */
965 		if (cpu_data->epp_powersave < 0)
966 			goto skip_epp;
967 
968 		/*
969 		 * No need to restore EPP when it is not zero. This
970 		 * means:
971 		 *  - Policy is not changed
972 		 *  - user has manually changed
973 		 *  - Error reading EPB
974 		 */
975 		epp = intel_pstate_get_epp(cpu_data, value);
976 		if (epp)
977 			goto skip_epp;
978 
979 		epp = cpu_data->epp_powersave;
980 	}
981 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
982 		value &= ~GENMASK_ULL(31, 24);
983 		value |= (u64)epp << 24;
984 	} else {
985 		intel_pstate_set_epb(cpu, epp);
986 	}
987 skip_epp:
988 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
989 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
990 }
991 
992 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
993 
994 static void intel_pstate_hwp_offline(struct cpudata *cpu)
995 {
996 	u64 value = READ_ONCE(cpu->hwp_req_cached);
997 	int min_perf;
998 
999 	intel_pstate_disable_hwp_interrupt(cpu);
1000 
1001 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1002 		/*
1003 		 * In case the EPP has been set to "performance" by the
1004 		 * active mode "performance" scaling algorithm, replace that
1005 		 * temporary value with the cached EPP one.
1006 		 */
1007 		value &= ~GENMASK_ULL(31, 24);
1008 		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1009 	}
1010 
1011 	/*
1012 	 * Clear the desired perf field in the cached HWP request value to
1013 	 * prevent nonzero desired values from being leaked into the active
1014 	 * mode.
1015 	 */
1016 	value &= ~HWP_DESIRED_PERF(~0L);
1017 	WRITE_ONCE(cpu->hwp_req_cached, value);
1018 
1019 	value &= ~GENMASK_ULL(31, 0);
1020 	min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1021 
1022 	/* Set hwp_max = hwp_min */
1023 	value |= HWP_MAX_PERF(min_perf);
1024 	value |= HWP_MIN_PERF(min_perf);
1025 
1026 	/* Set EPP to min */
1027 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1028 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1029 
1030 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1031 }
1032 
1033 #define POWER_CTL_EE_ENABLE	1
1034 #define POWER_CTL_EE_DISABLE	2
1035 
1036 static int power_ctl_ee_state;
1037 
1038 static void set_power_ctl_ee_state(bool input)
1039 {
1040 	u64 power_ctl;
1041 
1042 	mutex_lock(&intel_pstate_driver_lock);
1043 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1044 	if (input) {
1045 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1046 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1047 	} else {
1048 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1049 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1050 	}
1051 	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1052 	mutex_unlock(&intel_pstate_driver_lock);
1053 }
1054 
1055 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1056 
1057 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1058 {
1059 	intel_pstate_hwp_enable(cpu);
1060 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1061 }
1062 
1063 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1064 {
1065 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1066 
1067 	pr_debug("CPU %d suspending\n", cpu->cpu);
1068 
1069 	cpu->suspended = true;
1070 
1071 	/* disable HWP interrupt and cancel any pending work */
1072 	intel_pstate_disable_hwp_interrupt(cpu);
1073 
1074 	return 0;
1075 }
1076 
1077 static int intel_pstate_resume(struct cpufreq_policy *policy)
1078 {
1079 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1080 
1081 	pr_debug("CPU %d resuming\n", cpu->cpu);
1082 
1083 	/* Only restore if the system default is changed */
1084 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1085 		set_power_ctl_ee_state(true);
1086 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1087 		set_power_ctl_ee_state(false);
1088 
1089 	if (cpu->suspended && hwp_active) {
1090 		mutex_lock(&intel_pstate_limits_lock);
1091 
1092 		/* Re-enable HWP, because "online" has not done that. */
1093 		intel_pstate_hwp_reenable(cpu);
1094 
1095 		mutex_unlock(&intel_pstate_limits_lock);
1096 	}
1097 
1098 	cpu->suspended = false;
1099 
1100 	return 0;
1101 }
1102 
1103 static void intel_pstate_update_policies(void)
1104 {
1105 	int cpu;
1106 
1107 	for_each_possible_cpu(cpu)
1108 		cpufreq_update_policy(cpu);
1109 }
1110 
1111 static void intel_pstate_update_max_freq(unsigned int cpu)
1112 {
1113 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1114 	struct cpudata *cpudata;
1115 
1116 	if (!policy)
1117 		return;
1118 
1119 	cpudata = all_cpu_data[cpu];
1120 	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1121 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1122 
1123 	refresh_frequency_limits(policy);
1124 
1125 	cpufreq_cpu_release(policy);
1126 }
1127 
1128 static void intel_pstate_update_limits(unsigned int cpu)
1129 {
1130 	mutex_lock(&intel_pstate_driver_lock);
1131 
1132 	update_turbo_state();
1133 	/*
1134 	 * If turbo has been turned on or off globally, policy limits for
1135 	 * all CPUs need to be updated to reflect that.
1136 	 */
1137 	if (global.turbo_disabled_mf != global.turbo_disabled) {
1138 		global.turbo_disabled_mf = global.turbo_disabled;
1139 		arch_set_max_freq_ratio(global.turbo_disabled);
1140 		for_each_possible_cpu(cpu)
1141 			intel_pstate_update_max_freq(cpu);
1142 	} else {
1143 		cpufreq_update_policy(cpu);
1144 	}
1145 
1146 	mutex_unlock(&intel_pstate_driver_lock);
1147 }
1148 
1149 /************************** sysfs begin ************************/
1150 #define show_one(file_name, object)					\
1151 	static ssize_t show_##file_name					\
1152 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1153 	{								\
1154 		return sprintf(buf, "%u\n", global.object);		\
1155 	}
1156 
1157 static ssize_t intel_pstate_show_status(char *buf);
1158 static int intel_pstate_update_status(const char *buf, size_t size);
1159 
1160 static ssize_t show_status(struct kobject *kobj,
1161 			   struct kobj_attribute *attr, char *buf)
1162 {
1163 	ssize_t ret;
1164 
1165 	mutex_lock(&intel_pstate_driver_lock);
1166 	ret = intel_pstate_show_status(buf);
1167 	mutex_unlock(&intel_pstate_driver_lock);
1168 
1169 	return ret;
1170 }
1171 
1172 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1173 			    const char *buf, size_t count)
1174 {
1175 	char *p = memchr(buf, '\n', count);
1176 	int ret;
1177 
1178 	mutex_lock(&intel_pstate_driver_lock);
1179 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1180 	mutex_unlock(&intel_pstate_driver_lock);
1181 
1182 	return ret < 0 ? ret : count;
1183 }
1184 
1185 static ssize_t show_turbo_pct(struct kobject *kobj,
1186 				struct kobj_attribute *attr, char *buf)
1187 {
1188 	struct cpudata *cpu;
1189 	int total, no_turbo, turbo_pct;
1190 	uint32_t turbo_fp;
1191 
1192 	mutex_lock(&intel_pstate_driver_lock);
1193 
1194 	if (!intel_pstate_driver) {
1195 		mutex_unlock(&intel_pstate_driver_lock);
1196 		return -EAGAIN;
1197 	}
1198 
1199 	cpu = all_cpu_data[0];
1200 
1201 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1202 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1203 	turbo_fp = div_fp(no_turbo, total);
1204 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1205 
1206 	mutex_unlock(&intel_pstate_driver_lock);
1207 
1208 	return sprintf(buf, "%u\n", turbo_pct);
1209 }
1210 
1211 static ssize_t show_num_pstates(struct kobject *kobj,
1212 				struct kobj_attribute *attr, char *buf)
1213 {
1214 	struct cpudata *cpu;
1215 	int total;
1216 
1217 	mutex_lock(&intel_pstate_driver_lock);
1218 
1219 	if (!intel_pstate_driver) {
1220 		mutex_unlock(&intel_pstate_driver_lock);
1221 		return -EAGAIN;
1222 	}
1223 
1224 	cpu = all_cpu_data[0];
1225 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1226 
1227 	mutex_unlock(&intel_pstate_driver_lock);
1228 
1229 	return sprintf(buf, "%u\n", total);
1230 }
1231 
1232 static ssize_t show_no_turbo(struct kobject *kobj,
1233 			     struct kobj_attribute *attr, char *buf)
1234 {
1235 	ssize_t ret;
1236 
1237 	mutex_lock(&intel_pstate_driver_lock);
1238 
1239 	if (!intel_pstate_driver) {
1240 		mutex_unlock(&intel_pstate_driver_lock);
1241 		return -EAGAIN;
1242 	}
1243 
1244 	update_turbo_state();
1245 	if (global.turbo_disabled)
1246 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1247 	else
1248 		ret = sprintf(buf, "%u\n", global.no_turbo);
1249 
1250 	mutex_unlock(&intel_pstate_driver_lock);
1251 
1252 	return ret;
1253 }
1254 
1255 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1256 			      const char *buf, size_t count)
1257 {
1258 	unsigned int input;
1259 	int ret;
1260 
1261 	ret = sscanf(buf, "%u", &input);
1262 	if (ret != 1)
1263 		return -EINVAL;
1264 
1265 	mutex_lock(&intel_pstate_driver_lock);
1266 
1267 	if (!intel_pstate_driver) {
1268 		mutex_unlock(&intel_pstate_driver_lock);
1269 		return -EAGAIN;
1270 	}
1271 
1272 	mutex_lock(&intel_pstate_limits_lock);
1273 
1274 	update_turbo_state();
1275 	if (global.turbo_disabled) {
1276 		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1277 		mutex_unlock(&intel_pstate_limits_lock);
1278 		mutex_unlock(&intel_pstate_driver_lock);
1279 		return -EPERM;
1280 	}
1281 
1282 	global.no_turbo = clamp_t(int, input, 0, 1);
1283 
1284 	if (global.no_turbo) {
1285 		struct cpudata *cpu = all_cpu_data[0];
1286 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1287 
1288 		/* Squash the global minimum into the permitted range. */
1289 		if (global.min_perf_pct > pct)
1290 			global.min_perf_pct = pct;
1291 	}
1292 
1293 	mutex_unlock(&intel_pstate_limits_lock);
1294 
1295 	intel_pstate_update_policies();
1296 
1297 	mutex_unlock(&intel_pstate_driver_lock);
1298 
1299 	return count;
1300 }
1301 
1302 static void update_qos_request(enum freq_qos_req_type type)
1303 {
1304 	struct freq_qos_request *req;
1305 	struct cpufreq_policy *policy;
1306 	int i;
1307 
1308 	for_each_possible_cpu(i) {
1309 		struct cpudata *cpu = all_cpu_data[i];
1310 		unsigned int freq, perf_pct;
1311 
1312 		policy = cpufreq_cpu_get(i);
1313 		if (!policy)
1314 			continue;
1315 
1316 		req = policy->driver_data;
1317 		cpufreq_cpu_put(policy);
1318 
1319 		if (!req)
1320 			continue;
1321 
1322 		if (hwp_active)
1323 			intel_pstate_get_hwp_cap(cpu);
1324 
1325 		if (type == FREQ_QOS_MIN) {
1326 			perf_pct = global.min_perf_pct;
1327 		} else {
1328 			req++;
1329 			perf_pct = global.max_perf_pct;
1330 		}
1331 
1332 		freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1333 
1334 		if (freq_qos_update_request(req, freq) < 0)
1335 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1336 	}
1337 }
1338 
1339 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1340 				  const char *buf, size_t count)
1341 {
1342 	unsigned int input;
1343 	int ret;
1344 
1345 	ret = sscanf(buf, "%u", &input);
1346 	if (ret != 1)
1347 		return -EINVAL;
1348 
1349 	mutex_lock(&intel_pstate_driver_lock);
1350 
1351 	if (!intel_pstate_driver) {
1352 		mutex_unlock(&intel_pstate_driver_lock);
1353 		return -EAGAIN;
1354 	}
1355 
1356 	mutex_lock(&intel_pstate_limits_lock);
1357 
1358 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1359 
1360 	mutex_unlock(&intel_pstate_limits_lock);
1361 
1362 	if (intel_pstate_driver == &intel_pstate)
1363 		intel_pstate_update_policies();
1364 	else
1365 		update_qos_request(FREQ_QOS_MAX);
1366 
1367 	mutex_unlock(&intel_pstate_driver_lock);
1368 
1369 	return count;
1370 }
1371 
1372 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1373 				  const char *buf, size_t count)
1374 {
1375 	unsigned int input;
1376 	int ret;
1377 
1378 	ret = sscanf(buf, "%u", &input);
1379 	if (ret != 1)
1380 		return -EINVAL;
1381 
1382 	mutex_lock(&intel_pstate_driver_lock);
1383 
1384 	if (!intel_pstate_driver) {
1385 		mutex_unlock(&intel_pstate_driver_lock);
1386 		return -EAGAIN;
1387 	}
1388 
1389 	mutex_lock(&intel_pstate_limits_lock);
1390 
1391 	global.min_perf_pct = clamp_t(int, input,
1392 				      min_perf_pct_min(), global.max_perf_pct);
1393 
1394 	mutex_unlock(&intel_pstate_limits_lock);
1395 
1396 	if (intel_pstate_driver == &intel_pstate)
1397 		intel_pstate_update_policies();
1398 	else
1399 		update_qos_request(FREQ_QOS_MIN);
1400 
1401 	mutex_unlock(&intel_pstate_driver_lock);
1402 
1403 	return count;
1404 }
1405 
1406 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1407 				struct kobj_attribute *attr, char *buf)
1408 {
1409 	return sprintf(buf, "%u\n", hwp_boost);
1410 }
1411 
1412 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1413 				       struct kobj_attribute *b,
1414 				       const char *buf, size_t count)
1415 {
1416 	unsigned int input;
1417 	int ret;
1418 
1419 	ret = kstrtouint(buf, 10, &input);
1420 	if (ret)
1421 		return ret;
1422 
1423 	mutex_lock(&intel_pstate_driver_lock);
1424 	hwp_boost = !!input;
1425 	intel_pstate_update_policies();
1426 	mutex_unlock(&intel_pstate_driver_lock);
1427 
1428 	return count;
1429 }
1430 
1431 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1432 				      char *buf)
1433 {
1434 	u64 power_ctl;
1435 	int enable;
1436 
1437 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1438 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1439 	return sprintf(buf, "%d\n", !enable);
1440 }
1441 
1442 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1443 				       const char *buf, size_t count)
1444 {
1445 	bool input;
1446 	int ret;
1447 
1448 	ret = kstrtobool(buf, &input);
1449 	if (ret)
1450 		return ret;
1451 
1452 	set_power_ctl_ee_state(input);
1453 
1454 	return count;
1455 }
1456 
1457 show_one(max_perf_pct, max_perf_pct);
1458 show_one(min_perf_pct, min_perf_pct);
1459 
1460 define_one_global_rw(status);
1461 define_one_global_rw(no_turbo);
1462 define_one_global_rw(max_perf_pct);
1463 define_one_global_rw(min_perf_pct);
1464 define_one_global_ro(turbo_pct);
1465 define_one_global_ro(num_pstates);
1466 define_one_global_rw(hwp_dynamic_boost);
1467 define_one_global_rw(energy_efficiency);
1468 
1469 static struct attribute *intel_pstate_attributes[] = {
1470 	&status.attr,
1471 	&no_turbo.attr,
1472 	NULL
1473 };
1474 
1475 static const struct attribute_group intel_pstate_attr_group = {
1476 	.attrs = intel_pstate_attributes,
1477 };
1478 
1479 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1480 
1481 static struct kobject *intel_pstate_kobject;
1482 
1483 static void __init intel_pstate_sysfs_expose_params(void)
1484 {
1485 	int rc;
1486 
1487 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1488 						&cpu_subsys.dev_root->kobj);
1489 	if (WARN_ON(!intel_pstate_kobject))
1490 		return;
1491 
1492 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1493 	if (WARN_ON(rc))
1494 		return;
1495 
1496 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1497 		rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1498 		WARN_ON(rc);
1499 
1500 		rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1501 		WARN_ON(rc);
1502 	}
1503 
1504 	/*
1505 	 * If per cpu limits are enforced there are no global limits, so
1506 	 * return without creating max/min_perf_pct attributes
1507 	 */
1508 	if (per_cpu_limits)
1509 		return;
1510 
1511 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1512 	WARN_ON(rc);
1513 
1514 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1515 	WARN_ON(rc);
1516 
1517 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1518 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1519 		WARN_ON(rc);
1520 	}
1521 }
1522 
1523 static void __init intel_pstate_sysfs_remove(void)
1524 {
1525 	if (!intel_pstate_kobject)
1526 		return;
1527 
1528 	sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1529 
1530 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1531 		sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1532 		sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1533 	}
1534 
1535 	if (!per_cpu_limits) {
1536 		sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1537 		sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1538 
1539 		if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1540 			sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1541 	}
1542 
1543 	kobject_put(intel_pstate_kobject);
1544 }
1545 
1546 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1547 {
1548 	int rc;
1549 
1550 	if (!hwp_active)
1551 		return;
1552 
1553 	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1554 	WARN_ON_ONCE(rc);
1555 }
1556 
1557 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1558 {
1559 	if (!hwp_active)
1560 		return;
1561 
1562 	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1563 }
1564 
1565 /************************** sysfs end ************************/
1566 
1567 static void intel_pstate_notify_work(struct work_struct *work)
1568 {
1569 	struct cpudata *cpudata =
1570 		container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1571 
1572 	cpufreq_update_policy(cpudata->cpu);
1573 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1574 }
1575 
1576 static DEFINE_SPINLOCK(hwp_notify_lock);
1577 static cpumask_t hwp_intr_enable_mask;
1578 
1579 void notify_hwp_interrupt(void)
1580 {
1581 	unsigned int this_cpu = smp_processor_id();
1582 	struct cpudata *cpudata;
1583 	unsigned long flags;
1584 	u64 value;
1585 
1586 	if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1587 		return;
1588 
1589 	rdmsrl_safe(MSR_HWP_STATUS, &value);
1590 	if (!(value & 0x01))
1591 		return;
1592 
1593 	spin_lock_irqsave(&hwp_notify_lock, flags);
1594 
1595 	if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1596 		goto ack_intr;
1597 
1598 	/*
1599 	 * Currently we never free all_cpu_data. And we can't reach here
1600 	 * without this allocated. But for safety for future changes, added
1601 	 * check.
1602 	 */
1603 	if (unlikely(!READ_ONCE(all_cpu_data)))
1604 		goto ack_intr;
1605 
1606 	/*
1607 	 * The free is done during cleanup, when cpufreq registry is failed.
1608 	 * We wouldn't be here if it fails on init or switch status. But for
1609 	 * future changes, added check.
1610 	 */
1611 	cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1612 	if (unlikely(!cpudata))
1613 		goto ack_intr;
1614 
1615 	schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1616 
1617 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1618 
1619 	return;
1620 
1621 ack_intr:
1622 	wrmsrl_safe(MSR_HWP_STATUS, 0);
1623 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1624 }
1625 
1626 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1627 {
1628 	unsigned long flags;
1629 
1630 	if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1631 		return;
1632 
1633 	/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1634 	wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1635 
1636 	spin_lock_irqsave(&hwp_notify_lock, flags);
1637 	if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1638 		cancel_delayed_work(&cpudata->hwp_notify_work);
1639 	spin_unlock_irqrestore(&hwp_notify_lock, flags);
1640 }
1641 
1642 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1643 {
1644 	/* Enable HWP notification interrupt for guaranteed performance change */
1645 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1646 		unsigned long flags;
1647 
1648 		spin_lock_irqsave(&hwp_notify_lock, flags);
1649 		INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1650 		cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1651 		spin_unlock_irqrestore(&hwp_notify_lock, flags);
1652 
1653 		/* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1654 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1655 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1656 	}
1657 }
1658 
1659 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1660 {
1661 	/* First disable HWP notification interrupt till we activate again */
1662 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1663 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1664 
1665 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1666 	if (cpudata->epp_default == -EINVAL)
1667 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1668 
1669 	intel_pstate_enable_hwp_interrupt(cpudata);
1670 }
1671 
1672 static int atom_get_min_pstate(void)
1673 {
1674 	u64 value;
1675 
1676 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1677 	return (value >> 8) & 0x7F;
1678 }
1679 
1680 static int atom_get_max_pstate(void)
1681 {
1682 	u64 value;
1683 
1684 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1685 	return (value >> 16) & 0x7F;
1686 }
1687 
1688 static int atom_get_turbo_pstate(void)
1689 {
1690 	u64 value;
1691 
1692 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1693 	return value & 0x7F;
1694 }
1695 
1696 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1697 {
1698 	u64 val;
1699 	int32_t vid_fp;
1700 	u32 vid;
1701 
1702 	val = (u64)pstate << 8;
1703 	if (global.no_turbo && !global.turbo_disabled)
1704 		val |= (u64)1 << 32;
1705 
1706 	vid_fp = cpudata->vid.min + mul_fp(
1707 		int_tofp(pstate - cpudata->pstate.min_pstate),
1708 		cpudata->vid.ratio);
1709 
1710 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1711 	vid = ceiling_fp(vid_fp);
1712 
1713 	if (pstate > cpudata->pstate.max_pstate)
1714 		vid = cpudata->vid.turbo;
1715 
1716 	return val | vid;
1717 }
1718 
1719 static int silvermont_get_scaling(void)
1720 {
1721 	u64 value;
1722 	int i;
1723 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1724 	static int silvermont_freq_table[] = {
1725 		83300, 100000, 133300, 116700, 80000};
1726 
1727 	rdmsrl(MSR_FSB_FREQ, value);
1728 	i = value & 0x7;
1729 	WARN_ON(i > 4);
1730 
1731 	return silvermont_freq_table[i];
1732 }
1733 
1734 static int airmont_get_scaling(void)
1735 {
1736 	u64 value;
1737 	int i;
1738 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1739 	static int airmont_freq_table[] = {
1740 		83300, 100000, 133300, 116700, 80000,
1741 		93300, 90000, 88900, 87500};
1742 
1743 	rdmsrl(MSR_FSB_FREQ, value);
1744 	i = value & 0xF;
1745 	WARN_ON(i > 8);
1746 
1747 	return airmont_freq_table[i];
1748 }
1749 
1750 static void atom_get_vid(struct cpudata *cpudata)
1751 {
1752 	u64 value;
1753 
1754 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1755 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1756 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1757 	cpudata->vid.ratio = div_fp(
1758 		cpudata->vid.max - cpudata->vid.min,
1759 		int_tofp(cpudata->pstate.max_pstate -
1760 			cpudata->pstate.min_pstate));
1761 
1762 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1763 	cpudata->vid.turbo = value & 0x7f;
1764 }
1765 
1766 static int core_get_min_pstate(void)
1767 {
1768 	u64 value;
1769 
1770 	rdmsrl(MSR_PLATFORM_INFO, value);
1771 	return (value >> 40) & 0xFF;
1772 }
1773 
1774 static int core_get_max_pstate_physical(void)
1775 {
1776 	u64 value;
1777 
1778 	rdmsrl(MSR_PLATFORM_INFO, value);
1779 	return (value >> 8) & 0xFF;
1780 }
1781 
1782 static int core_get_tdp_ratio(u64 plat_info)
1783 {
1784 	/* Check how many TDP levels present */
1785 	if (plat_info & 0x600000000) {
1786 		u64 tdp_ctrl;
1787 		u64 tdp_ratio;
1788 		int tdp_msr;
1789 		int err;
1790 
1791 		/* Get the TDP level (0, 1, 2) to get ratios */
1792 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1793 		if (err)
1794 			return err;
1795 
1796 		/* TDP MSR are continuous starting at 0x648 */
1797 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1798 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1799 		if (err)
1800 			return err;
1801 
1802 		/* For level 1 and 2, bits[23:16] contain the ratio */
1803 		if (tdp_ctrl & 0x03)
1804 			tdp_ratio >>= 16;
1805 
1806 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1807 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1808 
1809 		return (int)tdp_ratio;
1810 	}
1811 
1812 	return -ENXIO;
1813 }
1814 
1815 static int core_get_max_pstate(void)
1816 {
1817 	u64 tar;
1818 	u64 plat_info;
1819 	int max_pstate;
1820 	int tdp_ratio;
1821 	int err;
1822 
1823 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1824 	max_pstate = (plat_info >> 8) & 0xFF;
1825 
1826 	tdp_ratio = core_get_tdp_ratio(plat_info);
1827 	if (tdp_ratio <= 0)
1828 		return max_pstate;
1829 
1830 	if (hwp_active) {
1831 		/* Turbo activation ratio is not used on HWP platforms */
1832 		return tdp_ratio;
1833 	}
1834 
1835 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1836 	if (!err) {
1837 		int tar_levels;
1838 
1839 		/* Do some sanity checking for safety */
1840 		tar_levels = tar & 0xff;
1841 		if (tdp_ratio - 1 == tar_levels) {
1842 			max_pstate = tar_levels;
1843 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1844 		}
1845 	}
1846 
1847 	return max_pstate;
1848 }
1849 
1850 static int core_get_turbo_pstate(void)
1851 {
1852 	u64 value;
1853 	int nont, ret;
1854 
1855 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1856 	nont = core_get_max_pstate();
1857 	ret = (value) & 255;
1858 	if (ret <= nont)
1859 		ret = nont;
1860 	return ret;
1861 }
1862 
1863 static inline int core_get_scaling(void)
1864 {
1865 	return 100000;
1866 }
1867 
1868 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1869 {
1870 	u64 val;
1871 
1872 	val = (u64)pstate << 8;
1873 	if (global.no_turbo && !global.turbo_disabled)
1874 		val |= (u64)1 << 32;
1875 
1876 	return val;
1877 }
1878 
1879 static int knl_get_aperf_mperf_shift(void)
1880 {
1881 	return 10;
1882 }
1883 
1884 static int knl_get_turbo_pstate(void)
1885 {
1886 	u64 value;
1887 	int nont, ret;
1888 
1889 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1890 	nont = core_get_max_pstate();
1891 	ret = (((value) >> 8) & 0xFF);
1892 	if (ret <= nont)
1893 		ret = nont;
1894 	return ret;
1895 }
1896 
1897 #ifdef CONFIG_ACPI_CPPC_LIB
1898 static u32 hybrid_ref_perf;
1899 
1900 static int hybrid_get_cpu_scaling(int cpu)
1901 {
1902 	return DIV_ROUND_UP(core_get_scaling() * hybrid_ref_perf,
1903 			    intel_pstate_cppc_nominal(cpu));
1904 }
1905 
1906 static void intel_pstate_cppc_set_cpu_scaling(void)
1907 {
1908 	u32 min_nominal_perf = U32_MAX;
1909 	int cpu;
1910 
1911 	for_each_present_cpu(cpu) {
1912 		u32 nominal_perf = intel_pstate_cppc_nominal(cpu);
1913 
1914 		if (nominal_perf && nominal_perf < min_nominal_perf)
1915 			min_nominal_perf = nominal_perf;
1916 	}
1917 
1918 	if (min_nominal_perf < U32_MAX) {
1919 		hybrid_ref_perf = min_nominal_perf;
1920 		pstate_funcs.get_cpu_scaling = hybrid_get_cpu_scaling;
1921 	}
1922 }
1923 #else
1924 static inline void intel_pstate_cppc_set_cpu_scaling(void)
1925 {
1926 }
1927 #endif /* CONFIG_ACPI_CPPC_LIB */
1928 
1929 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1930 {
1931 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1932 	cpu->pstate.current_pstate = pstate;
1933 	/*
1934 	 * Generally, there is no guarantee that this code will always run on
1935 	 * the CPU being updated, so force the register update to run on the
1936 	 * right CPU.
1937 	 */
1938 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1939 		      pstate_funcs.get_val(cpu, pstate));
1940 }
1941 
1942 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1943 {
1944 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1945 }
1946 
1947 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1948 {
1949 	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1950 
1951 	update_turbo_state();
1952 	intel_pstate_set_pstate(cpu, pstate);
1953 }
1954 
1955 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1956 {
1957 	int perf_ctl_max_phys = pstate_funcs.get_max_physical();
1958 	int perf_ctl_scaling = pstate_funcs.get_scaling();
1959 
1960 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1961 	cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
1962 	cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
1963 
1964 	if (hwp_active && !hwp_mode_bdw) {
1965 		__intel_pstate_get_hwp_cap(cpu);
1966 
1967 		if (pstate_funcs.get_cpu_scaling) {
1968 			cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
1969 			if (cpu->pstate.scaling != perf_ctl_scaling)
1970 				intel_pstate_hybrid_hwp_adjust(cpu);
1971 		} else {
1972 			cpu->pstate.scaling = perf_ctl_scaling;
1973 		}
1974 	} else {
1975 		cpu->pstate.scaling = perf_ctl_scaling;
1976 		cpu->pstate.max_pstate = pstate_funcs.get_max();
1977 		cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1978 	}
1979 
1980 	if (cpu->pstate.scaling == perf_ctl_scaling) {
1981 		cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
1982 		cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
1983 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
1984 	}
1985 
1986 	if (pstate_funcs.get_aperf_mperf_shift)
1987 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1988 
1989 	if (pstate_funcs.get_vid)
1990 		pstate_funcs.get_vid(cpu);
1991 
1992 	intel_pstate_set_min_pstate(cpu);
1993 }
1994 
1995 /*
1996  * Long hold time will keep high perf limits for long time,
1997  * which negatively impacts perf/watt for some workloads,
1998  * like specpower. 3ms is based on experiements on some
1999  * workoads.
2000  */
2001 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2002 
2003 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2004 {
2005 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2006 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2007 	u32 max_limit = (hwp_req & 0xff00) >> 8;
2008 	u32 min_limit = (hwp_req & 0xff);
2009 	u32 boost_level1;
2010 
2011 	/*
2012 	 * Cases to consider (User changes via sysfs or boot time):
2013 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2014 	 *	No boost, return.
2015 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2016 	 *     Should result in one level boost only for P0.
2017 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2018 	 *     Should result in two level boost:
2019 	 *         (min + p1)/2 and P1.
2020 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2021 	 *     Should result in three level boost:
2022 	 *        (min + p1)/2, P1 and P0.
2023 	 */
2024 
2025 	/* If max and min are equal or already at max, nothing to boost */
2026 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2027 		return;
2028 
2029 	if (!cpu->hwp_boost_min)
2030 		cpu->hwp_boost_min = min_limit;
2031 
2032 	/* level at half way mark between min and guranteed */
2033 	boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2034 
2035 	if (cpu->hwp_boost_min < boost_level1)
2036 		cpu->hwp_boost_min = boost_level1;
2037 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2038 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2039 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2040 		 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2041 		cpu->hwp_boost_min = max_limit;
2042 	else
2043 		return;
2044 
2045 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2046 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
2047 	cpu->last_update = cpu->sample.time;
2048 }
2049 
2050 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2051 {
2052 	if (cpu->hwp_boost_min) {
2053 		bool expired;
2054 
2055 		/* Check if we are idle for hold time to boost down */
2056 		expired = time_after64(cpu->sample.time, cpu->last_update +
2057 				       hwp_boost_hold_time_ns);
2058 		if (expired) {
2059 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2060 			cpu->hwp_boost_min = 0;
2061 		}
2062 	}
2063 	cpu->last_update = cpu->sample.time;
2064 }
2065 
2066 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2067 						      u64 time)
2068 {
2069 	cpu->sample.time = time;
2070 
2071 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2072 		bool do_io = false;
2073 
2074 		cpu->sched_flags = 0;
2075 		/*
2076 		 * Set iowait_boost flag and update time. Since IO WAIT flag
2077 		 * is set all the time, we can't just conclude that there is
2078 		 * some IO bound activity is scheduled on this CPU with just
2079 		 * one occurrence. If we receive at least two in two
2080 		 * consecutive ticks, then we treat as boost candidate.
2081 		 */
2082 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2083 			do_io = true;
2084 
2085 		cpu->last_io_update = time;
2086 
2087 		if (do_io)
2088 			intel_pstate_hwp_boost_up(cpu);
2089 
2090 	} else {
2091 		intel_pstate_hwp_boost_down(cpu);
2092 	}
2093 }
2094 
2095 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2096 						u64 time, unsigned int flags)
2097 {
2098 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2099 
2100 	cpu->sched_flags |= flags;
2101 
2102 	if (smp_processor_id() == cpu->cpu)
2103 		intel_pstate_update_util_hwp_local(cpu, time);
2104 }
2105 
2106 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2107 {
2108 	struct sample *sample = &cpu->sample;
2109 
2110 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2111 }
2112 
2113 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2114 {
2115 	u64 aperf, mperf;
2116 	unsigned long flags;
2117 	u64 tsc;
2118 
2119 	local_irq_save(flags);
2120 	rdmsrl(MSR_IA32_APERF, aperf);
2121 	rdmsrl(MSR_IA32_MPERF, mperf);
2122 	tsc = rdtsc();
2123 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2124 		local_irq_restore(flags);
2125 		return false;
2126 	}
2127 	local_irq_restore(flags);
2128 
2129 	cpu->last_sample_time = cpu->sample.time;
2130 	cpu->sample.time = time;
2131 	cpu->sample.aperf = aperf;
2132 	cpu->sample.mperf = mperf;
2133 	cpu->sample.tsc =  tsc;
2134 	cpu->sample.aperf -= cpu->prev_aperf;
2135 	cpu->sample.mperf -= cpu->prev_mperf;
2136 	cpu->sample.tsc -= cpu->prev_tsc;
2137 
2138 	cpu->prev_aperf = aperf;
2139 	cpu->prev_mperf = mperf;
2140 	cpu->prev_tsc = tsc;
2141 	/*
2142 	 * First time this function is invoked in a given cycle, all of the
2143 	 * previous sample data fields are equal to zero or stale and they must
2144 	 * be populated with meaningful numbers for things to work, so assume
2145 	 * that sample.time will always be reset before setting the utilization
2146 	 * update hook and make the caller skip the sample then.
2147 	 */
2148 	if (cpu->last_sample_time) {
2149 		intel_pstate_calc_avg_perf(cpu);
2150 		return true;
2151 	}
2152 	return false;
2153 }
2154 
2155 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2156 {
2157 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2158 }
2159 
2160 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2161 {
2162 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
2163 			  cpu->sample.core_avg_perf);
2164 }
2165 
2166 static inline int32_t get_target_pstate(struct cpudata *cpu)
2167 {
2168 	struct sample *sample = &cpu->sample;
2169 	int32_t busy_frac;
2170 	int target, avg_pstate;
2171 
2172 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2173 			   sample->tsc);
2174 
2175 	if (busy_frac < cpu->iowait_boost)
2176 		busy_frac = cpu->iowait_boost;
2177 
2178 	sample->busy_scaled = busy_frac * 100;
2179 
2180 	target = global.no_turbo || global.turbo_disabled ?
2181 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2182 	target += target >> 2;
2183 	target = mul_fp(target, busy_frac);
2184 	if (target < cpu->pstate.min_pstate)
2185 		target = cpu->pstate.min_pstate;
2186 
2187 	/*
2188 	 * If the average P-state during the previous cycle was higher than the
2189 	 * current target, add 50% of the difference to the target to reduce
2190 	 * possible performance oscillations and offset possible performance
2191 	 * loss related to moving the workload from one CPU to another within
2192 	 * a package/module.
2193 	 */
2194 	avg_pstate = get_avg_pstate(cpu);
2195 	if (avg_pstate > target)
2196 		target += (avg_pstate - target) >> 1;
2197 
2198 	return target;
2199 }
2200 
2201 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2202 {
2203 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2204 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2205 
2206 	return clamp_t(int, pstate, min_pstate, max_pstate);
2207 }
2208 
2209 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2210 {
2211 	if (pstate == cpu->pstate.current_pstate)
2212 		return;
2213 
2214 	cpu->pstate.current_pstate = pstate;
2215 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2216 }
2217 
2218 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2219 {
2220 	int from = cpu->pstate.current_pstate;
2221 	struct sample *sample;
2222 	int target_pstate;
2223 
2224 	update_turbo_state();
2225 
2226 	target_pstate = get_target_pstate(cpu);
2227 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2228 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2229 	intel_pstate_update_pstate(cpu, target_pstate);
2230 
2231 	sample = &cpu->sample;
2232 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2233 		fp_toint(sample->busy_scaled),
2234 		from,
2235 		cpu->pstate.current_pstate,
2236 		sample->mperf,
2237 		sample->aperf,
2238 		sample->tsc,
2239 		get_avg_frequency(cpu),
2240 		fp_toint(cpu->iowait_boost * 100));
2241 }
2242 
2243 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2244 				     unsigned int flags)
2245 {
2246 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2247 	u64 delta_ns;
2248 
2249 	/* Don't allow remote callbacks */
2250 	if (smp_processor_id() != cpu->cpu)
2251 		return;
2252 
2253 	delta_ns = time - cpu->last_update;
2254 	if (flags & SCHED_CPUFREQ_IOWAIT) {
2255 		/* Start over if the CPU may have been idle. */
2256 		if (delta_ns > TICK_NSEC) {
2257 			cpu->iowait_boost = ONE_EIGHTH_FP;
2258 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2259 			cpu->iowait_boost <<= 1;
2260 			if (cpu->iowait_boost > int_tofp(1))
2261 				cpu->iowait_boost = int_tofp(1);
2262 		} else {
2263 			cpu->iowait_boost = ONE_EIGHTH_FP;
2264 		}
2265 	} else if (cpu->iowait_boost) {
2266 		/* Clear iowait_boost if the CPU may have been idle. */
2267 		if (delta_ns > TICK_NSEC)
2268 			cpu->iowait_boost = 0;
2269 		else
2270 			cpu->iowait_boost >>= 1;
2271 	}
2272 	cpu->last_update = time;
2273 	delta_ns = time - cpu->sample.time;
2274 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2275 		return;
2276 
2277 	if (intel_pstate_sample(cpu, time))
2278 		intel_pstate_adjust_pstate(cpu);
2279 }
2280 
2281 static struct pstate_funcs core_funcs = {
2282 	.get_max = core_get_max_pstate,
2283 	.get_max_physical = core_get_max_pstate_physical,
2284 	.get_min = core_get_min_pstate,
2285 	.get_turbo = core_get_turbo_pstate,
2286 	.get_scaling = core_get_scaling,
2287 	.get_val = core_get_val,
2288 };
2289 
2290 static const struct pstate_funcs silvermont_funcs = {
2291 	.get_max = atom_get_max_pstate,
2292 	.get_max_physical = atom_get_max_pstate,
2293 	.get_min = atom_get_min_pstate,
2294 	.get_turbo = atom_get_turbo_pstate,
2295 	.get_val = atom_get_val,
2296 	.get_scaling = silvermont_get_scaling,
2297 	.get_vid = atom_get_vid,
2298 };
2299 
2300 static const struct pstate_funcs airmont_funcs = {
2301 	.get_max = atom_get_max_pstate,
2302 	.get_max_physical = atom_get_max_pstate,
2303 	.get_min = atom_get_min_pstate,
2304 	.get_turbo = atom_get_turbo_pstate,
2305 	.get_val = atom_get_val,
2306 	.get_scaling = airmont_get_scaling,
2307 	.get_vid = atom_get_vid,
2308 };
2309 
2310 static const struct pstate_funcs knl_funcs = {
2311 	.get_max = core_get_max_pstate,
2312 	.get_max_physical = core_get_max_pstate_physical,
2313 	.get_min = core_get_min_pstate,
2314 	.get_turbo = knl_get_turbo_pstate,
2315 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2316 	.get_scaling = core_get_scaling,
2317 	.get_val = core_get_val,
2318 };
2319 
2320 #define X86_MATCH(model, policy)					 \
2321 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2322 					   X86_FEATURE_APERFMPERF, &policy)
2323 
2324 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2325 	X86_MATCH(SANDYBRIDGE,		core_funcs),
2326 	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
2327 	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
2328 	X86_MATCH(IVYBRIDGE,		core_funcs),
2329 	X86_MATCH(HASWELL,		core_funcs),
2330 	X86_MATCH(BROADWELL,		core_funcs),
2331 	X86_MATCH(IVYBRIDGE_X,		core_funcs),
2332 	X86_MATCH(HASWELL_X,		core_funcs),
2333 	X86_MATCH(HASWELL_L,		core_funcs),
2334 	X86_MATCH(HASWELL_G,		core_funcs),
2335 	X86_MATCH(BROADWELL_G,		core_funcs),
2336 	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
2337 	X86_MATCH(SKYLAKE_L,		core_funcs),
2338 	X86_MATCH(BROADWELL_X,		core_funcs),
2339 	X86_MATCH(SKYLAKE,		core_funcs),
2340 	X86_MATCH(BROADWELL_D,		core_funcs),
2341 	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
2342 	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
2343 	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
2344 	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
2345 	X86_MATCH(SKYLAKE_X,		core_funcs),
2346 	X86_MATCH(COMETLAKE,		core_funcs),
2347 	X86_MATCH(ICELAKE_X,		core_funcs),
2348 	{}
2349 };
2350 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2351 
2352 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2353 	X86_MATCH(BROADWELL_D,		core_funcs),
2354 	X86_MATCH(BROADWELL_X,		core_funcs),
2355 	X86_MATCH(SKYLAKE_X,		core_funcs),
2356 	{}
2357 };
2358 
2359 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2360 	X86_MATCH(KABYLAKE,		core_funcs),
2361 	{}
2362 };
2363 
2364 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2365 	X86_MATCH(SKYLAKE_X,		core_funcs),
2366 	X86_MATCH(SKYLAKE,		core_funcs),
2367 	{}
2368 };
2369 
2370 static int intel_pstate_init_cpu(unsigned int cpunum)
2371 {
2372 	struct cpudata *cpu;
2373 
2374 	cpu = all_cpu_data[cpunum];
2375 
2376 	if (!cpu) {
2377 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2378 		if (!cpu)
2379 			return -ENOMEM;
2380 
2381 		WRITE_ONCE(all_cpu_data[cpunum], cpu);
2382 
2383 		cpu->cpu = cpunum;
2384 
2385 		cpu->epp_default = -EINVAL;
2386 
2387 		if (hwp_active) {
2388 			const struct x86_cpu_id *id;
2389 
2390 			intel_pstate_hwp_enable(cpu);
2391 
2392 			id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2393 			if (id && intel_pstate_acpi_pm_profile_server())
2394 				hwp_boost = true;
2395 		}
2396 	} else if (hwp_active) {
2397 		/*
2398 		 * Re-enable HWP in case this happens after a resume from ACPI
2399 		 * S3 if the CPU was offline during the whole system/resume
2400 		 * cycle.
2401 		 */
2402 		intel_pstate_hwp_reenable(cpu);
2403 	}
2404 
2405 	cpu->epp_powersave = -EINVAL;
2406 	cpu->epp_policy = 0;
2407 
2408 	intel_pstate_get_cpu_pstates(cpu);
2409 
2410 	pr_debug("controlling: cpu %d\n", cpunum);
2411 
2412 	return 0;
2413 }
2414 
2415 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2416 {
2417 	struct cpudata *cpu = all_cpu_data[cpu_num];
2418 
2419 	if (hwp_active && !hwp_boost)
2420 		return;
2421 
2422 	if (cpu->update_util_set)
2423 		return;
2424 
2425 	/* Prevent intel_pstate_update_util() from using stale data. */
2426 	cpu->sample.time = 0;
2427 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2428 				     (hwp_active ?
2429 				      intel_pstate_update_util_hwp :
2430 				      intel_pstate_update_util));
2431 	cpu->update_util_set = true;
2432 }
2433 
2434 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2435 {
2436 	struct cpudata *cpu_data = all_cpu_data[cpu];
2437 
2438 	if (!cpu_data->update_util_set)
2439 		return;
2440 
2441 	cpufreq_remove_update_util_hook(cpu);
2442 	cpu_data->update_util_set = false;
2443 	synchronize_rcu();
2444 }
2445 
2446 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2447 {
2448 	return global.turbo_disabled || global.no_turbo ?
2449 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2450 }
2451 
2452 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2453 					    unsigned int policy_min,
2454 					    unsigned int policy_max)
2455 {
2456 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2457 	int32_t max_policy_perf, min_policy_perf;
2458 
2459 	max_policy_perf = policy_max / perf_ctl_scaling;
2460 	if (policy_max == policy_min) {
2461 		min_policy_perf = max_policy_perf;
2462 	} else {
2463 		min_policy_perf = policy_min / perf_ctl_scaling;
2464 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2465 					  0, max_policy_perf);
2466 	}
2467 
2468 	/*
2469 	 * HWP needs some special consideration, because HWP_REQUEST uses
2470 	 * abstract values to represent performance rather than pure ratios.
2471 	 */
2472 	if (hwp_active) {
2473 		intel_pstate_get_hwp_cap(cpu);
2474 
2475 		if (cpu->pstate.scaling != perf_ctl_scaling) {
2476 			int scaling = cpu->pstate.scaling;
2477 			int freq;
2478 
2479 			freq = max_policy_perf * perf_ctl_scaling;
2480 			max_policy_perf = DIV_ROUND_UP(freq, scaling);
2481 			freq = min_policy_perf * perf_ctl_scaling;
2482 			min_policy_perf = DIV_ROUND_UP(freq, scaling);
2483 		}
2484 	}
2485 
2486 	pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2487 		 cpu->cpu, min_policy_perf, max_policy_perf);
2488 
2489 	/* Normalize user input to [min_perf, max_perf] */
2490 	if (per_cpu_limits) {
2491 		cpu->min_perf_ratio = min_policy_perf;
2492 		cpu->max_perf_ratio = max_policy_perf;
2493 	} else {
2494 		int turbo_max = cpu->pstate.turbo_pstate;
2495 		int32_t global_min, global_max;
2496 
2497 		/* Global limits are in percent of the maximum turbo P-state. */
2498 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2499 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2500 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2501 
2502 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2503 			 global_min, global_max);
2504 
2505 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2506 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2507 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2508 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2509 
2510 		/* Make sure min_perf <= max_perf */
2511 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2512 					  cpu->max_perf_ratio);
2513 
2514 	}
2515 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2516 		 cpu->max_perf_ratio,
2517 		 cpu->min_perf_ratio);
2518 }
2519 
2520 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2521 {
2522 	struct cpudata *cpu;
2523 
2524 	if (!policy->cpuinfo.max_freq)
2525 		return -ENODEV;
2526 
2527 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2528 		 policy->cpuinfo.max_freq, policy->max);
2529 
2530 	cpu = all_cpu_data[policy->cpu];
2531 	cpu->policy = policy->policy;
2532 
2533 	mutex_lock(&intel_pstate_limits_lock);
2534 
2535 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2536 
2537 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2538 		/*
2539 		 * NOHZ_FULL CPUs need this as the governor callback may not
2540 		 * be invoked on them.
2541 		 */
2542 		intel_pstate_clear_update_util_hook(policy->cpu);
2543 		intel_pstate_max_within_limits(cpu);
2544 	} else {
2545 		intel_pstate_set_update_util_hook(policy->cpu);
2546 	}
2547 
2548 	if (hwp_active) {
2549 		/*
2550 		 * When hwp_boost was active before and dynamically it
2551 		 * was turned off, in that case we need to clear the
2552 		 * update util hook.
2553 		 */
2554 		if (!hwp_boost)
2555 			intel_pstate_clear_update_util_hook(policy->cpu);
2556 		intel_pstate_hwp_set(policy->cpu);
2557 	}
2558 
2559 	mutex_unlock(&intel_pstate_limits_lock);
2560 
2561 	return 0;
2562 }
2563 
2564 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2565 					   struct cpufreq_policy_data *policy)
2566 {
2567 	if (!hwp_active &&
2568 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2569 	    policy->max < policy->cpuinfo.max_freq &&
2570 	    policy->max > cpu->pstate.max_freq) {
2571 		pr_debug("policy->max > max non turbo frequency\n");
2572 		policy->max = policy->cpuinfo.max_freq;
2573 	}
2574 }
2575 
2576 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2577 					   struct cpufreq_policy_data *policy)
2578 {
2579 	int max_freq;
2580 
2581 	update_turbo_state();
2582 	if (hwp_active) {
2583 		intel_pstate_get_hwp_cap(cpu);
2584 		max_freq = global.no_turbo || global.turbo_disabled ?
2585 				cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2586 	} else {
2587 		max_freq = intel_pstate_get_max_freq(cpu);
2588 	}
2589 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2590 
2591 	intel_pstate_adjust_policy_max(cpu, policy);
2592 }
2593 
2594 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2595 {
2596 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2597 
2598 	return 0;
2599 }
2600 
2601 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2602 {
2603 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2604 
2605 	pr_debug("CPU %d going offline\n", cpu->cpu);
2606 
2607 	if (cpu->suspended)
2608 		return 0;
2609 
2610 	/*
2611 	 * If the CPU is an SMT thread and it goes offline with the performance
2612 	 * settings different from the minimum, it will prevent its sibling
2613 	 * from getting to lower performance levels, so force the minimum
2614 	 * performance on CPU offline to prevent that from happening.
2615 	 */
2616 	if (hwp_active)
2617 		intel_pstate_hwp_offline(cpu);
2618 	else
2619 		intel_pstate_set_min_pstate(cpu);
2620 
2621 	intel_pstate_exit_perf_limits(policy);
2622 
2623 	return 0;
2624 }
2625 
2626 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2627 {
2628 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2629 
2630 	pr_debug("CPU %d going online\n", cpu->cpu);
2631 
2632 	intel_pstate_init_acpi_perf_limits(policy);
2633 
2634 	if (hwp_active) {
2635 		/*
2636 		 * Re-enable HWP and clear the "suspended" flag to let "resume"
2637 		 * know that it need not do that.
2638 		 */
2639 		intel_pstate_hwp_reenable(cpu);
2640 		cpu->suspended = false;
2641 	}
2642 
2643 	return 0;
2644 }
2645 
2646 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2647 {
2648 	intel_pstate_clear_update_util_hook(policy->cpu);
2649 
2650 	return intel_cpufreq_cpu_offline(policy);
2651 }
2652 
2653 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2654 {
2655 	pr_debug("CPU %d exiting\n", policy->cpu);
2656 
2657 	policy->fast_switch_possible = false;
2658 
2659 	return 0;
2660 }
2661 
2662 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2663 {
2664 	struct cpudata *cpu;
2665 	int rc;
2666 
2667 	rc = intel_pstate_init_cpu(policy->cpu);
2668 	if (rc)
2669 		return rc;
2670 
2671 	cpu = all_cpu_data[policy->cpu];
2672 
2673 	cpu->max_perf_ratio = 0xFF;
2674 	cpu->min_perf_ratio = 0;
2675 
2676 	/* cpuinfo and default policy values */
2677 	policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2678 	update_turbo_state();
2679 	global.turbo_disabled_mf = global.turbo_disabled;
2680 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2681 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2682 
2683 	policy->min = policy->cpuinfo.min_freq;
2684 	policy->max = policy->cpuinfo.max_freq;
2685 
2686 	intel_pstate_init_acpi_perf_limits(policy);
2687 
2688 	policy->fast_switch_possible = true;
2689 
2690 	return 0;
2691 }
2692 
2693 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2694 {
2695 	int ret = __intel_pstate_cpu_init(policy);
2696 
2697 	if (ret)
2698 		return ret;
2699 
2700 	/*
2701 	 * Set the policy to powersave to provide a valid fallback value in case
2702 	 * the default cpufreq governor is neither powersave nor performance.
2703 	 */
2704 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2705 
2706 	if (hwp_active) {
2707 		struct cpudata *cpu = all_cpu_data[policy->cpu];
2708 
2709 		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2710 	}
2711 
2712 	return 0;
2713 }
2714 
2715 static struct cpufreq_driver intel_pstate = {
2716 	.flags		= CPUFREQ_CONST_LOOPS,
2717 	.verify		= intel_pstate_verify_policy,
2718 	.setpolicy	= intel_pstate_set_policy,
2719 	.suspend	= intel_pstate_suspend,
2720 	.resume		= intel_pstate_resume,
2721 	.init		= intel_pstate_cpu_init,
2722 	.exit		= intel_pstate_cpu_exit,
2723 	.offline	= intel_pstate_cpu_offline,
2724 	.online		= intel_pstate_cpu_online,
2725 	.update_limits	= intel_pstate_update_limits,
2726 	.name		= "intel_pstate",
2727 };
2728 
2729 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2730 {
2731 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2732 
2733 	intel_pstate_verify_cpu_policy(cpu, policy);
2734 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2735 
2736 	return 0;
2737 }
2738 
2739 /* Use of trace in passive mode:
2740  *
2741  * In passive mode the trace core_busy field (also known as the
2742  * performance field, and lablelled as such on the graphs; also known as
2743  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2744  * driver call was via the normal or fast switch path. Various graphs
2745  * output from the intel_pstate_tracer.py utility that include core_busy
2746  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2747  * so we use 10 to indicate the normal path through the driver, and
2748  * 90 to indicate the fast switch path through the driver.
2749  * The scaled_busy field is not used, and is set to 0.
2750  */
2751 
2752 #define	INTEL_PSTATE_TRACE_TARGET 10
2753 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2754 
2755 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2756 {
2757 	struct sample *sample;
2758 
2759 	if (!trace_pstate_sample_enabled())
2760 		return;
2761 
2762 	if (!intel_pstate_sample(cpu, ktime_get()))
2763 		return;
2764 
2765 	sample = &cpu->sample;
2766 	trace_pstate_sample(trace_type,
2767 		0,
2768 		old_pstate,
2769 		cpu->pstate.current_pstate,
2770 		sample->mperf,
2771 		sample->aperf,
2772 		sample->tsc,
2773 		get_avg_frequency(cpu),
2774 		fp_toint(cpu->iowait_boost * 100));
2775 }
2776 
2777 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2778 				     u32 desired, bool fast_switch)
2779 {
2780 	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2781 
2782 	value &= ~HWP_MIN_PERF(~0L);
2783 	value |= HWP_MIN_PERF(min);
2784 
2785 	value &= ~HWP_MAX_PERF(~0L);
2786 	value |= HWP_MAX_PERF(max);
2787 
2788 	value &= ~HWP_DESIRED_PERF(~0L);
2789 	value |= HWP_DESIRED_PERF(desired);
2790 
2791 	if (value == prev)
2792 		return;
2793 
2794 	WRITE_ONCE(cpu->hwp_req_cached, value);
2795 	if (fast_switch)
2796 		wrmsrl(MSR_HWP_REQUEST, value);
2797 	else
2798 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2799 }
2800 
2801 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2802 					  u32 target_pstate, bool fast_switch)
2803 {
2804 	if (fast_switch)
2805 		wrmsrl(MSR_IA32_PERF_CTL,
2806 		       pstate_funcs.get_val(cpu, target_pstate));
2807 	else
2808 		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2809 			      pstate_funcs.get_val(cpu, target_pstate));
2810 }
2811 
2812 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2813 				       int target_pstate, bool fast_switch)
2814 {
2815 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2816 	int old_pstate = cpu->pstate.current_pstate;
2817 
2818 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2819 	if (hwp_active) {
2820 		int max_pstate = policy->strict_target ?
2821 					target_pstate : cpu->max_perf_ratio;
2822 
2823 		intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2824 					 fast_switch);
2825 	} else if (target_pstate != old_pstate) {
2826 		intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2827 	}
2828 
2829 	cpu->pstate.current_pstate = target_pstate;
2830 
2831 	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2832 			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
2833 
2834 	return target_pstate;
2835 }
2836 
2837 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2838 				unsigned int target_freq,
2839 				unsigned int relation)
2840 {
2841 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2842 	struct cpufreq_freqs freqs;
2843 	int target_pstate;
2844 
2845 	update_turbo_state();
2846 
2847 	freqs.old = policy->cur;
2848 	freqs.new = target_freq;
2849 
2850 	cpufreq_freq_transition_begin(policy, &freqs);
2851 
2852 	switch (relation) {
2853 	case CPUFREQ_RELATION_L:
2854 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2855 		break;
2856 	case CPUFREQ_RELATION_H:
2857 		target_pstate = freqs.new / cpu->pstate.scaling;
2858 		break;
2859 	default:
2860 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2861 		break;
2862 	}
2863 
2864 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2865 
2866 	freqs.new = target_pstate * cpu->pstate.scaling;
2867 
2868 	cpufreq_freq_transition_end(policy, &freqs, false);
2869 
2870 	return 0;
2871 }
2872 
2873 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2874 					      unsigned int target_freq)
2875 {
2876 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2877 	int target_pstate;
2878 
2879 	update_turbo_state();
2880 
2881 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2882 
2883 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2884 
2885 	return target_pstate * cpu->pstate.scaling;
2886 }
2887 
2888 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2889 				      unsigned long min_perf,
2890 				      unsigned long target_perf,
2891 				      unsigned long capacity)
2892 {
2893 	struct cpudata *cpu = all_cpu_data[cpunum];
2894 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2895 	int old_pstate = cpu->pstate.current_pstate;
2896 	int cap_pstate, min_pstate, max_pstate, target_pstate;
2897 
2898 	update_turbo_state();
2899 	cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2900 					     HWP_HIGHEST_PERF(hwp_cap);
2901 
2902 	/* Optimization: Avoid unnecessary divisions. */
2903 
2904 	target_pstate = cap_pstate;
2905 	if (target_perf < capacity)
2906 		target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2907 
2908 	min_pstate = cap_pstate;
2909 	if (min_perf < capacity)
2910 		min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2911 
2912 	if (min_pstate < cpu->pstate.min_pstate)
2913 		min_pstate = cpu->pstate.min_pstate;
2914 
2915 	if (min_pstate < cpu->min_perf_ratio)
2916 		min_pstate = cpu->min_perf_ratio;
2917 
2918 	max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2919 	if (max_pstate < min_pstate)
2920 		max_pstate = min_pstate;
2921 
2922 	target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2923 
2924 	intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2925 
2926 	cpu->pstate.current_pstate = target_pstate;
2927 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2928 }
2929 
2930 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2931 {
2932 	struct freq_qos_request *req;
2933 	struct cpudata *cpu;
2934 	struct device *dev;
2935 	int ret, freq;
2936 
2937 	dev = get_cpu_device(policy->cpu);
2938 	if (!dev)
2939 		return -ENODEV;
2940 
2941 	ret = __intel_pstate_cpu_init(policy);
2942 	if (ret)
2943 		return ret;
2944 
2945 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2946 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2947 	policy->cur = policy->cpuinfo.min_freq;
2948 
2949 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2950 	if (!req) {
2951 		ret = -ENOMEM;
2952 		goto pstate_exit;
2953 	}
2954 
2955 	cpu = all_cpu_data[policy->cpu];
2956 
2957 	if (hwp_active) {
2958 		u64 value;
2959 
2960 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2961 
2962 		intel_pstate_get_hwp_cap(cpu);
2963 
2964 		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2965 		WRITE_ONCE(cpu->hwp_req_cached, value);
2966 
2967 		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2968 	} else {
2969 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2970 	}
2971 
2972 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
2973 
2974 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2975 				   freq);
2976 	if (ret < 0) {
2977 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2978 		goto free_req;
2979 	}
2980 
2981 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
2982 
2983 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2984 				   freq);
2985 	if (ret < 0) {
2986 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2987 		goto remove_min_req;
2988 	}
2989 
2990 	policy->driver_data = req;
2991 
2992 	return 0;
2993 
2994 remove_min_req:
2995 	freq_qos_remove_request(req);
2996 free_req:
2997 	kfree(req);
2998 pstate_exit:
2999 	intel_pstate_exit_perf_limits(policy);
3000 
3001 	return ret;
3002 }
3003 
3004 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3005 {
3006 	struct freq_qos_request *req;
3007 
3008 	req = policy->driver_data;
3009 
3010 	freq_qos_remove_request(req + 1);
3011 	freq_qos_remove_request(req);
3012 	kfree(req);
3013 
3014 	return intel_pstate_cpu_exit(policy);
3015 }
3016 
3017 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3018 {
3019 	intel_pstate_suspend(policy);
3020 
3021 	if (hwp_active) {
3022 		struct cpudata *cpu = all_cpu_data[policy->cpu];
3023 		u64 value = READ_ONCE(cpu->hwp_req_cached);
3024 
3025 		/*
3026 		 * Clear the desired perf field in MSR_HWP_REQUEST in case
3027 		 * intel_cpufreq_adjust_perf() is in use and the last value
3028 		 * written by it may not be suitable.
3029 		 */
3030 		value &= ~HWP_DESIRED_PERF(~0L);
3031 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3032 		WRITE_ONCE(cpu->hwp_req_cached, value);
3033 	}
3034 
3035 	return 0;
3036 }
3037 
3038 static struct cpufreq_driver intel_cpufreq = {
3039 	.flags		= CPUFREQ_CONST_LOOPS,
3040 	.verify		= intel_cpufreq_verify_policy,
3041 	.target		= intel_cpufreq_target,
3042 	.fast_switch	= intel_cpufreq_fast_switch,
3043 	.init		= intel_cpufreq_cpu_init,
3044 	.exit		= intel_cpufreq_cpu_exit,
3045 	.offline	= intel_cpufreq_cpu_offline,
3046 	.online		= intel_pstate_cpu_online,
3047 	.suspend	= intel_cpufreq_suspend,
3048 	.resume		= intel_pstate_resume,
3049 	.update_limits	= intel_pstate_update_limits,
3050 	.name		= "intel_cpufreq",
3051 };
3052 
3053 static struct cpufreq_driver *default_driver;
3054 
3055 static void intel_pstate_driver_cleanup(void)
3056 {
3057 	unsigned int cpu;
3058 
3059 	cpus_read_lock();
3060 	for_each_online_cpu(cpu) {
3061 		if (all_cpu_data[cpu]) {
3062 			if (intel_pstate_driver == &intel_pstate)
3063 				intel_pstate_clear_update_util_hook(cpu);
3064 
3065 			spin_lock(&hwp_notify_lock);
3066 			kfree(all_cpu_data[cpu]);
3067 			WRITE_ONCE(all_cpu_data[cpu], NULL);
3068 			spin_unlock(&hwp_notify_lock);
3069 		}
3070 	}
3071 	cpus_read_unlock();
3072 
3073 	intel_pstate_driver = NULL;
3074 }
3075 
3076 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3077 {
3078 	int ret;
3079 
3080 	if (driver == &intel_pstate)
3081 		intel_pstate_sysfs_expose_hwp_dynamic_boost();
3082 
3083 	memset(&global, 0, sizeof(global));
3084 	global.max_perf_pct = 100;
3085 
3086 	intel_pstate_driver = driver;
3087 	ret = cpufreq_register_driver(intel_pstate_driver);
3088 	if (ret) {
3089 		intel_pstate_driver_cleanup();
3090 		return ret;
3091 	}
3092 
3093 	global.min_perf_pct = min_perf_pct_min();
3094 
3095 	return 0;
3096 }
3097 
3098 static ssize_t intel_pstate_show_status(char *buf)
3099 {
3100 	if (!intel_pstate_driver)
3101 		return sprintf(buf, "off\n");
3102 
3103 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3104 					"active" : "passive");
3105 }
3106 
3107 static int intel_pstate_update_status(const char *buf, size_t size)
3108 {
3109 	if (size == 3 && !strncmp(buf, "off", size)) {
3110 		if (!intel_pstate_driver)
3111 			return -EINVAL;
3112 
3113 		if (hwp_active)
3114 			return -EBUSY;
3115 
3116 		cpufreq_unregister_driver(intel_pstate_driver);
3117 		intel_pstate_driver_cleanup();
3118 		return 0;
3119 	}
3120 
3121 	if (size == 6 && !strncmp(buf, "active", size)) {
3122 		if (intel_pstate_driver) {
3123 			if (intel_pstate_driver == &intel_pstate)
3124 				return 0;
3125 
3126 			cpufreq_unregister_driver(intel_pstate_driver);
3127 		}
3128 
3129 		return intel_pstate_register_driver(&intel_pstate);
3130 	}
3131 
3132 	if (size == 7 && !strncmp(buf, "passive", size)) {
3133 		if (intel_pstate_driver) {
3134 			if (intel_pstate_driver == &intel_cpufreq)
3135 				return 0;
3136 
3137 			cpufreq_unregister_driver(intel_pstate_driver);
3138 			intel_pstate_sysfs_hide_hwp_dynamic_boost();
3139 		}
3140 
3141 		return intel_pstate_register_driver(&intel_cpufreq);
3142 	}
3143 
3144 	return -EINVAL;
3145 }
3146 
3147 static int no_load __initdata;
3148 static int no_hwp __initdata;
3149 static int hwp_only __initdata;
3150 static unsigned int force_load __initdata;
3151 
3152 static int __init intel_pstate_msrs_not_valid(void)
3153 {
3154 	if (!pstate_funcs.get_max() ||
3155 	    !pstate_funcs.get_min() ||
3156 	    !pstate_funcs.get_turbo())
3157 		return -ENODEV;
3158 
3159 	return 0;
3160 }
3161 
3162 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3163 {
3164 	pstate_funcs.get_max   = funcs->get_max;
3165 	pstate_funcs.get_max_physical = funcs->get_max_physical;
3166 	pstate_funcs.get_min   = funcs->get_min;
3167 	pstate_funcs.get_turbo = funcs->get_turbo;
3168 	pstate_funcs.get_scaling = funcs->get_scaling;
3169 	pstate_funcs.get_val   = funcs->get_val;
3170 	pstate_funcs.get_vid   = funcs->get_vid;
3171 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3172 }
3173 
3174 #ifdef CONFIG_ACPI
3175 
3176 static bool __init intel_pstate_no_acpi_pss(void)
3177 {
3178 	int i;
3179 
3180 	for_each_possible_cpu(i) {
3181 		acpi_status status;
3182 		union acpi_object *pss;
3183 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3184 		struct acpi_processor *pr = per_cpu(processors, i);
3185 
3186 		if (!pr)
3187 			continue;
3188 
3189 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3190 		if (ACPI_FAILURE(status))
3191 			continue;
3192 
3193 		pss = buffer.pointer;
3194 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3195 			kfree(pss);
3196 			return false;
3197 		}
3198 
3199 		kfree(pss);
3200 	}
3201 
3202 	pr_debug("ACPI _PSS not found\n");
3203 	return true;
3204 }
3205 
3206 static bool __init intel_pstate_no_acpi_pcch(void)
3207 {
3208 	acpi_status status;
3209 	acpi_handle handle;
3210 
3211 	status = acpi_get_handle(NULL, "\\_SB", &handle);
3212 	if (ACPI_FAILURE(status))
3213 		goto not_found;
3214 
3215 	if (acpi_has_method(handle, "PCCH"))
3216 		return false;
3217 
3218 not_found:
3219 	pr_debug("ACPI PCCH not found\n");
3220 	return true;
3221 }
3222 
3223 static bool __init intel_pstate_has_acpi_ppc(void)
3224 {
3225 	int i;
3226 
3227 	for_each_possible_cpu(i) {
3228 		struct acpi_processor *pr = per_cpu(processors, i);
3229 
3230 		if (!pr)
3231 			continue;
3232 		if (acpi_has_method(pr->handle, "_PPC"))
3233 			return true;
3234 	}
3235 	pr_debug("ACPI _PPC not found\n");
3236 	return false;
3237 }
3238 
3239 enum {
3240 	PSS,
3241 	PPC,
3242 };
3243 
3244 /* Hardware vendor-specific info that has its own power management modes */
3245 static struct acpi_platform_list plat_info[] __initdata = {
3246 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3247 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3248 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3249 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3250 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3251 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3252 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3253 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3254 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3255 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3256 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3257 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3258 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3259 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3260 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3261 	{ } /* End */
3262 };
3263 
3264 #define BITMASK_OOB	(BIT(8) | BIT(18))
3265 
3266 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3267 {
3268 	const struct x86_cpu_id *id;
3269 	u64 misc_pwr;
3270 	int idx;
3271 
3272 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3273 	if (id) {
3274 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3275 		if (misc_pwr & BITMASK_OOB) {
3276 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3277 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3278 			return true;
3279 		}
3280 	}
3281 
3282 	idx = acpi_match_platform_list(plat_info);
3283 	if (idx < 0)
3284 		return false;
3285 
3286 	switch (plat_info[idx].data) {
3287 	case PSS:
3288 		if (!intel_pstate_no_acpi_pss())
3289 			return false;
3290 
3291 		return intel_pstate_no_acpi_pcch();
3292 	case PPC:
3293 		return intel_pstate_has_acpi_ppc() && !force_load;
3294 	}
3295 
3296 	return false;
3297 }
3298 
3299 static void intel_pstate_request_control_from_smm(void)
3300 {
3301 	/*
3302 	 * It may be unsafe to request P-states control from SMM if _PPC support
3303 	 * has not been enabled.
3304 	 */
3305 	if (acpi_ppc)
3306 		acpi_processor_pstate_control();
3307 }
3308 #else /* CONFIG_ACPI not enabled */
3309 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3310 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3311 static inline void intel_pstate_request_control_from_smm(void) {}
3312 #endif /* CONFIG_ACPI */
3313 
3314 #define INTEL_PSTATE_HWP_BROADWELL	0x01
3315 
3316 #define X86_MATCH_HWP(model, hwp_mode)					\
3317 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3318 					   X86_FEATURE_HWP, hwp_mode)
3319 
3320 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3321 	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
3322 	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
3323 	X86_MATCH_HWP(ANY,		0),
3324 	{}
3325 };
3326 
3327 static bool intel_pstate_hwp_is_enabled(void)
3328 {
3329 	u64 value;
3330 
3331 	rdmsrl(MSR_PM_ENABLE, value);
3332 	return !!(value & 0x1);
3333 }
3334 
3335 static int __init intel_pstate_init(void)
3336 {
3337 	static struct cpudata **_all_cpu_data;
3338 	const struct x86_cpu_id *id;
3339 	int rc;
3340 
3341 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3342 		return -ENODEV;
3343 
3344 	id = x86_match_cpu(hwp_support_ids);
3345 	if (id) {
3346 		bool hwp_forced = intel_pstate_hwp_is_enabled();
3347 
3348 		if (hwp_forced)
3349 			pr_info("HWP enabled by BIOS\n");
3350 		else if (no_load)
3351 			return -ENODEV;
3352 
3353 		copy_cpu_funcs(&core_funcs);
3354 		/*
3355 		 * Avoid enabling HWP for processors without EPP support,
3356 		 * because that means incomplete HWP implementation which is a
3357 		 * corner case and supporting it is generally problematic.
3358 		 *
3359 		 * If HWP is enabled already, though, there is no choice but to
3360 		 * deal with it.
3361 		 */
3362 		if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3363 			WRITE_ONCE(hwp_active, 1);
3364 			hwp_mode_bdw = id->driver_data;
3365 			intel_pstate.attr = hwp_cpufreq_attrs;
3366 			intel_cpufreq.attr = hwp_cpufreq_attrs;
3367 			intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3368 			intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3369 			if (!default_driver)
3370 				default_driver = &intel_pstate;
3371 
3372 			if (boot_cpu_has(X86_FEATURE_HYBRID_CPU))
3373 				intel_pstate_cppc_set_cpu_scaling();
3374 
3375 			goto hwp_cpu_matched;
3376 		}
3377 		pr_info("HWP not enabled\n");
3378 	} else {
3379 		if (no_load)
3380 			return -ENODEV;
3381 
3382 		id = x86_match_cpu(intel_pstate_cpu_ids);
3383 		if (!id) {
3384 			pr_info("CPU model not supported\n");
3385 			return -ENODEV;
3386 		}
3387 
3388 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3389 	}
3390 
3391 	if (intel_pstate_msrs_not_valid()) {
3392 		pr_info("Invalid MSRs\n");
3393 		return -ENODEV;
3394 	}
3395 	/* Without HWP start in the passive mode. */
3396 	if (!default_driver)
3397 		default_driver = &intel_cpufreq;
3398 
3399 hwp_cpu_matched:
3400 	/*
3401 	 * The Intel pstate driver will be ignored if the platform
3402 	 * firmware has its own power management modes.
3403 	 */
3404 	if (intel_pstate_platform_pwr_mgmt_exists()) {
3405 		pr_info("P-states controlled by the platform\n");
3406 		return -ENODEV;
3407 	}
3408 
3409 	if (!hwp_active && hwp_only)
3410 		return -ENOTSUPP;
3411 
3412 	pr_info("Intel P-state driver initializing\n");
3413 
3414 	_all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3415 	if (!_all_cpu_data)
3416 		return -ENOMEM;
3417 
3418 	WRITE_ONCE(all_cpu_data, _all_cpu_data);
3419 
3420 	intel_pstate_request_control_from_smm();
3421 
3422 	intel_pstate_sysfs_expose_params();
3423 
3424 	mutex_lock(&intel_pstate_driver_lock);
3425 	rc = intel_pstate_register_driver(default_driver);
3426 	mutex_unlock(&intel_pstate_driver_lock);
3427 	if (rc) {
3428 		intel_pstate_sysfs_remove();
3429 		return rc;
3430 	}
3431 
3432 	if (hwp_active) {
3433 		const struct x86_cpu_id *id;
3434 
3435 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3436 		if (id) {
3437 			set_power_ctl_ee_state(false);
3438 			pr_info("Disabling energy efficiency optimization\n");
3439 		}
3440 
3441 		pr_info("HWP enabled\n");
3442 	} else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3443 		pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3444 	}
3445 
3446 	return 0;
3447 }
3448 device_initcall(intel_pstate_init);
3449 
3450 static int __init intel_pstate_setup(char *str)
3451 {
3452 	if (!str)
3453 		return -EINVAL;
3454 
3455 	if (!strcmp(str, "disable"))
3456 		no_load = 1;
3457 	else if (!strcmp(str, "active"))
3458 		default_driver = &intel_pstate;
3459 	else if (!strcmp(str, "passive"))
3460 		default_driver = &intel_cpufreq;
3461 
3462 	if (!strcmp(str, "no_hwp"))
3463 		no_hwp = 1;
3464 
3465 	if (!strcmp(str, "force"))
3466 		force_load = 1;
3467 	if (!strcmp(str, "hwp_only"))
3468 		hwp_only = 1;
3469 	if (!strcmp(str, "per_cpu_perf_limits"))
3470 		per_cpu_limits = true;
3471 
3472 #ifdef CONFIG_ACPI
3473 	if (!strcmp(str, "support_acpi_ppc"))
3474 		acpi_ppc = true;
3475 #endif
3476 
3477 	return 0;
3478 }
3479 early_param("intel_pstate", intel_pstate_setup);
3480 
3481 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3482 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3483 MODULE_LICENSE("GPL");
3484