1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29 
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35 
36 #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC)
37 
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP	5000
40 #define INTEL_CPUFREQ_TRANSITION_DELAY		500
41 
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46 
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50 
51 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
52 
53 #define EXT_BITS 6
54 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
55 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
56 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
57 
58 static inline int32_t mul_fp(int32_t x, int32_t y)
59 {
60 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
61 }
62 
63 static inline int32_t div_fp(s64 x, s64 y)
64 {
65 	return div64_s64((int64_t)x << FRAC_BITS, y);
66 }
67 
68 static inline int ceiling_fp(int32_t x)
69 {
70 	int mask, ret;
71 
72 	ret = fp_toint(x);
73 	mask = (1 << FRAC_BITS) - 1;
74 	if (x & mask)
75 		ret += 1;
76 	return ret;
77 }
78 
79 static inline u64 mul_ext_fp(u64 x, u64 y)
80 {
81 	return (x * y) >> EXT_FRAC_BITS;
82 }
83 
84 static inline u64 div_ext_fp(u64 x, u64 y)
85 {
86 	return div64_u64(x << EXT_FRAC_BITS, y);
87 }
88 
89 /**
90  * struct sample -	Store performance sample
91  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
92  *			performance during last sample period
93  * @busy_scaled:	Scaled busy value which is used to calculate next
94  *			P state. This can be different than core_avg_perf
95  *			to account for cpu idle period
96  * @aperf:		Difference of actual performance frequency clock count
97  *			read from APERF MSR between last and current sample
98  * @mperf:		Difference of maximum performance frequency clock count
99  *			read from MPERF MSR between last and current sample
100  * @tsc:		Difference of time stamp counter between last and
101  *			current sample
102  * @time:		Current time from scheduler
103  *
104  * This structure is used in the cpudata structure to store performance sample
105  * data for choosing next P State.
106  */
107 struct sample {
108 	int32_t core_avg_perf;
109 	int32_t busy_scaled;
110 	u64 aperf;
111 	u64 mperf;
112 	u64 tsc;
113 	u64 time;
114 };
115 
116 /**
117  * struct pstate_data - Store P state data
118  * @current_pstate:	Current requested P state
119  * @min_pstate:		Min P state possible for this platform
120  * @max_pstate:		Max P state possible for this platform
121  * @max_pstate_physical:This is physical Max P state for a processor
122  *			This can be higher than the max_pstate which can
123  *			be limited by platform thermal design power limits
124  * @perf_ctl_scaling:	PERF_CTL P-state to frequency scaling factor
125  * @scaling:		Scaling factor between performance and frequency
126  * @turbo_pstate:	Max Turbo P state possible for this platform
127  * @min_freq:		@min_pstate frequency in cpufreq units
128  * @max_freq:		@max_pstate frequency in cpufreq units
129  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
130  *
131  * Stores the per cpu model P state limits and current P state.
132  */
133 struct pstate_data {
134 	int	current_pstate;
135 	int	min_pstate;
136 	int	max_pstate;
137 	int	max_pstate_physical;
138 	int	perf_ctl_scaling;
139 	int	scaling;
140 	int	turbo_pstate;
141 	unsigned int min_freq;
142 	unsigned int max_freq;
143 	unsigned int turbo_freq;
144 };
145 
146 /**
147  * struct vid_data -	Stores voltage information data
148  * @min:		VID data for this platform corresponding to
149  *			the lowest P state
150  * @max:		VID data corresponding to the highest P State.
151  * @turbo:		VID data for turbo P state
152  * @ratio:		Ratio of (vid max - vid min) /
153  *			(max P state - Min P State)
154  *
155  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156  * This data is used in Atom platforms, where in addition to target P state,
157  * the voltage data needs to be specified to select next P State.
158  */
159 struct vid_data {
160 	int min;
161 	int max;
162 	int turbo;
163 	int32_t ratio;
164 };
165 
166 /**
167  * struct global_params - Global parameters, mostly tunable via sysfs.
168  * @no_turbo:		Whether or not to use turbo P-states.
169  * @turbo_disabled:	Whether or not turbo P-states are available at all,
170  *			based on the MSR_IA32_MISC_ENABLE value and whether or
171  *			not the maximum reported turbo P-state is different from
172  *			the maximum reported non-turbo one.
173  * @turbo_disabled_mf:	The @turbo_disabled value reflected by cpuinfo.max_freq.
174  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
175  *			P-state capacity.
176  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
177  *			P-state capacity.
178  */
179 struct global_params {
180 	bool no_turbo;
181 	bool turbo_disabled;
182 	bool turbo_disabled_mf;
183 	int max_perf_pct;
184 	int min_perf_pct;
185 };
186 
187 /**
188  * struct cpudata -	Per CPU instance data storage
189  * @cpu:		CPU number for this instance data
190  * @policy:		CPUFreq policy value
191  * @update_util:	CPUFreq utility callback information
192  * @update_util_set:	CPUFreq utility callback is set
193  * @iowait_boost:	iowait-related boost fraction
194  * @last_update:	Time of the last update.
195  * @pstate:		Stores P state limits for this CPU
196  * @vid:		Stores VID limits for this CPU
197  * @last_sample_time:	Last Sample time
198  * @aperf_mperf_shift:	APERF vs MPERF counting frequency difference
199  * @prev_aperf:		Last APERF value read from APERF MSR
200  * @prev_mperf:		Last MPERF value read from MPERF MSR
201  * @prev_tsc:		Last timestamp counter (TSC) value
202  * @prev_cummulative_iowait: IO Wait time difference from last and
203  *			current sample
204  * @sample:		Storage for storing last Sample data
205  * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios
206  * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios
207  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
208  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
209  * @epp_powersave:	Last saved HWP energy performance preference
210  *			(EPP) or energy performance bias (EPB),
211  *			when policy switched to performance
212  * @epp_policy:		Last saved policy used to set EPP/EPB
213  * @epp_default:	Power on default HWP energy performance
214  *			preference/bias
215  * @epp_cached		Cached HWP energy-performance preference value
216  * @hwp_req_cached:	Cached value of the last HWP Request MSR
217  * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR
218  * @last_io_update:	Last time when IO wake flag was set
219  * @sched_flags:	Store scheduler flags for possible cross CPU update
220  * @hwp_boost_min:	Last HWP boosted min performance
221  * @suspended:		Whether or not the driver has been suspended.
222  *
223  * This structure stores per CPU instance data for all CPUs.
224  */
225 struct cpudata {
226 	int cpu;
227 
228 	unsigned int policy;
229 	struct update_util_data update_util;
230 	bool   update_util_set;
231 
232 	struct pstate_data pstate;
233 	struct vid_data vid;
234 
235 	u64	last_update;
236 	u64	last_sample_time;
237 	u64	aperf_mperf_shift;
238 	u64	prev_aperf;
239 	u64	prev_mperf;
240 	u64	prev_tsc;
241 	u64	prev_cummulative_iowait;
242 	struct sample sample;
243 	int32_t	min_perf_ratio;
244 	int32_t	max_perf_ratio;
245 #ifdef CONFIG_ACPI
246 	struct acpi_processor_performance acpi_perf_data;
247 	bool valid_pss_table;
248 #endif
249 	unsigned int iowait_boost;
250 	s16 epp_powersave;
251 	s16 epp_policy;
252 	s16 epp_default;
253 	s16 epp_cached;
254 	u64 hwp_req_cached;
255 	u64 hwp_cap_cached;
256 	u64 last_io_update;
257 	unsigned int sched_flags;
258 	u32 hwp_boost_min;
259 	bool suspended;
260 };
261 
262 static struct cpudata **all_cpu_data;
263 
264 /**
265  * struct pstate_funcs - Per CPU model specific callbacks
266  * @get_max:		Callback to get maximum non turbo effective P state
267  * @get_max_physical:	Callback to get maximum non turbo physical P state
268  * @get_min:		Callback to get minimum P state
269  * @get_turbo:		Callback to get turbo P state
270  * @get_scaling:	Callback to get frequency scaling factor
271  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
272  * @get_val:		Callback to convert P state to actual MSR write value
273  * @get_vid:		Callback to get VID data for Atom platforms
274  *
275  * Core and Atom CPU models have different way to get P State limits. This
276  * structure is used to store those callbacks.
277  */
278 struct pstate_funcs {
279 	int (*get_max)(void);
280 	int (*get_max_physical)(void);
281 	int (*get_min)(void);
282 	int (*get_turbo)(void);
283 	int (*get_scaling)(void);
284 	int (*get_aperf_mperf_shift)(void);
285 	u64 (*get_val)(struct cpudata*, int pstate);
286 	void (*get_vid)(struct cpudata *);
287 };
288 
289 static struct pstate_funcs pstate_funcs __read_mostly;
290 
291 static int hwp_active __read_mostly;
292 static int hwp_mode_bdw __read_mostly;
293 static bool per_cpu_limits __read_mostly;
294 static bool hwp_boost __read_mostly;
295 
296 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
297 
298 #ifdef CONFIG_ACPI
299 static bool acpi_ppc;
300 #endif
301 
302 static struct global_params global;
303 
304 static DEFINE_MUTEX(intel_pstate_driver_lock);
305 static DEFINE_MUTEX(intel_pstate_limits_lock);
306 
307 #ifdef CONFIG_ACPI
308 
309 static bool intel_pstate_acpi_pm_profile_server(void)
310 {
311 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
312 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
313 		return true;
314 
315 	return false;
316 }
317 
318 static bool intel_pstate_get_ppc_enable_status(void)
319 {
320 	if (intel_pstate_acpi_pm_profile_server())
321 		return true;
322 
323 	return acpi_ppc;
324 }
325 
326 #ifdef CONFIG_ACPI_CPPC_LIB
327 
328 /* The work item is needed to avoid CPU hotplug locking issues */
329 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
330 {
331 	sched_set_itmt_support();
332 }
333 
334 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
335 
336 static void intel_pstate_set_itmt_prio(int cpu)
337 {
338 	struct cppc_perf_caps cppc_perf;
339 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
340 	int ret;
341 
342 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
343 	if (ret)
344 		return;
345 
346 	/*
347 	 * The priorities can be set regardless of whether or not
348 	 * sched_set_itmt_support(true) has been called and it is valid to
349 	 * update them at any time after it has been called.
350 	 */
351 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
352 
353 	if (max_highest_perf <= min_highest_perf) {
354 		if (cppc_perf.highest_perf > max_highest_perf)
355 			max_highest_perf = cppc_perf.highest_perf;
356 
357 		if (cppc_perf.highest_perf < min_highest_perf)
358 			min_highest_perf = cppc_perf.highest_perf;
359 
360 		if (max_highest_perf > min_highest_perf) {
361 			/*
362 			 * This code can be run during CPU online under the
363 			 * CPU hotplug locks, so sched_set_itmt_support()
364 			 * cannot be called from here.  Queue up a work item
365 			 * to invoke it.
366 			 */
367 			schedule_work(&sched_itmt_work);
368 		}
369 	}
370 }
371 
372 static int intel_pstate_get_cppc_guaranteed(int cpu)
373 {
374 	struct cppc_perf_caps cppc_perf;
375 	int ret;
376 
377 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
378 	if (ret)
379 		return ret;
380 
381 	if (cppc_perf.guaranteed_perf)
382 		return cppc_perf.guaranteed_perf;
383 
384 	return cppc_perf.nominal_perf;
385 }
386 
387 #else /* CONFIG_ACPI_CPPC_LIB */
388 static inline void intel_pstate_set_itmt_prio(int cpu)
389 {
390 }
391 #endif /* CONFIG_ACPI_CPPC_LIB */
392 
393 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
394 {
395 	struct cpudata *cpu;
396 	int ret;
397 	int i;
398 
399 	if (hwp_active) {
400 		intel_pstate_set_itmt_prio(policy->cpu);
401 		return;
402 	}
403 
404 	if (!intel_pstate_get_ppc_enable_status())
405 		return;
406 
407 	cpu = all_cpu_data[policy->cpu];
408 
409 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
410 						  policy->cpu);
411 	if (ret)
412 		return;
413 
414 	/*
415 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
416 	 * guarantee that the states returned by it map to the states in our
417 	 * list directly.
418 	 */
419 	if (cpu->acpi_perf_data.control_register.space_id !=
420 						ACPI_ADR_SPACE_FIXED_HARDWARE)
421 		goto err;
422 
423 	/*
424 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
425 	 * usual without taking _PSS into account
426 	 */
427 	if (cpu->acpi_perf_data.state_count < 2)
428 		goto err;
429 
430 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
431 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
432 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
433 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
434 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
435 			 (u32) cpu->acpi_perf_data.states[i].power,
436 			 (u32) cpu->acpi_perf_data.states[i].control);
437 	}
438 
439 	/*
440 	 * The _PSS table doesn't contain whole turbo frequency range.
441 	 * This just contains +1 MHZ above the max non turbo frequency,
442 	 * with control value corresponding to max turbo ratio. But
443 	 * when cpufreq set policy is called, it will call with this
444 	 * max frequency, which will cause a reduced performance as
445 	 * this driver uses real max turbo frequency as the max
446 	 * frequency. So correct this frequency in _PSS table to
447 	 * correct max turbo frequency based on the turbo state.
448 	 * Also need to convert to MHz as _PSS freq is in MHz.
449 	 */
450 	if (!global.turbo_disabled)
451 		cpu->acpi_perf_data.states[0].core_frequency =
452 					policy->cpuinfo.max_freq / 1000;
453 	cpu->valid_pss_table = true;
454 	pr_debug("_PPC limits will be enforced\n");
455 
456 	return;
457 
458  err:
459 	cpu->valid_pss_table = false;
460 	acpi_processor_unregister_performance(policy->cpu);
461 }
462 
463 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
464 {
465 	struct cpudata *cpu;
466 
467 	cpu = all_cpu_data[policy->cpu];
468 	if (!cpu->valid_pss_table)
469 		return;
470 
471 	acpi_processor_unregister_performance(policy->cpu);
472 }
473 
474 static bool intel_pstate_cppc_perf_valid(u32 perf, struct cppc_perf_caps *caps)
475 {
476 	return perf && perf <= caps->highest_perf && perf >= caps->lowest_perf;
477 }
478 
479 static bool intel_pstate_cppc_perf_caps(struct cpudata *cpu,
480 					struct cppc_perf_caps *caps)
481 {
482 	if (cppc_get_perf_caps(cpu->cpu, caps))
483 		return false;
484 
485 	return caps->highest_perf && caps->lowest_perf <= caps->highest_perf;
486 }
487 #else /* CONFIG_ACPI */
488 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
489 {
490 }
491 
492 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
493 {
494 }
495 
496 static inline bool intel_pstate_acpi_pm_profile_server(void)
497 {
498 	return false;
499 }
500 #endif /* CONFIG_ACPI */
501 
502 #ifndef CONFIG_ACPI_CPPC_LIB
503 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
504 {
505 	return -ENOTSUPP;
506 }
507 #endif /* CONFIG_ACPI_CPPC_LIB */
508 
509 static void intel_pstate_hybrid_hwp_perf_ctl_parity(struct cpudata *cpu)
510 {
511 	pr_debug("CPU%d: Using PERF_CTL scaling for HWP\n", cpu->cpu);
512 
513 	cpu->pstate.scaling = cpu->pstate.perf_ctl_scaling;
514 }
515 
516 /**
517  * intel_pstate_hybrid_hwp_calibrate - Calibrate HWP performance levels.
518  * @cpu: Target CPU.
519  *
520  * On hybrid processors, HWP may expose more performance levels than there are
521  * P-states accessible through the PERF_CTL interface.  If that happens, the
522  * scaling factor between HWP performance levels and CPU frequency will be less
523  * than the scaling factor between P-state values and CPU frequency.
524  *
525  * In that case, the scaling factor between HWP performance levels and CPU
526  * frequency needs to be determined which can be done with the help of the
527  * observation that certain HWP performance levels should correspond to certain
528  * P-states, like for example the HWP highest performance should correspond
529  * to the maximum turbo P-state of the CPU.
530  */
531 static void intel_pstate_hybrid_hwp_calibrate(struct cpudata *cpu)
532 {
533 	int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
534 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
535 	int perf_ctl_turbo = pstate_funcs.get_turbo();
536 	int turbo_freq = perf_ctl_turbo * perf_ctl_scaling;
537 	int perf_ctl_max = pstate_funcs.get_max();
538 	int max_freq = perf_ctl_max * perf_ctl_scaling;
539 	int scaling = INT_MAX;
540 	int freq;
541 
542 	pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
543 	pr_debug("CPU%d: perf_ctl_max = %d\n", cpu->cpu, perf_ctl_max);
544 	pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
545 	pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
546 
547 	pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
548 	pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
549 
550 #ifdef CONFIG_ACPI
551 	if (IS_ENABLED(CONFIG_ACPI_CPPC_LIB)) {
552 		struct cppc_perf_caps caps;
553 
554 		if (intel_pstate_cppc_perf_caps(cpu, &caps)) {
555 			if (intel_pstate_cppc_perf_valid(caps.nominal_perf, &caps)) {
556 				pr_debug("CPU%d: Using CPPC nominal\n", cpu->cpu);
557 
558 				/*
559 				 * If the CPPC nominal performance is valid, it
560 				 * can be assumed to correspond to cpu_khz.
561 				 */
562 				if (caps.nominal_perf == perf_ctl_max_phys) {
563 					intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
564 					return;
565 				}
566 				scaling = DIV_ROUND_UP(cpu_khz, caps.nominal_perf);
567 			} else if (intel_pstate_cppc_perf_valid(caps.guaranteed_perf, &caps)) {
568 				pr_debug("CPU%d: Using CPPC guaranteed\n", cpu->cpu);
569 
570 				/*
571 				 * If the CPPC guaranteed performance is valid,
572 				 * it can be assumed to correspond to max_freq.
573 				 */
574 				if (caps.guaranteed_perf == perf_ctl_max) {
575 					intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
576 					return;
577 				}
578 				scaling = DIV_ROUND_UP(max_freq, caps.guaranteed_perf);
579 			}
580 		}
581 	}
582 #endif
583 	/*
584 	 * If using the CPPC data to compute the HWP-to-frequency scaling factor
585 	 * doesn't work, use the HWP_CAP gauranteed perf for this purpose with
586 	 * the assumption that it corresponds to max_freq.
587 	 */
588 	if (scaling > perf_ctl_scaling) {
589 		pr_debug("CPU%d: Using HWP_CAP guaranteed\n", cpu->cpu);
590 
591 		if (cpu->pstate.max_pstate == perf_ctl_max) {
592 			intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
593 			return;
594 		}
595 		scaling = DIV_ROUND_UP(max_freq, cpu->pstate.max_pstate);
596 		if (scaling > perf_ctl_scaling) {
597 			/*
598 			 * This should not happen, because it would mean that
599 			 * the number of HWP perf levels was less than the
600 			 * number of P-states, so use the PERF_CTL scaling in
601 			 * that case.
602 			 */
603 			pr_debug("CPU%d: scaling (%d) out of range\n", cpu->cpu,
604 				scaling);
605 
606 			intel_pstate_hybrid_hwp_perf_ctl_parity(cpu);
607 			return;
608 		}
609 	}
610 
611 	/*
612 	 * If the product of the HWP performance scaling factor obtained above
613 	 * and the HWP_CAP highest performance is greater than the maximum turbo
614 	 * frequency corresponding to the pstate_funcs.get_turbo() return value,
615 	 * the scaling factor is too high, so recompute it so that the HWP_CAP
616 	 * highest performance corresponds to the maximum turbo frequency.
617 	 */
618 	if (turbo_freq < cpu->pstate.turbo_pstate * scaling) {
619 		pr_debug("CPU%d: scaling too high (%d)\n", cpu->cpu, scaling);
620 
621 		cpu->pstate.turbo_freq = turbo_freq;
622 		scaling = DIV_ROUND_UP(turbo_freq, cpu->pstate.turbo_pstate);
623 	}
624 
625 	cpu->pstate.scaling = scaling;
626 
627 	pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
628 
629 	cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
630 					 perf_ctl_scaling);
631 
632 	freq = perf_ctl_max_phys * perf_ctl_scaling;
633 	cpu->pstate.max_pstate_physical = DIV_ROUND_UP(freq, scaling);
634 
635 	cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
636 	/*
637 	 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
638 	 * the effective range of HWP performance levels.
639 	 */
640 	cpu->pstate.min_pstate = DIV_ROUND_UP(cpu->pstate.min_freq, scaling);
641 }
642 
643 static inline void update_turbo_state(void)
644 {
645 	u64 misc_en;
646 	struct cpudata *cpu;
647 
648 	cpu = all_cpu_data[0];
649 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
650 	global.turbo_disabled =
651 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
652 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
653 }
654 
655 static int min_perf_pct_min(void)
656 {
657 	struct cpudata *cpu = all_cpu_data[0];
658 	int turbo_pstate = cpu->pstate.turbo_pstate;
659 
660 	return turbo_pstate ?
661 		(cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
662 }
663 
664 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
665 {
666 	u64 epb;
667 	int ret;
668 
669 	if (!boot_cpu_has(X86_FEATURE_EPB))
670 		return -ENXIO;
671 
672 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
673 	if (ret)
674 		return (s16)ret;
675 
676 	return (s16)(epb & 0x0f);
677 }
678 
679 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
680 {
681 	s16 epp;
682 
683 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
684 		/*
685 		 * When hwp_req_data is 0, means that caller didn't read
686 		 * MSR_HWP_REQUEST, so need to read and get EPP.
687 		 */
688 		if (!hwp_req_data) {
689 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
690 					    &hwp_req_data);
691 			if (epp)
692 				return epp;
693 		}
694 		epp = (hwp_req_data >> 24) & 0xff;
695 	} else {
696 		/* When there is no EPP present, HWP uses EPB settings */
697 		epp = intel_pstate_get_epb(cpu_data);
698 	}
699 
700 	return epp;
701 }
702 
703 static int intel_pstate_set_epb(int cpu, s16 pref)
704 {
705 	u64 epb;
706 	int ret;
707 
708 	if (!boot_cpu_has(X86_FEATURE_EPB))
709 		return -ENXIO;
710 
711 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
712 	if (ret)
713 		return ret;
714 
715 	epb = (epb & ~0x0f) | pref;
716 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
717 
718 	return 0;
719 }
720 
721 /*
722  * EPP/EPB display strings corresponding to EPP index in the
723  * energy_perf_strings[]
724  *	index		String
725  *-------------------------------------
726  *	0		default
727  *	1		performance
728  *	2		balance_performance
729  *	3		balance_power
730  *	4		power
731  */
732 static const char * const energy_perf_strings[] = {
733 	"default",
734 	"performance",
735 	"balance_performance",
736 	"balance_power",
737 	"power",
738 	NULL
739 };
740 static const unsigned int epp_values[] = {
741 	HWP_EPP_PERFORMANCE,
742 	HWP_EPP_BALANCE_PERFORMANCE,
743 	HWP_EPP_BALANCE_POWERSAVE,
744 	HWP_EPP_POWERSAVE
745 };
746 
747 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
748 {
749 	s16 epp;
750 	int index = -EINVAL;
751 
752 	*raw_epp = 0;
753 	epp = intel_pstate_get_epp(cpu_data, 0);
754 	if (epp < 0)
755 		return epp;
756 
757 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
758 		if (epp == HWP_EPP_PERFORMANCE)
759 			return 1;
760 		if (epp == HWP_EPP_BALANCE_PERFORMANCE)
761 			return 2;
762 		if (epp == HWP_EPP_BALANCE_POWERSAVE)
763 			return 3;
764 		if (epp == HWP_EPP_POWERSAVE)
765 			return 4;
766 		*raw_epp = epp;
767 		return 0;
768 	} else if (boot_cpu_has(X86_FEATURE_EPB)) {
769 		/*
770 		 * Range:
771 		 *	0x00-0x03	:	Performance
772 		 *	0x04-0x07	:	Balance performance
773 		 *	0x08-0x0B	:	Balance power
774 		 *	0x0C-0x0F	:	Power
775 		 * The EPB is a 4 bit value, but our ranges restrict the
776 		 * value which can be set. Here only using top two bits
777 		 * effectively.
778 		 */
779 		index = (epp >> 2) + 1;
780 	}
781 
782 	return index;
783 }
784 
785 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
786 {
787 	int ret;
788 
789 	/*
790 	 * Use the cached HWP Request MSR value, because in the active mode the
791 	 * register itself may be updated by intel_pstate_hwp_boost_up() or
792 	 * intel_pstate_hwp_boost_down() at any time.
793 	 */
794 	u64 value = READ_ONCE(cpu->hwp_req_cached);
795 
796 	value &= ~GENMASK_ULL(31, 24);
797 	value |= (u64)epp << 24;
798 	/*
799 	 * The only other updater of hwp_req_cached in the active mode,
800 	 * intel_pstate_hwp_set(), is called under the same lock as this
801 	 * function, so it cannot run in parallel with the update below.
802 	 */
803 	WRITE_ONCE(cpu->hwp_req_cached, value);
804 	ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
805 	if (!ret)
806 		cpu->epp_cached = epp;
807 
808 	return ret;
809 }
810 
811 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
812 					      int pref_index, bool use_raw,
813 					      u32 raw_epp)
814 {
815 	int epp = -EINVAL;
816 	int ret;
817 
818 	if (!pref_index)
819 		epp = cpu_data->epp_default;
820 
821 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
822 		if (use_raw)
823 			epp = raw_epp;
824 		else if (epp == -EINVAL)
825 			epp = epp_values[pref_index - 1];
826 
827 		/*
828 		 * To avoid confusion, refuse to set EPP to any values different
829 		 * from 0 (performance) if the current policy is "performance",
830 		 * because those values would be overridden.
831 		 */
832 		if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
833 			return -EBUSY;
834 
835 		ret = intel_pstate_set_epp(cpu_data, epp);
836 	} else {
837 		if (epp == -EINVAL)
838 			epp = (pref_index - 1) << 2;
839 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
840 	}
841 
842 	return ret;
843 }
844 
845 static ssize_t show_energy_performance_available_preferences(
846 				struct cpufreq_policy *policy, char *buf)
847 {
848 	int i = 0;
849 	int ret = 0;
850 
851 	while (energy_perf_strings[i] != NULL)
852 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
853 
854 	ret += sprintf(&buf[ret], "\n");
855 
856 	return ret;
857 }
858 
859 cpufreq_freq_attr_ro(energy_performance_available_preferences);
860 
861 static struct cpufreq_driver intel_pstate;
862 
863 static ssize_t store_energy_performance_preference(
864 		struct cpufreq_policy *policy, const char *buf, size_t count)
865 {
866 	struct cpudata *cpu = all_cpu_data[policy->cpu];
867 	char str_preference[21];
868 	bool raw = false;
869 	ssize_t ret;
870 	u32 epp = 0;
871 
872 	ret = sscanf(buf, "%20s", str_preference);
873 	if (ret != 1)
874 		return -EINVAL;
875 
876 	ret = match_string(energy_perf_strings, -1, str_preference);
877 	if (ret < 0) {
878 		if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
879 			return ret;
880 
881 		ret = kstrtouint(buf, 10, &epp);
882 		if (ret)
883 			return ret;
884 
885 		if (epp > 255)
886 			return -EINVAL;
887 
888 		raw = true;
889 	}
890 
891 	/*
892 	 * This function runs with the policy R/W semaphore held, which
893 	 * guarantees that the driver pointer will not change while it is
894 	 * running.
895 	 */
896 	if (!intel_pstate_driver)
897 		return -EAGAIN;
898 
899 	mutex_lock(&intel_pstate_limits_lock);
900 
901 	if (intel_pstate_driver == &intel_pstate) {
902 		ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
903 	} else {
904 		/*
905 		 * In the passive mode the governor needs to be stopped on the
906 		 * target CPU before the EPP update and restarted after it,
907 		 * which is super-heavy-weight, so make sure it is worth doing
908 		 * upfront.
909 		 */
910 		if (!raw)
911 			epp = ret ? epp_values[ret - 1] : cpu->epp_default;
912 
913 		if (cpu->epp_cached != epp) {
914 			int err;
915 
916 			cpufreq_stop_governor(policy);
917 			ret = intel_pstate_set_epp(cpu, epp);
918 			err = cpufreq_start_governor(policy);
919 			if (!ret)
920 				ret = err;
921 		}
922 	}
923 
924 	mutex_unlock(&intel_pstate_limits_lock);
925 
926 	return ret ?: count;
927 }
928 
929 static ssize_t show_energy_performance_preference(
930 				struct cpufreq_policy *policy, char *buf)
931 {
932 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
933 	int preference, raw_epp;
934 
935 	preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
936 	if (preference < 0)
937 		return preference;
938 
939 	if (raw_epp)
940 		return  sprintf(buf, "%d\n", raw_epp);
941 	else
942 		return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
943 }
944 
945 cpufreq_freq_attr_rw(energy_performance_preference);
946 
947 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
948 {
949 	struct cpudata *cpu = all_cpu_data[policy->cpu];
950 	int ratio, freq;
951 
952 	ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
953 	if (ratio <= 0) {
954 		u64 cap;
955 
956 		rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
957 		ratio = HWP_GUARANTEED_PERF(cap);
958 	}
959 
960 	freq = ratio * cpu->pstate.scaling;
961 	if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
962 		freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
963 
964 	return sprintf(buf, "%d\n", freq);
965 }
966 
967 cpufreq_freq_attr_ro(base_frequency);
968 
969 static struct freq_attr *hwp_cpufreq_attrs[] = {
970 	&energy_performance_preference,
971 	&energy_performance_available_preferences,
972 	&base_frequency,
973 	NULL,
974 };
975 
976 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
977 {
978 	u64 cap;
979 
980 	rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
981 	WRITE_ONCE(cpu->hwp_cap_cached, cap);
982 	cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
983 	cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
984 }
985 
986 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
987 {
988 	int scaling = cpu->pstate.scaling;
989 
990 	__intel_pstate_get_hwp_cap(cpu);
991 
992 	cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
993 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
994 	if (scaling != cpu->pstate.perf_ctl_scaling) {
995 		int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
996 
997 		cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
998 						 perf_ctl_scaling);
999 		cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
1000 						   perf_ctl_scaling);
1001 	}
1002 }
1003 
1004 static void intel_pstate_hwp_set(unsigned int cpu)
1005 {
1006 	struct cpudata *cpu_data = all_cpu_data[cpu];
1007 	int max, min;
1008 	u64 value;
1009 	s16 epp;
1010 
1011 	max = cpu_data->max_perf_ratio;
1012 	min = cpu_data->min_perf_ratio;
1013 
1014 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
1015 		min = max;
1016 
1017 	rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
1018 
1019 	value &= ~HWP_MIN_PERF(~0L);
1020 	value |= HWP_MIN_PERF(min);
1021 
1022 	value &= ~HWP_MAX_PERF(~0L);
1023 	value |= HWP_MAX_PERF(max);
1024 
1025 	if (cpu_data->epp_policy == cpu_data->policy)
1026 		goto skip_epp;
1027 
1028 	cpu_data->epp_policy = cpu_data->policy;
1029 
1030 	if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
1031 		epp = intel_pstate_get_epp(cpu_data, value);
1032 		cpu_data->epp_powersave = epp;
1033 		/* If EPP read was failed, then don't try to write */
1034 		if (epp < 0)
1035 			goto skip_epp;
1036 
1037 		epp = 0;
1038 	} else {
1039 		/* skip setting EPP, when saved value is invalid */
1040 		if (cpu_data->epp_powersave < 0)
1041 			goto skip_epp;
1042 
1043 		/*
1044 		 * No need to restore EPP when it is not zero. This
1045 		 * means:
1046 		 *  - Policy is not changed
1047 		 *  - user has manually changed
1048 		 *  - Error reading EPB
1049 		 */
1050 		epp = intel_pstate_get_epp(cpu_data, value);
1051 		if (epp)
1052 			goto skip_epp;
1053 
1054 		epp = cpu_data->epp_powersave;
1055 	}
1056 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1057 		value &= ~GENMASK_ULL(31, 24);
1058 		value |= (u64)epp << 24;
1059 	} else {
1060 		intel_pstate_set_epb(cpu, epp);
1061 	}
1062 skip_epp:
1063 	WRITE_ONCE(cpu_data->hwp_req_cached, value);
1064 	wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1065 }
1066 
1067 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1068 {
1069 	u64 value = READ_ONCE(cpu->hwp_req_cached);
1070 	int min_perf;
1071 
1072 	if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1073 		/*
1074 		 * In case the EPP has been set to "performance" by the
1075 		 * active mode "performance" scaling algorithm, replace that
1076 		 * temporary value with the cached EPP one.
1077 		 */
1078 		value &= ~GENMASK_ULL(31, 24);
1079 		value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1080 		WRITE_ONCE(cpu->hwp_req_cached, value);
1081 	}
1082 
1083 	value &= ~GENMASK_ULL(31, 0);
1084 	min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1085 
1086 	/* Set hwp_max = hwp_min */
1087 	value |= HWP_MAX_PERF(min_perf);
1088 	value |= HWP_MIN_PERF(min_perf);
1089 
1090 	/* Set EPP to min */
1091 	if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1092 		value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1093 
1094 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1095 }
1096 
1097 #define POWER_CTL_EE_ENABLE	1
1098 #define POWER_CTL_EE_DISABLE	2
1099 
1100 static int power_ctl_ee_state;
1101 
1102 static void set_power_ctl_ee_state(bool input)
1103 {
1104 	u64 power_ctl;
1105 
1106 	mutex_lock(&intel_pstate_driver_lock);
1107 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1108 	if (input) {
1109 		power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1110 		power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1111 	} else {
1112 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1113 		power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1114 	}
1115 	wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1116 	mutex_unlock(&intel_pstate_driver_lock);
1117 }
1118 
1119 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1120 
1121 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1122 {
1123 	intel_pstate_hwp_enable(cpu);
1124 	wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1125 }
1126 
1127 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1128 {
1129 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1130 
1131 	pr_debug("CPU %d suspending\n", cpu->cpu);
1132 
1133 	cpu->suspended = true;
1134 
1135 	return 0;
1136 }
1137 
1138 static int intel_pstate_resume(struct cpufreq_policy *policy)
1139 {
1140 	struct cpudata *cpu = all_cpu_data[policy->cpu];
1141 
1142 	pr_debug("CPU %d resuming\n", cpu->cpu);
1143 
1144 	/* Only restore if the system default is changed */
1145 	if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1146 		set_power_ctl_ee_state(true);
1147 	else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1148 		set_power_ctl_ee_state(false);
1149 
1150 	if (cpu->suspended && hwp_active) {
1151 		mutex_lock(&intel_pstate_limits_lock);
1152 
1153 		/* Re-enable HWP, because "online" has not done that. */
1154 		intel_pstate_hwp_reenable(cpu);
1155 
1156 		mutex_unlock(&intel_pstate_limits_lock);
1157 	}
1158 
1159 	cpu->suspended = false;
1160 
1161 	return 0;
1162 }
1163 
1164 static void intel_pstate_update_policies(void)
1165 {
1166 	int cpu;
1167 
1168 	for_each_possible_cpu(cpu)
1169 		cpufreq_update_policy(cpu);
1170 }
1171 
1172 static void intel_pstate_update_max_freq(unsigned int cpu)
1173 {
1174 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1175 	struct cpudata *cpudata;
1176 
1177 	if (!policy)
1178 		return;
1179 
1180 	cpudata = all_cpu_data[cpu];
1181 	policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1182 			cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1183 
1184 	refresh_frequency_limits(policy);
1185 
1186 	cpufreq_cpu_release(policy);
1187 }
1188 
1189 static void intel_pstate_update_limits(unsigned int cpu)
1190 {
1191 	mutex_lock(&intel_pstate_driver_lock);
1192 
1193 	update_turbo_state();
1194 	/*
1195 	 * If turbo has been turned on or off globally, policy limits for
1196 	 * all CPUs need to be updated to reflect that.
1197 	 */
1198 	if (global.turbo_disabled_mf != global.turbo_disabled) {
1199 		global.turbo_disabled_mf = global.turbo_disabled;
1200 		arch_set_max_freq_ratio(global.turbo_disabled);
1201 		for_each_possible_cpu(cpu)
1202 			intel_pstate_update_max_freq(cpu);
1203 	} else {
1204 		cpufreq_update_policy(cpu);
1205 	}
1206 
1207 	mutex_unlock(&intel_pstate_driver_lock);
1208 }
1209 
1210 /************************** sysfs begin ************************/
1211 #define show_one(file_name, object)					\
1212 	static ssize_t show_##file_name					\
1213 	(struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\
1214 	{								\
1215 		return sprintf(buf, "%u\n", global.object);		\
1216 	}
1217 
1218 static ssize_t intel_pstate_show_status(char *buf);
1219 static int intel_pstate_update_status(const char *buf, size_t size);
1220 
1221 static ssize_t show_status(struct kobject *kobj,
1222 			   struct kobj_attribute *attr, char *buf)
1223 {
1224 	ssize_t ret;
1225 
1226 	mutex_lock(&intel_pstate_driver_lock);
1227 	ret = intel_pstate_show_status(buf);
1228 	mutex_unlock(&intel_pstate_driver_lock);
1229 
1230 	return ret;
1231 }
1232 
1233 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1234 			    const char *buf, size_t count)
1235 {
1236 	char *p = memchr(buf, '\n', count);
1237 	int ret;
1238 
1239 	mutex_lock(&intel_pstate_driver_lock);
1240 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1241 	mutex_unlock(&intel_pstate_driver_lock);
1242 
1243 	return ret < 0 ? ret : count;
1244 }
1245 
1246 static ssize_t show_turbo_pct(struct kobject *kobj,
1247 				struct kobj_attribute *attr, char *buf)
1248 {
1249 	struct cpudata *cpu;
1250 	int total, no_turbo, turbo_pct;
1251 	uint32_t turbo_fp;
1252 
1253 	mutex_lock(&intel_pstate_driver_lock);
1254 
1255 	if (!intel_pstate_driver) {
1256 		mutex_unlock(&intel_pstate_driver_lock);
1257 		return -EAGAIN;
1258 	}
1259 
1260 	cpu = all_cpu_data[0];
1261 
1262 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1263 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1264 	turbo_fp = div_fp(no_turbo, total);
1265 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1266 
1267 	mutex_unlock(&intel_pstate_driver_lock);
1268 
1269 	return sprintf(buf, "%u\n", turbo_pct);
1270 }
1271 
1272 static ssize_t show_num_pstates(struct kobject *kobj,
1273 				struct kobj_attribute *attr, char *buf)
1274 {
1275 	struct cpudata *cpu;
1276 	int total;
1277 
1278 	mutex_lock(&intel_pstate_driver_lock);
1279 
1280 	if (!intel_pstate_driver) {
1281 		mutex_unlock(&intel_pstate_driver_lock);
1282 		return -EAGAIN;
1283 	}
1284 
1285 	cpu = all_cpu_data[0];
1286 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1287 
1288 	mutex_unlock(&intel_pstate_driver_lock);
1289 
1290 	return sprintf(buf, "%u\n", total);
1291 }
1292 
1293 static ssize_t show_no_turbo(struct kobject *kobj,
1294 			     struct kobj_attribute *attr, char *buf)
1295 {
1296 	ssize_t ret;
1297 
1298 	mutex_lock(&intel_pstate_driver_lock);
1299 
1300 	if (!intel_pstate_driver) {
1301 		mutex_unlock(&intel_pstate_driver_lock);
1302 		return -EAGAIN;
1303 	}
1304 
1305 	update_turbo_state();
1306 	if (global.turbo_disabled)
1307 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1308 	else
1309 		ret = sprintf(buf, "%u\n", global.no_turbo);
1310 
1311 	mutex_unlock(&intel_pstate_driver_lock);
1312 
1313 	return ret;
1314 }
1315 
1316 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1317 			      const char *buf, size_t count)
1318 {
1319 	unsigned int input;
1320 	int ret;
1321 
1322 	ret = sscanf(buf, "%u", &input);
1323 	if (ret != 1)
1324 		return -EINVAL;
1325 
1326 	mutex_lock(&intel_pstate_driver_lock);
1327 
1328 	if (!intel_pstate_driver) {
1329 		mutex_unlock(&intel_pstate_driver_lock);
1330 		return -EAGAIN;
1331 	}
1332 
1333 	mutex_lock(&intel_pstate_limits_lock);
1334 
1335 	update_turbo_state();
1336 	if (global.turbo_disabled) {
1337 		pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1338 		mutex_unlock(&intel_pstate_limits_lock);
1339 		mutex_unlock(&intel_pstate_driver_lock);
1340 		return -EPERM;
1341 	}
1342 
1343 	global.no_turbo = clamp_t(int, input, 0, 1);
1344 
1345 	if (global.no_turbo) {
1346 		struct cpudata *cpu = all_cpu_data[0];
1347 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1348 
1349 		/* Squash the global minimum into the permitted range. */
1350 		if (global.min_perf_pct > pct)
1351 			global.min_perf_pct = pct;
1352 	}
1353 
1354 	mutex_unlock(&intel_pstate_limits_lock);
1355 
1356 	intel_pstate_update_policies();
1357 
1358 	mutex_unlock(&intel_pstate_driver_lock);
1359 
1360 	return count;
1361 }
1362 
1363 static void update_qos_request(enum freq_qos_req_type type)
1364 {
1365 	struct freq_qos_request *req;
1366 	struct cpufreq_policy *policy;
1367 	int i;
1368 
1369 	for_each_possible_cpu(i) {
1370 		struct cpudata *cpu = all_cpu_data[i];
1371 		unsigned int freq, perf_pct;
1372 
1373 		policy = cpufreq_cpu_get(i);
1374 		if (!policy)
1375 			continue;
1376 
1377 		req = policy->driver_data;
1378 		cpufreq_cpu_put(policy);
1379 
1380 		if (!req)
1381 			continue;
1382 
1383 		if (hwp_active)
1384 			intel_pstate_get_hwp_cap(cpu);
1385 
1386 		if (type == FREQ_QOS_MIN) {
1387 			perf_pct = global.min_perf_pct;
1388 		} else {
1389 			req++;
1390 			perf_pct = global.max_perf_pct;
1391 		}
1392 
1393 		freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1394 
1395 		if (freq_qos_update_request(req, freq) < 0)
1396 			pr_warn("Failed to update freq constraint: CPU%d\n", i);
1397 	}
1398 }
1399 
1400 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1401 				  const char *buf, size_t count)
1402 {
1403 	unsigned int input;
1404 	int ret;
1405 
1406 	ret = sscanf(buf, "%u", &input);
1407 	if (ret != 1)
1408 		return -EINVAL;
1409 
1410 	mutex_lock(&intel_pstate_driver_lock);
1411 
1412 	if (!intel_pstate_driver) {
1413 		mutex_unlock(&intel_pstate_driver_lock);
1414 		return -EAGAIN;
1415 	}
1416 
1417 	mutex_lock(&intel_pstate_limits_lock);
1418 
1419 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1420 
1421 	mutex_unlock(&intel_pstate_limits_lock);
1422 
1423 	if (intel_pstate_driver == &intel_pstate)
1424 		intel_pstate_update_policies();
1425 	else
1426 		update_qos_request(FREQ_QOS_MAX);
1427 
1428 	mutex_unlock(&intel_pstate_driver_lock);
1429 
1430 	return count;
1431 }
1432 
1433 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1434 				  const char *buf, size_t count)
1435 {
1436 	unsigned int input;
1437 	int ret;
1438 
1439 	ret = sscanf(buf, "%u", &input);
1440 	if (ret != 1)
1441 		return -EINVAL;
1442 
1443 	mutex_lock(&intel_pstate_driver_lock);
1444 
1445 	if (!intel_pstate_driver) {
1446 		mutex_unlock(&intel_pstate_driver_lock);
1447 		return -EAGAIN;
1448 	}
1449 
1450 	mutex_lock(&intel_pstate_limits_lock);
1451 
1452 	global.min_perf_pct = clamp_t(int, input,
1453 				      min_perf_pct_min(), global.max_perf_pct);
1454 
1455 	mutex_unlock(&intel_pstate_limits_lock);
1456 
1457 	if (intel_pstate_driver == &intel_pstate)
1458 		intel_pstate_update_policies();
1459 	else
1460 		update_qos_request(FREQ_QOS_MIN);
1461 
1462 	mutex_unlock(&intel_pstate_driver_lock);
1463 
1464 	return count;
1465 }
1466 
1467 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1468 				struct kobj_attribute *attr, char *buf)
1469 {
1470 	return sprintf(buf, "%u\n", hwp_boost);
1471 }
1472 
1473 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1474 				       struct kobj_attribute *b,
1475 				       const char *buf, size_t count)
1476 {
1477 	unsigned int input;
1478 	int ret;
1479 
1480 	ret = kstrtouint(buf, 10, &input);
1481 	if (ret)
1482 		return ret;
1483 
1484 	mutex_lock(&intel_pstate_driver_lock);
1485 	hwp_boost = !!input;
1486 	intel_pstate_update_policies();
1487 	mutex_unlock(&intel_pstate_driver_lock);
1488 
1489 	return count;
1490 }
1491 
1492 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1493 				      char *buf)
1494 {
1495 	u64 power_ctl;
1496 	int enable;
1497 
1498 	rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1499 	enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1500 	return sprintf(buf, "%d\n", !enable);
1501 }
1502 
1503 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1504 				       const char *buf, size_t count)
1505 {
1506 	bool input;
1507 	int ret;
1508 
1509 	ret = kstrtobool(buf, &input);
1510 	if (ret)
1511 		return ret;
1512 
1513 	set_power_ctl_ee_state(input);
1514 
1515 	return count;
1516 }
1517 
1518 show_one(max_perf_pct, max_perf_pct);
1519 show_one(min_perf_pct, min_perf_pct);
1520 
1521 define_one_global_rw(status);
1522 define_one_global_rw(no_turbo);
1523 define_one_global_rw(max_perf_pct);
1524 define_one_global_rw(min_perf_pct);
1525 define_one_global_ro(turbo_pct);
1526 define_one_global_ro(num_pstates);
1527 define_one_global_rw(hwp_dynamic_boost);
1528 define_one_global_rw(energy_efficiency);
1529 
1530 static struct attribute *intel_pstate_attributes[] = {
1531 	&status.attr,
1532 	&no_turbo.attr,
1533 	NULL
1534 };
1535 
1536 static const struct attribute_group intel_pstate_attr_group = {
1537 	.attrs = intel_pstate_attributes,
1538 };
1539 
1540 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1541 
1542 static struct kobject *intel_pstate_kobject;
1543 
1544 static void __init intel_pstate_sysfs_expose_params(void)
1545 {
1546 	int rc;
1547 
1548 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1549 						&cpu_subsys.dev_root->kobj);
1550 	if (WARN_ON(!intel_pstate_kobject))
1551 		return;
1552 
1553 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1554 	if (WARN_ON(rc))
1555 		return;
1556 
1557 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1558 		rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1559 		WARN_ON(rc);
1560 
1561 		rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1562 		WARN_ON(rc);
1563 	}
1564 
1565 	/*
1566 	 * If per cpu limits are enforced there are no global limits, so
1567 	 * return without creating max/min_perf_pct attributes
1568 	 */
1569 	if (per_cpu_limits)
1570 		return;
1571 
1572 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1573 	WARN_ON(rc);
1574 
1575 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1576 	WARN_ON(rc);
1577 
1578 	if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1579 		rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1580 		WARN_ON(rc);
1581 	}
1582 }
1583 
1584 static void __init intel_pstate_sysfs_remove(void)
1585 {
1586 	if (!intel_pstate_kobject)
1587 		return;
1588 
1589 	sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1590 
1591 	if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1592 		sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1593 		sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1594 	}
1595 
1596 	if (!per_cpu_limits) {
1597 		sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1598 		sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1599 
1600 		if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1601 			sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1602 	}
1603 
1604 	kobject_put(intel_pstate_kobject);
1605 }
1606 
1607 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1608 {
1609 	int rc;
1610 
1611 	if (!hwp_active)
1612 		return;
1613 
1614 	rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1615 	WARN_ON_ONCE(rc);
1616 }
1617 
1618 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1619 {
1620 	if (!hwp_active)
1621 		return;
1622 
1623 	sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1624 }
1625 
1626 /************************** sysfs end ************************/
1627 
1628 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1629 {
1630 	/* First disable HWP notification interrupt as we don't process them */
1631 	if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1632 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1633 
1634 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1635 	if (cpudata->epp_default == -EINVAL)
1636 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1637 }
1638 
1639 static int atom_get_min_pstate(void)
1640 {
1641 	u64 value;
1642 
1643 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1644 	return (value >> 8) & 0x7F;
1645 }
1646 
1647 static int atom_get_max_pstate(void)
1648 {
1649 	u64 value;
1650 
1651 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1652 	return (value >> 16) & 0x7F;
1653 }
1654 
1655 static int atom_get_turbo_pstate(void)
1656 {
1657 	u64 value;
1658 
1659 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1660 	return value & 0x7F;
1661 }
1662 
1663 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1664 {
1665 	u64 val;
1666 	int32_t vid_fp;
1667 	u32 vid;
1668 
1669 	val = (u64)pstate << 8;
1670 	if (global.no_turbo && !global.turbo_disabled)
1671 		val |= (u64)1 << 32;
1672 
1673 	vid_fp = cpudata->vid.min + mul_fp(
1674 		int_tofp(pstate - cpudata->pstate.min_pstate),
1675 		cpudata->vid.ratio);
1676 
1677 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1678 	vid = ceiling_fp(vid_fp);
1679 
1680 	if (pstate > cpudata->pstate.max_pstate)
1681 		vid = cpudata->vid.turbo;
1682 
1683 	return val | vid;
1684 }
1685 
1686 static int silvermont_get_scaling(void)
1687 {
1688 	u64 value;
1689 	int i;
1690 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1691 	static int silvermont_freq_table[] = {
1692 		83300, 100000, 133300, 116700, 80000};
1693 
1694 	rdmsrl(MSR_FSB_FREQ, value);
1695 	i = value & 0x7;
1696 	WARN_ON(i > 4);
1697 
1698 	return silvermont_freq_table[i];
1699 }
1700 
1701 static int airmont_get_scaling(void)
1702 {
1703 	u64 value;
1704 	int i;
1705 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1706 	static int airmont_freq_table[] = {
1707 		83300, 100000, 133300, 116700, 80000,
1708 		93300, 90000, 88900, 87500};
1709 
1710 	rdmsrl(MSR_FSB_FREQ, value);
1711 	i = value & 0xF;
1712 	WARN_ON(i > 8);
1713 
1714 	return airmont_freq_table[i];
1715 }
1716 
1717 static void atom_get_vid(struct cpudata *cpudata)
1718 {
1719 	u64 value;
1720 
1721 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1722 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1723 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1724 	cpudata->vid.ratio = div_fp(
1725 		cpudata->vid.max - cpudata->vid.min,
1726 		int_tofp(cpudata->pstate.max_pstate -
1727 			cpudata->pstate.min_pstate));
1728 
1729 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1730 	cpudata->vid.turbo = value & 0x7f;
1731 }
1732 
1733 static int core_get_min_pstate(void)
1734 {
1735 	u64 value;
1736 
1737 	rdmsrl(MSR_PLATFORM_INFO, value);
1738 	return (value >> 40) & 0xFF;
1739 }
1740 
1741 static int core_get_max_pstate_physical(void)
1742 {
1743 	u64 value;
1744 
1745 	rdmsrl(MSR_PLATFORM_INFO, value);
1746 	return (value >> 8) & 0xFF;
1747 }
1748 
1749 static int core_get_tdp_ratio(u64 plat_info)
1750 {
1751 	/* Check how many TDP levels present */
1752 	if (plat_info & 0x600000000) {
1753 		u64 tdp_ctrl;
1754 		u64 tdp_ratio;
1755 		int tdp_msr;
1756 		int err;
1757 
1758 		/* Get the TDP level (0, 1, 2) to get ratios */
1759 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1760 		if (err)
1761 			return err;
1762 
1763 		/* TDP MSR are continuous starting at 0x648 */
1764 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1765 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1766 		if (err)
1767 			return err;
1768 
1769 		/* For level 1 and 2, bits[23:16] contain the ratio */
1770 		if (tdp_ctrl & 0x03)
1771 			tdp_ratio >>= 16;
1772 
1773 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1774 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1775 
1776 		return (int)tdp_ratio;
1777 	}
1778 
1779 	return -ENXIO;
1780 }
1781 
1782 static int core_get_max_pstate(void)
1783 {
1784 	u64 tar;
1785 	u64 plat_info;
1786 	int max_pstate;
1787 	int tdp_ratio;
1788 	int err;
1789 
1790 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1791 	max_pstate = (plat_info >> 8) & 0xFF;
1792 
1793 	tdp_ratio = core_get_tdp_ratio(plat_info);
1794 	if (tdp_ratio <= 0)
1795 		return max_pstate;
1796 
1797 	if (hwp_active) {
1798 		/* Turbo activation ratio is not used on HWP platforms */
1799 		return tdp_ratio;
1800 	}
1801 
1802 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1803 	if (!err) {
1804 		int tar_levels;
1805 
1806 		/* Do some sanity checking for safety */
1807 		tar_levels = tar & 0xff;
1808 		if (tdp_ratio - 1 == tar_levels) {
1809 			max_pstate = tar_levels;
1810 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1811 		}
1812 	}
1813 
1814 	return max_pstate;
1815 }
1816 
1817 static int core_get_turbo_pstate(void)
1818 {
1819 	u64 value;
1820 	int nont, ret;
1821 
1822 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1823 	nont = core_get_max_pstate();
1824 	ret = (value) & 255;
1825 	if (ret <= nont)
1826 		ret = nont;
1827 	return ret;
1828 }
1829 
1830 static inline int core_get_scaling(void)
1831 {
1832 	return 100000;
1833 }
1834 
1835 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1836 {
1837 	u64 val;
1838 
1839 	val = (u64)pstate << 8;
1840 	if (global.no_turbo && !global.turbo_disabled)
1841 		val |= (u64)1 << 32;
1842 
1843 	return val;
1844 }
1845 
1846 static int knl_get_aperf_mperf_shift(void)
1847 {
1848 	return 10;
1849 }
1850 
1851 static int knl_get_turbo_pstate(void)
1852 {
1853 	u64 value;
1854 	int nont, ret;
1855 
1856 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1857 	nont = core_get_max_pstate();
1858 	ret = (((value) >> 8) & 0xFF);
1859 	if (ret <= nont)
1860 		ret = nont;
1861 	return ret;
1862 }
1863 
1864 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1865 {
1866 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1867 	cpu->pstate.current_pstate = pstate;
1868 	/*
1869 	 * Generally, there is no guarantee that this code will always run on
1870 	 * the CPU being updated, so force the register update to run on the
1871 	 * right CPU.
1872 	 */
1873 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1874 		      pstate_funcs.get_val(cpu, pstate));
1875 }
1876 
1877 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1878 {
1879 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1880 }
1881 
1882 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1883 {
1884 	int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1885 
1886 	update_turbo_state();
1887 	intel_pstate_set_pstate(cpu, pstate);
1888 }
1889 
1890 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1891 {
1892 	bool hybrid_cpu = boot_cpu_has(X86_FEATURE_HYBRID_CPU);
1893 	int perf_ctl_max_phys = pstate_funcs.get_max_physical();
1894 	int perf_ctl_scaling = hybrid_cpu ? cpu_khz / perf_ctl_max_phys :
1895 					    pstate_funcs.get_scaling();
1896 
1897 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1898 	cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
1899 	cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
1900 
1901 	if (hwp_active && !hwp_mode_bdw) {
1902 		__intel_pstate_get_hwp_cap(cpu);
1903 
1904 		if (hybrid_cpu)
1905 			intel_pstate_hybrid_hwp_calibrate(cpu);
1906 		else
1907 			cpu->pstate.scaling = perf_ctl_scaling;
1908 	} else {
1909 		cpu->pstate.scaling = perf_ctl_scaling;
1910 		cpu->pstate.max_pstate = pstate_funcs.get_max();
1911 		cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1912 	}
1913 
1914 	if (cpu->pstate.scaling == perf_ctl_scaling) {
1915 		cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
1916 		cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
1917 		cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
1918 	}
1919 
1920 	if (pstate_funcs.get_aperf_mperf_shift)
1921 		cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1922 
1923 	if (pstate_funcs.get_vid)
1924 		pstate_funcs.get_vid(cpu);
1925 
1926 	intel_pstate_set_min_pstate(cpu);
1927 }
1928 
1929 /*
1930  * Long hold time will keep high perf limits for long time,
1931  * which negatively impacts perf/watt for some workloads,
1932  * like specpower. 3ms is based on experiements on some
1933  * workoads.
1934  */
1935 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1936 
1937 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1938 {
1939 	u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1940 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
1941 	u32 max_limit = (hwp_req & 0xff00) >> 8;
1942 	u32 min_limit = (hwp_req & 0xff);
1943 	u32 boost_level1;
1944 
1945 	/*
1946 	 * Cases to consider (User changes via sysfs or boot time):
1947 	 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1948 	 *	No boost, return.
1949 	 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1950 	 *     Should result in one level boost only for P0.
1951 	 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1952 	 *     Should result in two level boost:
1953 	 *         (min + p1)/2 and P1.
1954 	 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1955 	 *     Should result in three level boost:
1956 	 *        (min + p1)/2, P1 and P0.
1957 	 */
1958 
1959 	/* If max and min are equal or already at max, nothing to boost */
1960 	if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1961 		return;
1962 
1963 	if (!cpu->hwp_boost_min)
1964 		cpu->hwp_boost_min = min_limit;
1965 
1966 	/* level at half way mark between min and guranteed */
1967 	boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
1968 
1969 	if (cpu->hwp_boost_min < boost_level1)
1970 		cpu->hwp_boost_min = boost_level1;
1971 	else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
1972 		cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
1973 	else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
1974 		 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
1975 		cpu->hwp_boost_min = max_limit;
1976 	else
1977 		return;
1978 
1979 	hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1980 	wrmsrl(MSR_HWP_REQUEST, hwp_req);
1981 	cpu->last_update = cpu->sample.time;
1982 }
1983 
1984 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1985 {
1986 	if (cpu->hwp_boost_min) {
1987 		bool expired;
1988 
1989 		/* Check if we are idle for hold time to boost down */
1990 		expired = time_after64(cpu->sample.time, cpu->last_update +
1991 				       hwp_boost_hold_time_ns);
1992 		if (expired) {
1993 			wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1994 			cpu->hwp_boost_min = 0;
1995 		}
1996 	}
1997 	cpu->last_update = cpu->sample.time;
1998 }
1999 
2000 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2001 						      u64 time)
2002 {
2003 	cpu->sample.time = time;
2004 
2005 	if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2006 		bool do_io = false;
2007 
2008 		cpu->sched_flags = 0;
2009 		/*
2010 		 * Set iowait_boost flag and update time. Since IO WAIT flag
2011 		 * is set all the time, we can't just conclude that there is
2012 		 * some IO bound activity is scheduled on this CPU with just
2013 		 * one occurrence. If we receive at least two in two
2014 		 * consecutive ticks, then we treat as boost candidate.
2015 		 */
2016 		if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2017 			do_io = true;
2018 
2019 		cpu->last_io_update = time;
2020 
2021 		if (do_io)
2022 			intel_pstate_hwp_boost_up(cpu);
2023 
2024 	} else {
2025 		intel_pstate_hwp_boost_down(cpu);
2026 	}
2027 }
2028 
2029 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2030 						u64 time, unsigned int flags)
2031 {
2032 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2033 
2034 	cpu->sched_flags |= flags;
2035 
2036 	if (smp_processor_id() == cpu->cpu)
2037 		intel_pstate_update_util_hwp_local(cpu, time);
2038 }
2039 
2040 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2041 {
2042 	struct sample *sample = &cpu->sample;
2043 
2044 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2045 }
2046 
2047 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2048 {
2049 	u64 aperf, mperf;
2050 	unsigned long flags;
2051 	u64 tsc;
2052 
2053 	local_irq_save(flags);
2054 	rdmsrl(MSR_IA32_APERF, aperf);
2055 	rdmsrl(MSR_IA32_MPERF, mperf);
2056 	tsc = rdtsc();
2057 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2058 		local_irq_restore(flags);
2059 		return false;
2060 	}
2061 	local_irq_restore(flags);
2062 
2063 	cpu->last_sample_time = cpu->sample.time;
2064 	cpu->sample.time = time;
2065 	cpu->sample.aperf = aperf;
2066 	cpu->sample.mperf = mperf;
2067 	cpu->sample.tsc =  tsc;
2068 	cpu->sample.aperf -= cpu->prev_aperf;
2069 	cpu->sample.mperf -= cpu->prev_mperf;
2070 	cpu->sample.tsc -= cpu->prev_tsc;
2071 
2072 	cpu->prev_aperf = aperf;
2073 	cpu->prev_mperf = mperf;
2074 	cpu->prev_tsc = tsc;
2075 	/*
2076 	 * First time this function is invoked in a given cycle, all of the
2077 	 * previous sample data fields are equal to zero or stale and they must
2078 	 * be populated with meaningful numbers for things to work, so assume
2079 	 * that sample.time will always be reset before setting the utilization
2080 	 * update hook and make the caller skip the sample then.
2081 	 */
2082 	if (cpu->last_sample_time) {
2083 		intel_pstate_calc_avg_perf(cpu);
2084 		return true;
2085 	}
2086 	return false;
2087 }
2088 
2089 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2090 {
2091 	return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2092 }
2093 
2094 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2095 {
2096 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
2097 			  cpu->sample.core_avg_perf);
2098 }
2099 
2100 static inline int32_t get_target_pstate(struct cpudata *cpu)
2101 {
2102 	struct sample *sample = &cpu->sample;
2103 	int32_t busy_frac;
2104 	int target, avg_pstate;
2105 
2106 	busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2107 			   sample->tsc);
2108 
2109 	if (busy_frac < cpu->iowait_boost)
2110 		busy_frac = cpu->iowait_boost;
2111 
2112 	sample->busy_scaled = busy_frac * 100;
2113 
2114 	target = global.no_turbo || global.turbo_disabled ?
2115 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2116 	target += target >> 2;
2117 	target = mul_fp(target, busy_frac);
2118 	if (target < cpu->pstate.min_pstate)
2119 		target = cpu->pstate.min_pstate;
2120 
2121 	/*
2122 	 * If the average P-state during the previous cycle was higher than the
2123 	 * current target, add 50% of the difference to the target to reduce
2124 	 * possible performance oscillations and offset possible performance
2125 	 * loss related to moving the workload from one CPU to another within
2126 	 * a package/module.
2127 	 */
2128 	avg_pstate = get_avg_pstate(cpu);
2129 	if (avg_pstate > target)
2130 		target += (avg_pstate - target) >> 1;
2131 
2132 	return target;
2133 }
2134 
2135 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2136 {
2137 	int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2138 	int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2139 
2140 	return clamp_t(int, pstate, min_pstate, max_pstate);
2141 }
2142 
2143 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2144 {
2145 	if (pstate == cpu->pstate.current_pstate)
2146 		return;
2147 
2148 	cpu->pstate.current_pstate = pstate;
2149 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2150 }
2151 
2152 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2153 {
2154 	int from = cpu->pstate.current_pstate;
2155 	struct sample *sample;
2156 	int target_pstate;
2157 
2158 	update_turbo_state();
2159 
2160 	target_pstate = get_target_pstate(cpu);
2161 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2162 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2163 	intel_pstate_update_pstate(cpu, target_pstate);
2164 
2165 	sample = &cpu->sample;
2166 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2167 		fp_toint(sample->busy_scaled),
2168 		from,
2169 		cpu->pstate.current_pstate,
2170 		sample->mperf,
2171 		sample->aperf,
2172 		sample->tsc,
2173 		get_avg_frequency(cpu),
2174 		fp_toint(cpu->iowait_boost * 100));
2175 }
2176 
2177 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2178 				     unsigned int flags)
2179 {
2180 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2181 	u64 delta_ns;
2182 
2183 	/* Don't allow remote callbacks */
2184 	if (smp_processor_id() != cpu->cpu)
2185 		return;
2186 
2187 	delta_ns = time - cpu->last_update;
2188 	if (flags & SCHED_CPUFREQ_IOWAIT) {
2189 		/* Start over if the CPU may have been idle. */
2190 		if (delta_ns > TICK_NSEC) {
2191 			cpu->iowait_boost = ONE_EIGHTH_FP;
2192 		} else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2193 			cpu->iowait_boost <<= 1;
2194 			if (cpu->iowait_boost > int_tofp(1))
2195 				cpu->iowait_boost = int_tofp(1);
2196 		} else {
2197 			cpu->iowait_boost = ONE_EIGHTH_FP;
2198 		}
2199 	} else if (cpu->iowait_boost) {
2200 		/* Clear iowait_boost if the CPU may have been idle. */
2201 		if (delta_ns > TICK_NSEC)
2202 			cpu->iowait_boost = 0;
2203 		else
2204 			cpu->iowait_boost >>= 1;
2205 	}
2206 	cpu->last_update = time;
2207 	delta_ns = time - cpu->sample.time;
2208 	if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2209 		return;
2210 
2211 	if (intel_pstate_sample(cpu, time))
2212 		intel_pstate_adjust_pstate(cpu);
2213 }
2214 
2215 static struct pstate_funcs core_funcs = {
2216 	.get_max = core_get_max_pstate,
2217 	.get_max_physical = core_get_max_pstate_physical,
2218 	.get_min = core_get_min_pstate,
2219 	.get_turbo = core_get_turbo_pstate,
2220 	.get_scaling = core_get_scaling,
2221 	.get_val = core_get_val,
2222 };
2223 
2224 static const struct pstate_funcs silvermont_funcs = {
2225 	.get_max = atom_get_max_pstate,
2226 	.get_max_physical = atom_get_max_pstate,
2227 	.get_min = atom_get_min_pstate,
2228 	.get_turbo = atom_get_turbo_pstate,
2229 	.get_val = atom_get_val,
2230 	.get_scaling = silvermont_get_scaling,
2231 	.get_vid = atom_get_vid,
2232 };
2233 
2234 static const struct pstate_funcs airmont_funcs = {
2235 	.get_max = atom_get_max_pstate,
2236 	.get_max_physical = atom_get_max_pstate,
2237 	.get_min = atom_get_min_pstate,
2238 	.get_turbo = atom_get_turbo_pstate,
2239 	.get_val = atom_get_val,
2240 	.get_scaling = airmont_get_scaling,
2241 	.get_vid = atom_get_vid,
2242 };
2243 
2244 static const struct pstate_funcs knl_funcs = {
2245 	.get_max = core_get_max_pstate,
2246 	.get_max_physical = core_get_max_pstate_physical,
2247 	.get_min = core_get_min_pstate,
2248 	.get_turbo = knl_get_turbo_pstate,
2249 	.get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2250 	.get_scaling = core_get_scaling,
2251 	.get_val = core_get_val,
2252 };
2253 
2254 #define X86_MATCH(model, policy)					 \
2255 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2256 					   X86_FEATURE_APERFMPERF, &policy)
2257 
2258 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2259 	X86_MATCH(SANDYBRIDGE,		core_funcs),
2260 	X86_MATCH(SANDYBRIDGE_X,	core_funcs),
2261 	X86_MATCH(ATOM_SILVERMONT,	silvermont_funcs),
2262 	X86_MATCH(IVYBRIDGE,		core_funcs),
2263 	X86_MATCH(HASWELL,		core_funcs),
2264 	X86_MATCH(BROADWELL,		core_funcs),
2265 	X86_MATCH(IVYBRIDGE_X,		core_funcs),
2266 	X86_MATCH(HASWELL_X,		core_funcs),
2267 	X86_MATCH(HASWELL_L,		core_funcs),
2268 	X86_MATCH(HASWELL_G,		core_funcs),
2269 	X86_MATCH(BROADWELL_G,		core_funcs),
2270 	X86_MATCH(ATOM_AIRMONT,		airmont_funcs),
2271 	X86_MATCH(SKYLAKE_L,		core_funcs),
2272 	X86_MATCH(BROADWELL_X,		core_funcs),
2273 	X86_MATCH(SKYLAKE,		core_funcs),
2274 	X86_MATCH(BROADWELL_D,		core_funcs),
2275 	X86_MATCH(XEON_PHI_KNL,		knl_funcs),
2276 	X86_MATCH(XEON_PHI_KNM,		knl_funcs),
2277 	X86_MATCH(ATOM_GOLDMONT,	core_funcs),
2278 	X86_MATCH(ATOM_GOLDMONT_PLUS,	core_funcs),
2279 	X86_MATCH(SKYLAKE_X,		core_funcs),
2280 	X86_MATCH(COMETLAKE,		core_funcs),
2281 	X86_MATCH(ICELAKE_X,		core_funcs),
2282 	{}
2283 };
2284 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2285 
2286 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2287 	X86_MATCH(BROADWELL_D,		core_funcs),
2288 	X86_MATCH(BROADWELL_X,		core_funcs),
2289 	X86_MATCH(SKYLAKE_X,		core_funcs),
2290 	{}
2291 };
2292 
2293 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2294 	X86_MATCH(KABYLAKE,		core_funcs),
2295 	{}
2296 };
2297 
2298 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
2299 	X86_MATCH(SKYLAKE_X,		core_funcs),
2300 	X86_MATCH(SKYLAKE,		core_funcs),
2301 	{}
2302 };
2303 
2304 static int intel_pstate_init_cpu(unsigned int cpunum)
2305 {
2306 	struct cpudata *cpu;
2307 
2308 	cpu = all_cpu_data[cpunum];
2309 
2310 	if (!cpu) {
2311 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2312 		if (!cpu)
2313 			return -ENOMEM;
2314 
2315 		all_cpu_data[cpunum] = cpu;
2316 
2317 		cpu->cpu = cpunum;
2318 
2319 		cpu->epp_default = -EINVAL;
2320 
2321 		if (hwp_active) {
2322 			const struct x86_cpu_id *id;
2323 
2324 			intel_pstate_hwp_enable(cpu);
2325 
2326 			id = x86_match_cpu(intel_pstate_hwp_boost_ids);
2327 			if (id && intel_pstate_acpi_pm_profile_server())
2328 				hwp_boost = true;
2329 		}
2330 	} else if (hwp_active) {
2331 		/*
2332 		 * Re-enable HWP in case this happens after a resume from ACPI
2333 		 * S3 if the CPU was offline during the whole system/resume
2334 		 * cycle.
2335 		 */
2336 		intel_pstate_hwp_reenable(cpu);
2337 	}
2338 
2339 	cpu->epp_powersave = -EINVAL;
2340 	cpu->epp_policy = 0;
2341 
2342 	intel_pstate_get_cpu_pstates(cpu);
2343 
2344 	pr_debug("controlling: cpu %d\n", cpunum);
2345 
2346 	return 0;
2347 }
2348 
2349 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2350 {
2351 	struct cpudata *cpu = all_cpu_data[cpu_num];
2352 
2353 	if (hwp_active && !hwp_boost)
2354 		return;
2355 
2356 	if (cpu->update_util_set)
2357 		return;
2358 
2359 	/* Prevent intel_pstate_update_util() from using stale data. */
2360 	cpu->sample.time = 0;
2361 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2362 				     (hwp_active ?
2363 				      intel_pstate_update_util_hwp :
2364 				      intel_pstate_update_util));
2365 	cpu->update_util_set = true;
2366 }
2367 
2368 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2369 {
2370 	struct cpudata *cpu_data = all_cpu_data[cpu];
2371 
2372 	if (!cpu_data->update_util_set)
2373 		return;
2374 
2375 	cpufreq_remove_update_util_hook(cpu);
2376 	cpu_data->update_util_set = false;
2377 	synchronize_rcu();
2378 }
2379 
2380 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2381 {
2382 	return global.turbo_disabled || global.no_turbo ?
2383 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2384 }
2385 
2386 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2387 					    unsigned int policy_min,
2388 					    unsigned int policy_max)
2389 {
2390 	int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2391 	int32_t max_policy_perf, min_policy_perf;
2392 
2393 	max_policy_perf = policy_max / perf_ctl_scaling;
2394 	if (policy_max == policy_min) {
2395 		min_policy_perf = max_policy_perf;
2396 	} else {
2397 		min_policy_perf = policy_min / perf_ctl_scaling;
2398 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
2399 					  0, max_policy_perf);
2400 	}
2401 
2402 	/*
2403 	 * HWP needs some special consideration, because HWP_REQUEST uses
2404 	 * abstract values to represent performance rather than pure ratios.
2405 	 */
2406 	if (hwp_active) {
2407 		intel_pstate_get_hwp_cap(cpu);
2408 
2409 		if (cpu->pstate.scaling != perf_ctl_scaling) {
2410 			int scaling = cpu->pstate.scaling;
2411 			int freq;
2412 
2413 			freq = max_policy_perf * perf_ctl_scaling;
2414 			max_policy_perf = DIV_ROUND_UP(freq, scaling);
2415 			freq = min_policy_perf * perf_ctl_scaling;
2416 			min_policy_perf = DIV_ROUND_UP(freq, scaling);
2417 		}
2418 	}
2419 
2420 	pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2421 		 cpu->cpu, min_policy_perf, max_policy_perf);
2422 
2423 	/* Normalize user input to [min_perf, max_perf] */
2424 	if (per_cpu_limits) {
2425 		cpu->min_perf_ratio = min_policy_perf;
2426 		cpu->max_perf_ratio = max_policy_perf;
2427 	} else {
2428 		int turbo_max = cpu->pstate.turbo_pstate;
2429 		int32_t global_min, global_max;
2430 
2431 		/* Global limits are in percent of the maximum turbo P-state. */
2432 		global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2433 		global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2434 		global_min = clamp_t(int32_t, global_min, 0, global_max);
2435 
2436 		pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2437 			 global_min, global_max);
2438 
2439 		cpu->min_perf_ratio = max(min_policy_perf, global_min);
2440 		cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2441 		cpu->max_perf_ratio = min(max_policy_perf, global_max);
2442 		cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2443 
2444 		/* Make sure min_perf <= max_perf */
2445 		cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2446 					  cpu->max_perf_ratio);
2447 
2448 	}
2449 	pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2450 		 cpu->max_perf_ratio,
2451 		 cpu->min_perf_ratio);
2452 }
2453 
2454 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2455 {
2456 	struct cpudata *cpu;
2457 
2458 	if (!policy->cpuinfo.max_freq)
2459 		return -ENODEV;
2460 
2461 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2462 		 policy->cpuinfo.max_freq, policy->max);
2463 
2464 	cpu = all_cpu_data[policy->cpu];
2465 	cpu->policy = policy->policy;
2466 
2467 	mutex_lock(&intel_pstate_limits_lock);
2468 
2469 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2470 
2471 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2472 		/*
2473 		 * NOHZ_FULL CPUs need this as the governor callback may not
2474 		 * be invoked on them.
2475 		 */
2476 		intel_pstate_clear_update_util_hook(policy->cpu);
2477 		intel_pstate_max_within_limits(cpu);
2478 	} else {
2479 		intel_pstate_set_update_util_hook(policy->cpu);
2480 	}
2481 
2482 	if (hwp_active) {
2483 		/*
2484 		 * When hwp_boost was active before and dynamically it
2485 		 * was turned off, in that case we need to clear the
2486 		 * update util hook.
2487 		 */
2488 		if (!hwp_boost)
2489 			intel_pstate_clear_update_util_hook(policy->cpu);
2490 		intel_pstate_hwp_set(policy->cpu);
2491 	}
2492 
2493 	mutex_unlock(&intel_pstate_limits_lock);
2494 
2495 	return 0;
2496 }
2497 
2498 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2499 					   struct cpufreq_policy_data *policy)
2500 {
2501 	if (!hwp_active &&
2502 	    cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2503 	    policy->max < policy->cpuinfo.max_freq &&
2504 	    policy->max > cpu->pstate.max_freq) {
2505 		pr_debug("policy->max > max non turbo frequency\n");
2506 		policy->max = policy->cpuinfo.max_freq;
2507 	}
2508 }
2509 
2510 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2511 					   struct cpufreq_policy_data *policy)
2512 {
2513 	int max_freq;
2514 
2515 	update_turbo_state();
2516 	if (hwp_active) {
2517 		intel_pstate_get_hwp_cap(cpu);
2518 		max_freq = global.no_turbo || global.turbo_disabled ?
2519 				cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2520 	} else {
2521 		max_freq = intel_pstate_get_max_freq(cpu);
2522 	}
2523 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2524 
2525 	intel_pstate_adjust_policy_max(cpu, policy);
2526 }
2527 
2528 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2529 {
2530 	intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2531 
2532 	return 0;
2533 }
2534 
2535 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2536 {
2537 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2538 
2539 	pr_debug("CPU %d going offline\n", cpu->cpu);
2540 
2541 	if (cpu->suspended)
2542 		return 0;
2543 
2544 	/*
2545 	 * If the CPU is an SMT thread and it goes offline with the performance
2546 	 * settings different from the minimum, it will prevent its sibling
2547 	 * from getting to lower performance levels, so force the minimum
2548 	 * performance on CPU offline to prevent that from happening.
2549 	 */
2550 	if (hwp_active)
2551 		intel_pstate_hwp_offline(cpu);
2552 	else
2553 		intel_pstate_set_min_pstate(cpu);
2554 
2555 	intel_pstate_exit_perf_limits(policy);
2556 
2557 	return 0;
2558 }
2559 
2560 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2561 {
2562 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2563 
2564 	pr_debug("CPU %d going online\n", cpu->cpu);
2565 
2566 	intel_pstate_init_acpi_perf_limits(policy);
2567 
2568 	if (hwp_active) {
2569 		/*
2570 		 * Re-enable HWP and clear the "suspended" flag to let "resume"
2571 		 * know that it need not do that.
2572 		 */
2573 		intel_pstate_hwp_reenable(cpu);
2574 		cpu->suspended = false;
2575 	}
2576 
2577 	return 0;
2578 }
2579 
2580 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2581 {
2582 	intel_pstate_clear_update_util_hook(policy->cpu);
2583 
2584 	return intel_cpufreq_cpu_offline(policy);
2585 }
2586 
2587 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2588 {
2589 	pr_debug("CPU %d exiting\n", policy->cpu);
2590 
2591 	policy->fast_switch_possible = false;
2592 
2593 	return 0;
2594 }
2595 
2596 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2597 {
2598 	struct cpudata *cpu;
2599 	int rc;
2600 
2601 	rc = intel_pstate_init_cpu(policy->cpu);
2602 	if (rc)
2603 		return rc;
2604 
2605 	cpu = all_cpu_data[policy->cpu];
2606 
2607 	cpu->max_perf_ratio = 0xFF;
2608 	cpu->min_perf_ratio = 0;
2609 
2610 	/* cpuinfo and default policy values */
2611 	policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2612 	update_turbo_state();
2613 	global.turbo_disabled_mf = global.turbo_disabled;
2614 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2615 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2616 
2617 	policy->min = policy->cpuinfo.min_freq;
2618 	policy->max = policy->cpuinfo.max_freq;
2619 
2620 	intel_pstate_init_acpi_perf_limits(policy);
2621 
2622 	policy->fast_switch_possible = true;
2623 
2624 	return 0;
2625 }
2626 
2627 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2628 {
2629 	int ret = __intel_pstate_cpu_init(policy);
2630 
2631 	if (ret)
2632 		return ret;
2633 
2634 	/*
2635 	 * Set the policy to powersave to provide a valid fallback value in case
2636 	 * the default cpufreq governor is neither powersave nor performance.
2637 	 */
2638 	policy->policy = CPUFREQ_POLICY_POWERSAVE;
2639 
2640 	if (hwp_active) {
2641 		struct cpudata *cpu = all_cpu_data[policy->cpu];
2642 
2643 		cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2644 	}
2645 
2646 	return 0;
2647 }
2648 
2649 static struct cpufreq_driver intel_pstate = {
2650 	.flags		= CPUFREQ_CONST_LOOPS,
2651 	.verify		= intel_pstate_verify_policy,
2652 	.setpolicy	= intel_pstate_set_policy,
2653 	.suspend	= intel_pstate_suspend,
2654 	.resume		= intel_pstate_resume,
2655 	.init		= intel_pstate_cpu_init,
2656 	.exit		= intel_pstate_cpu_exit,
2657 	.offline	= intel_pstate_cpu_offline,
2658 	.online		= intel_pstate_cpu_online,
2659 	.update_limits	= intel_pstate_update_limits,
2660 	.name		= "intel_pstate",
2661 };
2662 
2663 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2664 {
2665 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2666 
2667 	intel_pstate_verify_cpu_policy(cpu, policy);
2668 	intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2669 
2670 	return 0;
2671 }
2672 
2673 /* Use of trace in passive mode:
2674  *
2675  * In passive mode the trace core_busy field (also known as the
2676  * performance field, and lablelled as such on the graphs; also known as
2677  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2678  * driver call was via the normal or fast switch path. Various graphs
2679  * output from the intel_pstate_tracer.py utility that include core_busy
2680  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2681  * so we use 10 to indicate the normal path through the driver, and
2682  * 90 to indicate the fast switch path through the driver.
2683  * The scaled_busy field is not used, and is set to 0.
2684  */
2685 
2686 #define	INTEL_PSTATE_TRACE_TARGET 10
2687 #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90
2688 
2689 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2690 {
2691 	struct sample *sample;
2692 
2693 	if (!trace_pstate_sample_enabled())
2694 		return;
2695 
2696 	if (!intel_pstate_sample(cpu, ktime_get()))
2697 		return;
2698 
2699 	sample = &cpu->sample;
2700 	trace_pstate_sample(trace_type,
2701 		0,
2702 		old_pstate,
2703 		cpu->pstate.current_pstate,
2704 		sample->mperf,
2705 		sample->aperf,
2706 		sample->tsc,
2707 		get_avg_frequency(cpu),
2708 		fp_toint(cpu->iowait_boost * 100));
2709 }
2710 
2711 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2712 				     u32 desired, bool fast_switch)
2713 {
2714 	u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2715 
2716 	value &= ~HWP_MIN_PERF(~0L);
2717 	value |= HWP_MIN_PERF(min);
2718 
2719 	value &= ~HWP_MAX_PERF(~0L);
2720 	value |= HWP_MAX_PERF(max);
2721 
2722 	value &= ~HWP_DESIRED_PERF(~0L);
2723 	value |= HWP_DESIRED_PERF(desired);
2724 
2725 	if (value == prev)
2726 		return;
2727 
2728 	WRITE_ONCE(cpu->hwp_req_cached, value);
2729 	if (fast_switch)
2730 		wrmsrl(MSR_HWP_REQUEST, value);
2731 	else
2732 		wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2733 }
2734 
2735 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2736 					  u32 target_pstate, bool fast_switch)
2737 {
2738 	if (fast_switch)
2739 		wrmsrl(MSR_IA32_PERF_CTL,
2740 		       pstate_funcs.get_val(cpu, target_pstate));
2741 	else
2742 		wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2743 			      pstate_funcs.get_val(cpu, target_pstate));
2744 }
2745 
2746 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2747 				       int target_pstate, bool fast_switch)
2748 {
2749 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2750 	int old_pstate = cpu->pstate.current_pstate;
2751 
2752 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2753 	if (hwp_active) {
2754 		int max_pstate = policy->strict_target ?
2755 					target_pstate : cpu->max_perf_ratio;
2756 
2757 		intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2758 					 fast_switch);
2759 	} else if (target_pstate != old_pstate) {
2760 		intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2761 	}
2762 
2763 	cpu->pstate.current_pstate = target_pstate;
2764 
2765 	intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2766 			    INTEL_PSTATE_TRACE_TARGET, old_pstate);
2767 
2768 	return target_pstate;
2769 }
2770 
2771 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2772 				unsigned int target_freq,
2773 				unsigned int relation)
2774 {
2775 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2776 	struct cpufreq_freqs freqs;
2777 	int target_pstate;
2778 
2779 	update_turbo_state();
2780 
2781 	freqs.old = policy->cur;
2782 	freqs.new = target_freq;
2783 
2784 	cpufreq_freq_transition_begin(policy, &freqs);
2785 
2786 	switch (relation) {
2787 	case CPUFREQ_RELATION_L:
2788 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2789 		break;
2790 	case CPUFREQ_RELATION_H:
2791 		target_pstate = freqs.new / cpu->pstate.scaling;
2792 		break;
2793 	default:
2794 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2795 		break;
2796 	}
2797 
2798 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2799 
2800 	freqs.new = target_pstate * cpu->pstate.scaling;
2801 
2802 	cpufreq_freq_transition_end(policy, &freqs, false);
2803 
2804 	return 0;
2805 }
2806 
2807 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2808 					      unsigned int target_freq)
2809 {
2810 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2811 	int target_pstate;
2812 
2813 	update_turbo_state();
2814 
2815 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2816 
2817 	target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2818 
2819 	return target_pstate * cpu->pstate.scaling;
2820 }
2821 
2822 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2823 				      unsigned long min_perf,
2824 				      unsigned long target_perf,
2825 				      unsigned long capacity)
2826 {
2827 	struct cpudata *cpu = all_cpu_data[cpunum];
2828 	u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2829 	int old_pstate = cpu->pstate.current_pstate;
2830 	int cap_pstate, min_pstate, max_pstate, target_pstate;
2831 
2832 	update_turbo_state();
2833 	cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2834 					     HWP_HIGHEST_PERF(hwp_cap);
2835 
2836 	/* Optimization: Avoid unnecessary divisions. */
2837 
2838 	target_pstate = cap_pstate;
2839 	if (target_perf < capacity)
2840 		target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2841 
2842 	min_pstate = cap_pstate;
2843 	if (min_perf < capacity)
2844 		min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2845 
2846 	if (min_pstate < cpu->pstate.min_pstate)
2847 		min_pstate = cpu->pstate.min_pstate;
2848 
2849 	if (min_pstate < cpu->min_perf_ratio)
2850 		min_pstate = cpu->min_perf_ratio;
2851 
2852 	max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2853 	if (max_pstate < min_pstate)
2854 		max_pstate = min_pstate;
2855 
2856 	target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2857 
2858 	intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2859 
2860 	cpu->pstate.current_pstate = target_pstate;
2861 	intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2862 }
2863 
2864 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2865 {
2866 	struct freq_qos_request *req;
2867 	struct cpudata *cpu;
2868 	struct device *dev;
2869 	int ret, freq;
2870 
2871 	dev = get_cpu_device(policy->cpu);
2872 	if (!dev)
2873 		return -ENODEV;
2874 
2875 	ret = __intel_pstate_cpu_init(policy);
2876 	if (ret)
2877 		return ret;
2878 
2879 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2880 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2881 	policy->cur = policy->cpuinfo.min_freq;
2882 
2883 	req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2884 	if (!req) {
2885 		ret = -ENOMEM;
2886 		goto pstate_exit;
2887 	}
2888 
2889 	cpu = all_cpu_data[policy->cpu];
2890 
2891 	if (hwp_active) {
2892 		u64 value;
2893 
2894 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
2895 
2896 		intel_pstate_get_hwp_cap(cpu);
2897 
2898 		rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
2899 		WRITE_ONCE(cpu->hwp_req_cached, value);
2900 
2901 		cpu->epp_cached = intel_pstate_get_epp(cpu, value);
2902 	} else {
2903 		policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2904 	}
2905 
2906 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
2907 
2908 	ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2909 				   freq);
2910 	if (ret < 0) {
2911 		dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2912 		goto free_req;
2913 	}
2914 
2915 	freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
2916 
2917 	ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2918 				   freq);
2919 	if (ret < 0) {
2920 		dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2921 		goto remove_min_req;
2922 	}
2923 
2924 	policy->driver_data = req;
2925 
2926 	return 0;
2927 
2928 remove_min_req:
2929 	freq_qos_remove_request(req);
2930 free_req:
2931 	kfree(req);
2932 pstate_exit:
2933 	intel_pstate_exit_perf_limits(policy);
2934 
2935 	return ret;
2936 }
2937 
2938 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2939 {
2940 	struct freq_qos_request *req;
2941 
2942 	req = policy->driver_data;
2943 
2944 	freq_qos_remove_request(req + 1);
2945 	freq_qos_remove_request(req);
2946 	kfree(req);
2947 
2948 	return intel_pstate_cpu_exit(policy);
2949 }
2950 
2951 static struct cpufreq_driver intel_cpufreq = {
2952 	.flags		= CPUFREQ_CONST_LOOPS,
2953 	.verify		= intel_cpufreq_verify_policy,
2954 	.target		= intel_cpufreq_target,
2955 	.fast_switch	= intel_cpufreq_fast_switch,
2956 	.init		= intel_cpufreq_cpu_init,
2957 	.exit		= intel_cpufreq_cpu_exit,
2958 	.offline	= intel_cpufreq_cpu_offline,
2959 	.online		= intel_pstate_cpu_online,
2960 	.suspend	= intel_pstate_suspend,
2961 	.resume		= intel_pstate_resume,
2962 	.update_limits	= intel_pstate_update_limits,
2963 	.name		= "intel_cpufreq",
2964 };
2965 
2966 static struct cpufreq_driver *default_driver;
2967 
2968 static void intel_pstate_driver_cleanup(void)
2969 {
2970 	unsigned int cpu;
2971 
2972 	get_online_cpus();
2973 	for_each_online_cpu(cpu) {
2974 		if (all_cpu_data[cpu]) {
2975 			if (intel_pstate_driver == &intel_pstate)
2976 				intel_pstate_clear_update_util_hook(cpu);
2977 
2978 			kfree(all_cpu_data[cpu]);
2979 			all_cpu_data[cpu] = NULL;
2980 		}
2981 	}
2982 	put_online_cpus();
2983 
2984 	intel_pstate_driver = NULL;
2985 }
2986 
2987 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2988 {
2989 	int ret;
2990 
2991 	if (driver == &intel_pstate)
2992 		intel_pstate_sysfs_expose_hwp_dynamic_boost();
2993 
2994 	memset(&global, 0, sizeof(global));
2995 	global.max_perf_pct = 100;
2996 
2997 	intel_pstate_driver = driver;
2998 	ret = cpufreq_register_driver(intel_pstate_driver);
2999 	if (ret) {
3000 		intel_pstate_driver_cleanup();
3001 		return ret;
3002 	}
3003 
3004 	global.min_perf_pct = min_perf_pct_min();
3005 
3006 	return 0;
3007 }
3008 
3009 static ssize_t intel_pstate_show_status(char *buf)
3010 {
3011 	if (!intel_pstate_driver)
3012 		return sprintf(buf, "off\n");
3013 
3014 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3015 					"active" : "passive");
3016 }
3017 
3018 static int intel_pstate_update_status(const char *buf, size_t size)
3019 {
3020 	if (size == 3 && !strncmp(buf, "off", size)) {
3021 		if (!intel_pstate_driver)
3022 			return -EINVAL;
3023 
3024 		if (hwp_active)
3025 			return -EBUSY;
3026 
3027 		cpufreq_unregister_driver(intel_pstate_driver);
3028 		intel_pstate_driver_cleanup();
3029 		return 0;
3030 	}
3031 
3032 	if (size == 6 && !strncmp(buf, "active", size)) {
3033 		if (intel_pstate_driver) {
3034 			if (intel_pstate_driver == &intel_pstate)
3035 				return 0;
3036 
3037 			cpufreq_unregister_driver(intel_pstate_driver);
3038 		}
3039 
3040 		return intel_pstate_register_driver(&intel_pstate);
3041 	}
3042 
3043 	if (size == 7 && !strncmp(buf, "passive", size)) {
3044 		if (intel_pstate_driver) {
3045 			if (intel_pstate_driver == &intel_cpufreq)
3046 				return 0;
3047 
3048 			cpufreq_unregister_driver(intel_pstate_driver);
3049 			intel_pstate_sysfs_hide_hwp_dynamic_boost();
3050 		}
3051 
3052 		return intel_pstate_register_driver(&intel_cpufreq);
3053 	}
3054 
3055 	return -EINVAL;
3056 }
3057 
3058 static int no_load __initdata;
3059 static int no_hwp __initdata;
3060 static int hwp_only __initdata;
3061 static unsigned int force_load __initdata;
3062 
3063 static int __init intel_pstate_msrs_not_valid(void)
3064 {
3065 	if (!pstate_funcs.get_max() ||
3066 	    !pstate_funcs.get_min() ||
3067 	    !pstate_funcs.get_turbo())
3068 		return -ENODEV;
3069 
3070 	return 0;
3071 }
3072 
3073 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3074 {
3075 	pstate_funcs.get_max   = funcs->get_max;
3076 	pstate_funcs.get_max_physical = funcs->get_max_physical;
3077 	pstate_funcs.get_min   = funcs->get_min;
3078 	pstate_funcs.get_turbo = funcs->get_turbo;
3079 	pstate_funcs.get_scaling = funcs->get_scaling;
3080 	pstate_funcs.get_val   = funcs->get_val;
3081 	pstate_funcs.get_vid   = funcs->get_vid;
3082 	pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3083 }
3084 
3085 #ifdef CONFIG_ACPI
3086 
3087 static bool __init intel_pstate_no_acpi_pss(void)
3088 {
3089 	int i;
3090 
3091 	for_each_possible_cpu(i) {
3092 		acpi_status status;
3093 		union acpi_object *pss;
3094 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3095 		struct acpi_processor *pr = per_cpu(processors, i);
3096 
3097 		if (!pr)
3098 			continue;
3099 
3100 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3101 		if (ACPI_FAILURE(status))
3102 			continue;
3103 
3104 		pss = buffer.pointer;
3105 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3106 			kfree(pss);
3107 			return false;
3108 		}
3109 
3110 		kfree(pss);
3111 	}
3112 
3113 	pr_debug("ACPI _PSS not found\n");
3114 	return true;
3115 }
3116 
3117 static bool __init intel_pstate_no_acpi_pcch(void)
3118 {
3119 	acpi_status status;
3120 	acpi_handle handle;
3121 
3122 	status = acpi_get_handle(NULL, "\\_SB", &handle);
3123 	if (ACPI_FAILURE(status))
3124 		goto not_found;
3125 
3126 	if (acpi_has_method(handle, "PCCH"))
3127 		return false;
3128 
3129 not_found:
3130 	pr_debug("ACPI PCCH not found\n");
3131 	return true;
3132 }
3133 
3134 static bool __init intel_pstate_has_acpi_ppc(void)
3135 {
3136 	int i;
3137 
3138 	for_each_possible_cpu(i) {
3139 		struct acpi_processor *pr = per_cpu(processors, i);
3140 
3141 		if (!pr)
3142 			continue;
3143 		if (acpi_has_method(pr->handle, "_PPC"))
3144 			return true;
3145 	}
3146 	pr_debug("ACPI _PPC not found\n");
3147 	return false;
3148 }
3149 
3150 enum {
3151 	PSS,
3152 	PPC,
3153 };
3154 
3155 /* Hardware vendor-specific info that has its own power management modes */
3156 static struct acpi_platform_list plat_info[] __initdata = {
3157 	{"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3158 	{"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3159 	{"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3160 	{"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3161 	{"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3162 	{"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3163 	{"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3164 	{"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3165 	{"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3166 	{"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3167 	{"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3168 	{"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3169 	{"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3170 	{"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3171 	{"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3172 	{ } /* End */
3173 };
3174 
3175 #define BITMASK_OOB	(BIT(8) | BIT(18))
3176 
3177 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3178 {
3179 	const struct x86_cpu_id *id;
3180 	u64 misc_pwr;
3181 	int idx;
3182 
3183 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3184 	if (id) {
3185 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3186 		if (misc_pwr & BITMASK_OOB) {
3187 			pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3188 			pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3189 			return true;
3190 		}
3191 	}
3192 
3193 	idx = acpi_match_platform_list(plat_info);
3194 	if (idx < 0)
3195 		return false;
3196 
3197 	switch (plat_info[idx].data) {
3198 	case PSS:
3199 		if (!intel_pstate_no_acpi_pss())
3200 			return false;
3201 
3202 		return intel_pstate_no_acpi_pcch();
3203 	case PPC:
3204 		return intel_pstate_has_acpi_ppc() && !force_load;
3205 	}
3206 
3207 	return false;
3208 }
3209 
3210 static void intel_pstate_request_control_from_smm(void)
3211 {
3212 	/*
3213 	 * It may be unsafe to request P-states control from SMM if _PPC support
3214 	 * has not been enabled.
3215 	 */
3216 	if (acpi_ppc)
3217 		acpi_processor_pstate_control();
3218 }
3219 #else /* CONFIG_ACPI not enabled */
3220 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3221 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3222 static inline void intel_pstate_request_control_from_smm(void) {}
3223 #endif /* CONFIG_ACPI */
3224 
3225 #define INTEL_PSTATE_HWP_BROADWELL	0x01
3226 
3227 #define X86_MATCH_HWP(model, hwp_mode)					\
3228 	X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3229 					   X86_FEATURE_HWP, hwp_mode)
3230 
3231 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3232 	X86_MATCH_HWP(BROADWELL_X,	INTEL_PSTATE_HWP_BROADWELL),
3233 	X86_MATCH_HWP(BROADWELL_D,	INTEL_PSTATE_HWP_BROADWELL),
3234 	X86_MATCH_HWP(ANY,		0),
3235 	{}
3236 };
3237 
3238 static bool intel_pstate_hwp_is_enabled(void)
3239 {
3240 	u64 value;
3241 
3242 	rdmsrl(MSR_PM_ENABLE, value);
3243 	return !!(value & 0x1);
3244 }
3245 
3246 static int __init intel_pstate_init(void)
3247 {
3248 	const struct x86_cpu_id *id;
3249 	int rc;
3250 
3251 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3252 		return -ENODEV;
3253 
3254 	if (no_load)
3255 		return -ENODEV;
3256 
3257 	id = x86_match_cpu(hwp_support_ids);
3258 	if (id) {
3259 		copy_cpu_funcs(&core_funcs);
3260 		/*
3261 		 * Avoid enabling HWP for processors without EPP support,
3262 		 * because that means incomplete HWP implementation which is a
3263 		 * corner case and supporting it is generally problematic.
3264 		 *
3265 		 * If HWP is enabled already, though, there is no choice but to
3266 		 * deal with it.
3267 		 */
3268 		if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) ||
3269 		    intel_pstate_hwp_is_enabled()) {
3270 			hwp_active++;
3271 			hwp_mode_bdw = id->driver_data;
3272 			intel_pstate.attr = hwp_cpufreq_attrs;
3273 			intel_cpufreq.attr = hwp_cpufreq_attrs;
3274 			intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3275 			intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3276 			if (!default_driver)
3277 				default_driver = &intel_pstate;
3278 
3279 			goto hwp_cpu_matched;
3280 		}
3281 	} else {
3282 		id = x86_match_cpu(intel_pstate_cpu_ids);
3283 		if (!id) {
3284 			pr_info("CPU model not supported\n");
3285 			return -ENODEV;
3286 		}
3287 
3288 		copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3289 	}
3290 
3291 	if (intel_pstate_msrs_not_valid()) {
3292 		pr_info("Invalid MSRs\n");
3293 		return -ENODEV;
3294 	}
3295 	/* Without HWP start in the passive mode. */
3296 	if (!default_driver)
3297 		default_driver = &intel_cpufreq;
3298 
3299 hwp_cpu_matched:
3300 	/*
3301 	 * The Intel pstate driver will be ignored if the platform
3302 	 * firmware has its own power management modes.
3303 	 */
3304 	if (intel_pstate_platform_pwr_mgmt_exists()) {
3305 		pr_info("P-states controlled by the platform\n");
3306 		return -ENODEV;
3307 	}
3308 
3309 	if (!hwp_active && hwp_only)
3310 		return -ENOTSUPP;
3311 
3312 	pr_info("Intel P-state driver initializing\n");
3313 
3314 	all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3315 	if (!all_cpu_data)
3316 		return -ENOMEM;
3317 
3318 	intel_pstate_request_control_from_smm();
3319 
3320 	intel_pstate_sysfs_expose_params();
3321 
3322 	mutex_lock(&intel_pstate_driver_lock);
3323 	rc = intel_pstate_register_driver(default_driver);
3324 	mutex_unlock(&intel_pstate_driver_lock);
3325 	if (rc) {
3326 		intel_pstate_sysfs_remove();
3327 		return rc;
3328 	}
3329 
3330 	if (hwp_active) {
3331 		const struct x86_cpu_id *id;
3332 
3333 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3334 		if (id) {
3335 			set_power_ctl_ee_state(false);
3336 			pr_info("Disabling energy efficiency optimization\n");
3337 		}
3338 
3339 		pr_info("HWP enabled\n");
3340 	} else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3341 		pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3342 	}
3343 
3344 	return 0;
3345 }
3346 device_initcall(intel_pstate_init);
3347 
3348 static int __init intel_pstate_setup(char *str)
3349 {
3350 	if (!str)
3351 		return -EINVAL;
3352 
3353 	if (!strcmp(str, "disable"))
3354 		no_load = 1;
3355 	else if (!strcmp(str, "active"))
3356 		default_driver = &intel_pstate;
3357 	else if (!strcmp(str, "passive"))
3358 		default_driver = &intel_cpufreq;
3359 
3360 	if (!strcmp(str, "no_hwp")) {
3361 		pr_info("HWP disabled\n");
3362 		no_hwp = 1;
3363 	}
3364 	if (!strcmp(str, "force"))
3365 		force_load = 1;
3366 	if (!strcmp(str, "hwp_only"))
3367 		hwp_only = 1;
3368 	if (!strcmp(str, "per_cpu_perf_limits"))
3369 		per_cpu_limits = true;
3370 
3371 #ifdef CONFIG_ACPI
3372 	if (!strcmp(str, "support_acpi_ppc"))
3373 		acpi_ppc = true;
3374 #endif
3375 
3376 	return 0;
3377 }
3378 early_param("intel_pstate", intel_pstate_setup);
3379 
3380 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3381 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3382 MODULE_LICENSE("GPL");
3383