1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched/cpufreq.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33 
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000
41 
42 #ifdef CONFIG_ACPI
43 #include <acpi/processor.h>
44 #include <acpi/cppc_acpi.h>
45 #endif
46 
47 #define FRAC_BITS 8
48 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
49 #define fp_toint(X) ((X) >> FRAC_BITS)
50 
51 #define EXT_BITS 6
52 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
53 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
54 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
55 
56 static inline int32_t mul_fp(int32_t x, int32_t y)
57 {
58 	return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
59 }
60 
61 static inline int32_t div_fp(s64 x, s64 y)
62 {
63 	return div64_s64((int64_t)x << FRAC_BITS, y);
64 }
65 
66 static inline int ceiling_fp(int32_t x)
67 {
68 	int mask, ret;
69 
70 	ret = fp_toint(x);
71 	mask = (1 << FRAC_BITS) - 1;
72 	if (x & mask)
73 		ret += 1;
74 	return ret;
75 }
76 
77 static inline int32_t percent_fp(int percent)
78 {
79 	return div_fp(percent, 100);
80 }
81 
82 static inline u64 mul_ext_fp(u64 x, u64 y)
83 {
84 	return (x * y) >> EXT_FRAC_BITS;
85 }
86 
87 static inline u64 div_ext_fp(u64 x, u64 y)
88 {
89 	return div64_u64(x << EXT_FRAC_BITS, y);
90 }
91 
92 static inline int32_t percent_ext_fp(int percent)
93 {
94 	return div_ext_fp(percent, 100);
95 }
96 
97 /**
98  * struct sample -	Store performance sample
99  * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average
100  *			performance during last sample period
101  * @busy_scaled:	Scaled busy value which is used to calculate next
102  *			P state. This can be different than core_avg_perf
103  *			to account for cpu idle period
104  * @aperf:		Difference of actual performance frequency clock count
105  *			read from APERF MSR between last and current sample
106  * @mperf:		Difference of maximum performance frequency clock count
107  *			read from MPERF MSR between last and current sample
108  * @tsc:		Difference of time stamp counter between last and
109  *			current sample
110  * @time:		Current time from scheduler
111  *
112  * This structure is used in the cpudata structure to store performance sample
113  * data for choosing next P State.
114  */
115 struct sample {
116 	int32_t core_avg_perf;
117 	int32_t busy_scaled;
118 	u64 aperf;
119 	u64 mperf;
120 	u64 tsc;
121 	u64 time;
122 };
123 
124 /**
125  * struct pstate_data - Store P state data
126  * @current_pstate:	Current requested P state
127  * @min_pstate:		Min P state possible for this platform
128  * @max_pstate:		Max P state possible for this platform
129  * @max_pstate_physical:This is physical Max P state for a processor
130  *			This can be higher than the max_pstate which can
131  *			be limited by platform thermal design power limits
132  * @scaling:		Scaling factor to  convert frequency to cpufreq
133  *			frequency units
134  * @turbo_pstate:	Max Turbo P state possible for this platform
135  * @max_freq:		@max_pstate frequency in cpufreq units
136  * @turbo_freq:		@turbo_pstate frequency in cpufreq units
137  *
138  * Stores the per cpu model P state limits and current P state.
139  */
140 struct pstate_data {
141 	int	current_pstate;
142 	int	min_pstate;
143 	int	max_pstate;
144 	int	max_pstate_physical;
145 	int	scaling;
146 	int	turbo_pstate;
147 	unsigned int max_freq;
148 	unsigned int turbo_freq;
149 };
150 
151 /**
152  * struct vid_data -	Stores voltage information data
153  * @min:		VID data for this platform corresponding to
154  *			the lowest P state
155  * @max:		VID data corresponding to the highest P State.
156  * @turbo:		VID data for turbo P state
157  * @ratio:		Ratio of (vid max - vid min) /
158  *			(max P state - Min P State)
159  *
160  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
161  * This data is used in Atom platforms, where in addition to target P state,
162  * the voltage data needs to be specified to select next P State.
163  */
164 struct vid_data {
165 	int min;
166 	int max;
167 	int turbo;
168 	int32_t ratio;
169 };
170 
171 /**
172  * struct _pid -	Stores PID data
173  * @setpoint:		Target set point for busyness or performance
174  * @integral:		Storage for accumulated error values
175  * @p_gain:		PID proportional gain
176  * @i_gain:		PID integral gain
177  * @d_gain:		PID derivative gain
178  * @deadband:		PID deadband
179  * @last_err:		Last error storage for integral part of PID calculation
180  *
181  * Stores PID coefficients and last error for PID controller.
182  */
183 struct _pid {
184 	int setpoint;
185 	int32_t integral;
186 	int32_t p_gain;
187 	int32_t i_gain;
188 	int32_t d_gain;
189 	int deadband;
190 	int32_t last_err;
191 };
192 
193 /**
194  * struct global_params - Global parameters, mostly tunable via sysfs.
195  * @no_turbo:		Whether or not to use turbo P-states.
196  * @turbo_disabled:	Whethet or not turbo P-states are available at all,
197  *			based on the MSR_IA32_MISC_ENABLE value and whether or
198  *			not the maximum reported turbo P-state is different from
199  *			the maximum reported non-turbo one.
200  * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo
201  *			P-state capacity.
202  * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo
203  *			P-state capacity.
204  */
205 struct global_params {
206 	bool no_turbo;
207 	bool turbo_disabled;
208 	int max_perf_pct;
209 	int min_perf_pct;
210 };
211 
212 /**
213  * struct cpudata -	Per CPU instance data storage
214  * @cpu:		CPU number for this instance data
215  * @policy:		CPUFreq policy value
216  * @update_util:	CPUFreq utility callback information
217  * @update_util_set:	CPUFreq utility callback is set
218  * @iowait_boost:	iowait-related boost fraction
219  * @last_update:	Time of the last update.
220  * @pstate:		Stores P state limits for this CPU
221  * @vid:		Stores VID limits for this CPU
222  * @pid:		Stores PID parameters for this CPU
223  * @last_sample_time:	Last Sample time
224  * @prev_aperf:		Last APERF value read from APERF MSR
225  * @prev_mperf:		Last MPERF value read from MPERF MSR
226  * @prev_tsc:		Last timestamp counter (TSC) value
227  * @prev_cummulative_iowait: IO Wait time difference from last and
228  *			current sample
229  * @sample:		Storage for storing last Sample data
230  * @min_perf:		Minimum capacity limit as a fraction of the maximum
231  *			turbo P-state capacity.
232  * @max_perf:		Maximum capacity limit as a fraction of the maximum
233  *			turbo P-state capacity.
234  * @acpi_perf_data:	Stores ACPI perf information read from _PSS
235  * @valid_pss_table:	Set to true for valid ACPI _PSS entries found
236  * @epp_powersave:	Last saved HWP energy performance preference
237  *			(EPP) or energy performance bias (EPB),
238  *			when policy switched to performance
239  * @epp_policy:		Last saved policy used to set EPP/EPB
240  * @epp_default:	Power on default HWP energy performance
241  *			preference/bias
242  * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline
243  *			operation
244  *
245  * This structure stores per CPU instance data for all CPUs.
246  */
247 struct cpudata {
248 	int cpu;
249 
250 	unsigned int policy;
251 	struct update_util_data update_util;
252 	bool   update_util_set;
253 
254 	struct pstate_data pstate;
255 	struct vid_data vid;
256 	struct _pid pid;
257 
258 	u64	last_update;
259 	u64	last_sample_time;
260 	u64	prev_aperf;
261 	u64	prev_mperf;
262 	u64	prev_tsc;
263 	u64	prev_cummulative_iowait;
264 	struct sample sample;
265 	int32_t	min_perf;
266 	int32_t	max_perf;
267 #ifdef CONFIG_ACPI
268 	struct acpi_processor_performance acpi_perf_data;
269 	bool valid_pss_table;
270 #endif
271 	unsigned int iowait_boost;
272 	s16 epp_powersave;
273 	s16 epp_policy;
274 	s16 epp_default;
275 	s16 epp_saved;
276 };
277 
278 static struct cpudata **all_cpu_data;
279 
280 /**
281  * struct pstate_adjust_policy - Stores static PID configuration data
282  * @sample_rate_ms:	PID calculation sample rate in ms
283  * @sample_rate_ns:	Sample rate calculation in ns
284  * @deadband:		PID deadband
285  * @setpoint:		PID Setpoint
286  * @p_gain_pct:		PID proportional gain
287  * @i_gain_pct:		PID integral gain
288  * @d_gain_pct:		PID derivative gain
289  *
290  * Stores per CPU model static PID configuration data.
291  */
292 struct pstate_adjust_policy {
293 	int sample_rate_ms;
294 	s64 sample_rate_ns;
295 	int deadband;
296 	int setpoint;
297 	int p_gain_pct;
298 	int d_gain_pct;
299 	int i_gain_pct;
300 };
301 
302 /**
303  * struct pstate_funcs - Per CPU model specific callbacks
304  * @get_max:		Callback to get maximum non turbo effective P state
305  * @get_max_physical:	Callback to get maximum non turbo physical P state
306  * @get_min:		Callback to get minimum P state
307  * @get_turbo:		Callback to get turbo P state
308  * @get_scaling:	Callback to get frequency scaling factor
309  * @get_val:		Callback to convert P state to actual MSR write value
310  * @get_vid:		Callback to get VID data for Atom platforms
311  * @get_target_pstate:	Callback to a function to calculate next P state to use
312  *
313  * Core and Atom CPU models have different way to get P State limits. This
314  * structure is used to store those callbacks.
315  */
316 struct pstate_funcs {
317 	int (*get_max)(void);
318 	int (*get_max_physical)(void);
319 	int (*get_min)(void);
320 	int (*get_turbo)(void);
321 	int (*get_scaling)(void);
322 	u64 (*get_val)(struct cpudata*, int pstate);
323 	void (*get_vid)(struct cpudata *);
324 	int32_t (*get_target_pstate)(struct cpudata *);
325 };
326 
327 /**
328  * struct cpu_defaults- Per CPU model default config data
329  * @funcs:		Callback function data
330  */
331 struct cpu_defaults {
332 	struct pstate_funcs funcs;
333 };
334 
335 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
336 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
337 
338 static struct pstate_funcs pstate_funcs __read_mostly;
339 static struct pstate_adjust_policy pid_params __read_mostly = {
340 	.sample_rate_ms = 10,
341 	.sample_rate_ns = 10 * NSEC_PER_MSEC,
342 	.deadband = 0,
343 	.setpoint = 97,
344 	.p_gain_pct = 20,
345 	.d_gain_pct = 0,
346 	.i_gain_pct = 0,
347 };
348 
349 static int hwp_active __read_mostly;
350 static bool per_cpu_limits __read_mostly;
351 
352 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
353 
354 #ifdef CONFIG_ACPI
355 static bool acpi_ppc;
356 #endif
357 
358 static struct global_params global;
359 
360 static DEFINE_MUTEX(intel_pstate_driver_lock);
361 static DEFINE_MUTEX(intel_pstate_limits_lock);
362 
363 #ifdef CONFIG_ACPI
364 
365 static bool intel_pstate_get_ppc_enable_status(void)
366 {
367 	if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
368 	    acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
369 		return true;
370 
371 	return acpi_ppc;
372 }
373 
374 #ifdef CONFIG_ACPI_CPPC_LIB
375 
376 /* The work item is needed to avoid CPU hotplug locking issues */
377 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
378 {
379 	sched_set_itmt_support();
380 }
381 
382 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
383 
384 static void intel_pstate_set_itmt_prio(int cpu)
385 {
386 	struct cppc_perf_caps cppc_perf;
387 	static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
388 	int ret;
389 
390 	ret = cppc_get_perf_caps(cpu, &cppc_perf);
391 	if (ret)
392 		return;
393 
394 	/*
395 	 * The priorities can be set regardless of whether or not
396 	 * sched_set_itmt_support(true) has been called and it is valid to
397 	 * update them at any time after it has been called.
398 	 */
399 	sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
400 
401 	if (max_highest_perf <= min_highest_perf) {
402 		if (cppc_perf.highest_perf > max_highest_perf)
403 			max_highest_perf = cppc_perf.highest_perf;
404 
405 		if (cppc_perf.highest_perf < min_highest_perf)
406 			min_highest_perf = cppc_perf.highest_perf;
407 
408 		if (max_highest_perf > min_highest_perf) {
409 			/*
410 			 * This code can be run during CPU online under the
411 			 * CPU hotplug locks, so sched_set_itmt_support()
412 			 * cannot be called from here.  Queue up a work item
413 			 * to invoke it.
414 			 */
415 			schedule_work(&sched_itmt_work);
416 		}
417 	}
418 }
419 #else
420 static void intel_pstate_set_itmt_prio(int cpu)
421 {
422 }
423 #endif
424 
425 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
426 {
427 	struct cpudata *cpu;
428 	int ret;
429 	int i;
430 
431 	if (hwp_active) {
432 		intel_pstate_set_itmt_prio(policy->cpu);
433 		return;
434 	}
435 
436 	if (!intel_pstate_get_ppc_enable_status())
437 		return;
438 
439 	cpu = all_cpu_data[policy->cpu];
440 
441 	ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
442 						  policy->cpu);
443 	if (ret)
444 		return;
445 
446 	/*
447 	 * Check if the control value in _PSS is for PERF_CTL MSR, which should
448 	 * guarantee that the states returned by it map to the states in our
449 	 * list directly.
450 	 */
451 	if (cpu->acpi_perf_data.control_register.space_id !=
452 						ACPI_ADR_SPACE_FIXED_HARDWARE)
453 		goto err;
454 
455 	/*
456 	 * If there is only one entry _PSS, simply ignore _PSS and continue as
457 	 * usual without taking _PSS into account
458 	 */
459 	if (cpu->acpi_perf_data.state_count < 2)
460 		goto err;
461 
462 	pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
463 	for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
464 		pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
465 			 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
466 			 (u32) cpu->acpi_perf_data.states[i].core_frequency,
467 			 (u32) cpu->acpi_perf_data.states[i].power,
468 			 (u32) cpu->acpi_perf_data.states[i].control);
469 	}
470 
471 	/*
472 	 * The _PSS table doesn't contain whole turbo frequency range.
473 	 * This just contains +1 MHZ above the max non turbo frequency,
474 	 * with control value corresponding to max turbo ratio. But
475 	 * when cpufreq set policy is called, it will call with this
476 	 * max frequency, which will cause a reduced performance as
477 	 * this driver uses real max turbo frequency as the max
478 	 * frequency. So correct this frequency in _PSS table to
479 	 * correct max turbo frequency based on the turbo state.
480 	 * Also need to convert to MHz as _PSS freq is in MHz.
481 	 */
482 	if (!global.turbo_disabled)
483 		cpu->acpi_perf_data.states[0].core_frequency =
484 					policy->cpuinfo.max_freq / 1000;
485 	cpu->valid_pss_table = true;
486 	pr_debug("_PPC limits will be enforced\n");
487 
488 	return;
489 
490  err:
491 	cpu->valid_pss_table = false;
492 	acpi_processor_unregister_performance(policy->cpu);
493 }
494 
495 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
496 {
497 	struct cpudata *cpu;
498 
499 	cpu = all_cpu_data[policy->cpu];
500 	if (!cpu->valid_pss_table)
501 		return;
502 
503 	acpi_processor_unregister_performance(policy->cpu);
504 }
505 #else
506 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
507 {
508 }
509 
510 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
511 {
512 }
513 #endif
514 
515 static signed int pid_calc(struct _pid *pid, int32_t busy)
516 {
517 	signed int result;
518 	int32_t pterm, dterm, fp_error;
519 	int32_t integral_limit;
520 
521 	fp_error = pid->setpoint - busy;
522 
523 	if (abs(fp_error) <= pid->deadband)
524 		return 0;
525 
526 	pterm = mul_fp(pid->p_gain, fp_error);
527 
528 	pid->integral += fp_error;
529 
530 	/*
531 	 * We limit the integral here so that it will never
532 	 * get higher than 30.  This prevents it from becoming
533 	 * too large an input over long periods of time and allows
534 	 * it to get factored out sooner.
535 	 *
536 	 * The value of 30 was chosen through experimentation.
537 	 */
538 	integral_limit = int_tofp(30);
539 	if (pid->integral > integral_limit)
540 		pid->integral = integral_limit;
541 	if (pid->integral < -integral_limit)
542 		pid->integral = -integral_limit;
543 
544 	dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
545 	pid->last_err = fp_error;
546 
547 	result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
548 	result = result + (1 << (FRAC_BITS-1));
549 	return (signed int)fp_toint(result);
550 }
551 
552 static inline void intel_pstate_pid_reset(struct cpudata *cpu)
553 {
554 	struct _pid *pid = &cpu->pid;
555 
556 	pid->p_gain = percent_fp(pid_params.p_gain_pct);
557 	pid->d_gain = percent_fp(pid_params.d_gain_pct);
558 	pid->i_gain = percent_fp(pid_params.i_gain_pct);
559 	pid->setpoint = int_tofp(pid_params.setpoint);
560 	pid->last_err  = pid->setpoint - int_tofp(100);
561 	pid->deadband  = int_tofp(pid_params.deadband);
562 	pid->integral  = 0;
563 }
564 
565 static inline void update_turbo_state(void)
566 {
567 	u64 misc_en;
568 	struct cpudata *cpu;
569 
570 	cpu = all_cpu_data[0];
571 	rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
572 	global.turbo_disabled =
573 		(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
574 		 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
575 }
576 
577 static int min_perf_pct_min(void)
578 {
579 	struct cpudata *cpu = all_cpu_data[0];
580 
581 	return DIV_ROUND_UP(cpu->pstate.min_pstate * 100,
582 			    cpu->pstate.turbo_pstate);
583 }
584 
585 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
586 {
587 	u64 epb;
588 	int ret;
589 
590 	if (!static_cpu_has(X86_FEATURE_EPB))
591 		return -ENXIO;
592 
593 	ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
594 	if (ret)
595 		return (s16)ret;
596 
597 	return (s16)(epb & 0x0f);
598 }
599 
600 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
601 {
602 	s16 epp;
603 
604 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
605 		/*
606 		 * When hwp_req_data is 0, means that caller didn't read
607 		 * MSR_HWP_REQUEST, so need to read and get EPP.
608 		 */
609 		if (!hwp_req_data) {
610 			epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
611 					    &hwp_req_data);
612 			if (epp)
613 				return epp;
614 		}
615 		epp = (hwp_req_data >> 24) & 0xff;
616 	} else {
617 		/* When there is no EPP present, HWP uses EPB settings */
618 		epp = intel_pstate_get_epb(cpu_data);
619 	}
620 
621 	return epp;
622 }
623 
624 static int intel_pstate_set_epb(int cpu, s16 pref)
625 {
626 	u64 epb;
627 	int ret;
628 
629 	if (!static_cpu_has(X86_FEATURE_EPB))
630 		return -ENXIO;
631 
632 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
633 	if (ret)
634 		return ret;
635 
636 	epb = (epb & ~0x0f) | pref;
637 	wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
638 
639 	return 0;
640 }
641 
642 /*
643  * EPP/EPB display strings corresponding to EPP index in the
644  * energy_perf_strings[]
645  *	index		String
646  *-------------------------------------
647  *	0		default
648  *	1		performance
649  *	2		balance_performance
650  *	3		balance_power
651  *	4		power
652  */
653 static const char * const energy_perf_strings[] = {
654 	"default",
655 	"performance",
656 	"balance_performance",
657 	"balance_power",
658 	"power",
659 	NULL
660 };
661 
662 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
663 {
664 	s16 epp;
665 	int index = -EINVAL;
666 
667 	epp = intel_pstate_get_epp(cpu_data, 0);
668 	if (epp < 0)
669 		return epp;
670 
671 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
672 		/*
673 		 * Range:
674 		 *	0x00-0x3F	:	Performance
675 		 *	0x40-0x7F	:	Balance performance
676 		 *	0x80-0xBF	:	Balance power
677 		 *	0xC0-0xFF	:	Power
678 		 * The EPP is a 8 bit value, but our ranges restrict the
679 		 * value which can be set. Here only using top two bits
680 		 * effectively.
681 		 */
682 		index = (epp >> 6) + 1;
683 	} else if (static_cpu_has(X86_FEATURE_EPB)) {
684 		/*
685 		 * Range:
686 		 *	0x00-0x03	:	Performance
687 		 *	0x04-0x07	:	Balance performance
688 		 *	0x08-0x0B	:	Balance power
689 		 *	0x0C-0x0F	:	Power
690 		 * The EPB is a 4 bit value, but our ranges restrict the
691 		 * value which can be set. Here only using top two bits
692 		 * effectively.
693 		 */
694 		index = (epp >> 2) + 1;
695 	}
696 
697 	return index;
698 }
699 
700 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
701 					      int pref_index)
702 {
703 	int epp = -EINVAL;
704 	int ret;
705 
706 	if (!pref_index)
707 		epp = cpu_data->epp_default;
708 
709 	mutex_lock(&intel_pstate_limits_lock);
710 
711 	if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
712 		u64 value;
713 
714 		ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
715 		if (ret)
716 			goto return_pref;
717 
718 		value &= ~GENMASK_ULL(31, 24);
719 
720 		/*
721 		 * If epp is not default, convert from index into
722 		 * energy_perf_strings to epp value, by shifting 6
723 		 * bits left to use only top two bits in epp.
724 		 * The resultant epp need to shifted by 24 bits to
725 		 * epp position in MSR_HWP_REQUEST.
726 		 */
727 		if (epp == -EINVAL)
728 			epp = (pref_index - 1) << 6;
729 
730 		value |= (u64)epp << 24;
731 		ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
732 	} else {
733 		if (epp == -EINVAL)
734 			epp = (pref_index - 1) << 2;
735 		ret = intel_pstate_set_epb(cpu_data->cpu, epp);
736 	}
737 return_pref:
738 	mutex_unlock(&intel_pstate_limits_lock);
739 
740 	return ret;
741 }
742 
743 static ssize_t show_energy_performance_available_preferences(
744 				struct cpufreq_policy *policy, char *buf)
745 {
746 	int i = 0;
747 	int ret = 0;
748 
749 	while (energy_perf_strings[i] != NULL)
750 		ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
751 
752 	ret += sprintf(&buf[ret], "\n");
753 
754 	return ret;
755 }
756 
757 cpufreq_freq_attr_ro(energy_performance_available_preferences);
758 
759 static ssize_t store_energy_performance_preference(
760 		struct cpufreq_policy *policy, const char *buf, size_t count)
761 {
762 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
763 	char str_preference[21];
764 	int ret, i = 0;
765 
766 	ret = sscanf(buf, "%20s", str_preference);
767 	if (ret != 1)
768 		return -EINVAL;
769 
770 	while (energy_perf_strings[i] != NULL) {
771 		if (!strcmp(str_preference, energy_perf_strings[i])) {
772 			intel_pstate_set_energy_pref_index(cpu_data, i);
773 			return count;
774 		}
775 		++i;
776 	}
777 
778 	return -EINVAL;
779 }
780 
781 static ssize_t show_energy_performance_preference(
782 				struct cpufreq_policy *policy, char *buf)
783 {
784 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
785 	int preference;
786 
787 	preference = intel_pstate_get_energy_pref_index(cpu_data);
788 	if (preference < 0)
789 		return preference;
790 
791 	return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
792 }
793 
794 cpufreq_freq_attr_rw(energy_performance_preference);
795 
796 static struct freq_attr *hwp_cpufreq_attrs[] = {
797 	&energy_performance_preference,
798 	&energy_performance_available_preferences,
799 	NULL,
800 };
801 
802 static void intel_pstate_hwp_set(struct cpufreq_policy *policy)
803 {
804 	int min, hw_min, max, hw_max, cpu;
805 	u64 value, cap;
806 
807 	for_each_cpu(cpu, policy->cpus) {
808 		struct cpudata *cpu_data = all_cpu_data[cpu];
809 		s16 epp;
810 
811 		rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
812 		hw_min = HWP_LOWEST_PERF(cap);
813 		if (global.no_turbo)
814 			hw_max = HWP_GUARANTEED_PERF(cap);
815 		else
816 			hw_max = HWP_HIGHEST_PERF(cap);
817 
818 		max = fp_ext_toint(hw_max * cpu_data->max_perf);
819 		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
820 			min = max;
821 		else
822 			min = fp_ext_toint(hw_max * cpu_data->min_perf);
823 
824 		rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
825 
826 		value &= ~HWP_MIN_PERF(~0L);
827 		value |= HWP_MIN_PERF(min);
828 
829 		value &= ~HWP_MAX_PERF(~0L);
830 		value |= HWP_MAX_PERF(max);
831 
832 		if (cpu_data->epp_policy == cpu_data->policy)
833 			goto skip_epp;
834 
835 		cpu_data->epp_policy = cpu_data->policy;
836 
837 		if (cpu_data->epp_saved >= 0) {
838 			epp = cpu_data->epp_saved;
839 			cpu_data->epp_saved = -EINVAL;
840 			goto update_epp;
841 		}
842 
843 		if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
844 			epp = intel_pstate_get_epp(cpu_data, value);
845 			cpu_data->epp_powersave = epp;
846 			/* If EPP read was failed, then don't try to write */
847 			if (epp < 0)
848 				goto skip_epp;
849 
850 
851 			epp = 0;
852 		} else {
853 			/* skip setting EPP, when saved value is invalid */
854 			if (cpu_data->epp_powersave < 0)
855 				goto skip_epp;
856 
857 			/*
858 			 * No need to restore EPP when it is not zero. This
859 			 * means:
860 			 *  - Policy is not changed
861 			 *  - user has manually changed
862 			 *  - Error reading EPB
863 			 */
864 			epp = intel_pstate_get_epp(cpu_data, value);
865 			if (epp)
866 				goto skip_epp;
867 
868 			epp = cpu_data->epp_powersave;
869 		}
870 update_epp:
871 		if (static_cpu_has(X86_FEATURE_HWP_EPP)) {
872 			value &= ~GENMASK_ULL(31, 24);
873 			value |= (u64)epp << 24;
874 		} else {
875 			intel_pstate_set_epb(cpu, epp);
876 		}
877 skip_epp:
878 		wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
879 	}
880 }
881 
882 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
883 {
884 	struct cpudata *cpu_data = all_cpu_data[policy->cpu];
885 
886 	if (!hwp_active)
887 		return 0;
888 
889 	cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
890 
891 	return 0;
892 }
893 
894 static int intel_pstate_resume(struct cpufreq_policy *policy)
895 {
896 	if (!hwp_active)
897 		return 0;
898 
899 	mutex_lock(&intel_pstate_limits_lock);
900 
901 	all_cpu_data[policy->cpu]->epp_policy = 0;
902 	intel_pstate_hwp_set(policy);
903 
904 	mutex_unlock(&intel_pstate_limits_lock);
905 
906 	return 0;
907 }
908 
909 static void intel_pstate_update_policies(void)
910 {
911 	int cpu;
912 
913 	for_each_possible_cpu(cpu)
914 		cpufreq_update_policy(cpu);
915 }
916 
917 /************************** debugfs begin ************************/
918 static int pid_param_set(void *data, u64 val)
919 {
920 	unsigned int cpu;
921 
922 	*(u32 *)data = val;
923 	pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
924 	for_each_possible_cpu(cpu)
925 		if (all_cpu_data[cpu])
926 			intel_pstate_pid_reset(all_cpu_data[cpu]);
927 
928 	return 0;
929 }
930 
931 static int pid_param_get(void *data, u64 *val)
932 {
933 	*val = *(u32 *)data;
934 	return 0;
935 }
936 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
937 
938 static struct dentry *debugfs_parent;
939 
940 struct pid_param {
941 	char *name;
942 	void *value;
943 	struct dentry *dentry;
944 };
945 
946 static struct pid_param pid_files[] = {
947 	{"sample_rate_ms", &pid_params.sample_rate_ms, },
948 	{"d_gain_pct", &pid_params.d_gain_pct, },
949 	{"i_gain_pct", &pid_params.i_gain_pct, },
950 	{"deadband", &pid_params.deadband, },
951 	{"setpoint", &pid_params.setpoint, },
952 	{"p_gain_pct", &pid_params.p_gain_pct, },
953 	{NULL, NULL, }
954 };
955 
956 static void intel_pstate_debug_expose_params(void)
957 {
958 	int i;
959 
960 	debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
961 	if (IS_ERR_OR_NULL(debugfs_parent))
962 		return;
963 
964 	for (i = 0; pid_files[i].name; i++) {
965 		struct dentry *dentry;
966 
967 		dentry = debugfs_create_file(pid_files[i].name, 0660,
968 					     debugfs_parent, pid_files[i].value,
969 					     &fops_pid_param);
970 		if (!IS_ERR(dentry))
971 			pid_files[i].dentry = dentry;
972 	}
973 }
974 
975 static void intel_pstate_debug_hide_params(void)
976 {
977 	int i;
978 
979 	if (IS_ERR_OR_NULL(debugfs_parent))
980 		return;
981 
982 	for (i = 0; pid_files[i].name; i++) {
983 		debugfs_remove(pid_files[i].dentry);
984 		pid_files[i].dentry = NULL;
985 	}
986 
987 	debugfs_remove(debugfs_parent);
988 	debugfs_parent = NULL;
989 }
990 
991 /************************** debugfs end ************************/
992 
993 /************************** sysfs begin ************************/
994 #define show_one(file_name, object)					\
995 	static ssize_t show_##file_name					\
996 	(struct kobject *kobj, struct attribute *attr, char *buf)	\
997 	{								\
998 		return sprintf(buf, "%u\n", global.object);		\
999 	}
1000 
1001 static ssize_t intel_pstate_show_status(char *buf);
1002 static int intel_pstate_update_status(const char *buf, size_t size);
1003 
1004 static ssize_t show_status(struct kobject *kobj,
1005 			   struct attribute *attr, char *buf)
1006 {
1007 	ssize_t ret;
1008 
1009 	mutex_lock(&intel_pstate_driver_lock);
1010 	ret = intel_pstate_show_status(buf);
1011 	mutex_unlock(&intel_pstate_driver_lock);
1012 
1013 	return ret;
1014 }
1015 
1016 static ssize_t store_status(struct kobject *a, struct attribute *b,
1017 			    const char *buf, size_t count)
1018 {
1019 	char *p = memchr(buf, '\n', count);
1020 	int ret;
1021 
1022 	mutex_lock(&intel_pstate_driver_lock);
1023 	ret = intel_pstate_update_status(buf, p ? p - buf : count);
1024 	mutex_unlock(&intel_pstate_driver_lock);
1025 
1026 	return ret < 0 ? ret : count;
1027 }
1028 
1029 static ssize_t show_turbo_pct(struct kobject *kobj,
1030 				struct attribute *attr, char *buf)
1031 {
1032 	struct cpudata *cpu;
1033 	int total, no_turbo, turbo_pct;
1034 	uint32_t turbo_fp;
1035 
1036 	mutex_lock(&intel_pstate_driver_lock);
1037 
1038 	if (!intel_pstate_driver) {
1039 		mutex_unlock(&intel_pstate_driver_lock);
1040 		return -EAGAIN;
1041 	}
1042 
1043 	cpu = all_cpu_data[0];
1044 
1045 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1046 	no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1047 	turbo_fp = div_fp(no_turbo, total);
1048 	turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1049 
1050 	mutex_unlock(&intel_pstate_driver_lock);
1051 
1052 	return sprintf(buf, "%u\n", turbo_pct);
1053 }
1054 
1055 static ssize_t show_num_pstates(struct kobject *kobj,
1056 				struct attribute *attr, char *buf)
1057 {
1058 	struct cpudata *cpu;
1059 	int total;
1060 
1061 	mutex_lock(&intel_pstate_driver_lock);
1062 
1063 	if (!intel_pstate_driver) {
1064 		mutex_unlock(&intel_pstate_driver_lock);
1065 		return -EAGAIN;
1066 	}
1067 
1068 	cpu = all_cpu_data[0];
1069 	total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1070 
1071 	mutex_unlock(&intel_pstate_driver_lock);
1072 
1073 	return sprintf(buf, "%u\n", total);
1074 }
1075 
1076 static ssize_t show_no_turbo(struct kobject *kobj,
1077 			     struct attribute *attr, char *buf)
1078 {
1079 	ssize_t ret;
1080 
1081 	mutex_lock(&intel_pstate_driver_lock);
1082 
1083 	if (!intel_pstate_driver) {
1084 		mutex_unlock(&intel_pstate_driver_lock);
1085 		return -EAGAIN;
1086 	}
1087 
1088 	update_turbo_state();
1089 	if (global.turbo_disabled)
1090 		ret = sprintf(buf, "%u\n", global.turbo_disabled);
1091 	else
1092 		ret = sprintf(buf, "%u\n", global.no_turbo);
1093 
1094 	mutex_unlock(&intel_pstate_driver_lock);
1095 
1096 	return ret;
1097 }
1098 
1099 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
1100 			      const char *buf, size_t count)
1101 {
1102 	unsigned int input;
1103 	int ret;
1104 
1105 	ret = sscanf(buf, "%u", &input);
1106 	if (ret != 1)
1107 		return -EINVAL;
1108 
1109 	mutex_lock(&intel_pstate_driver_lock);
1110 
1111 	if (!intel_pstate_driver) {
1112 		mutex_unlock(&intel_pstate_driver_lock);
1113 		return -EAGAIN;
1114 	}
1115 
1116 	mutex_lock(&intel_pstate_limits_lock);
1117 
1118 	update_turbo_state();
1119 	if (global.turbo_disabled) {
1120 		pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1121 		mutex_unlock(&intel_pstate_limits_lock);
1122 		mutex_unlock(&intel_pstate_driver_lock);
1123 		return -EPERM;
1124 	}
1125 
1126 	global.no_turbo = clamp_t(int, input, 0, 1);
1127 
1128 	if (global.no_turbo) {
1129 		struct cpudata *cpu = all_cpu_data[0];
1130 		int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1131 
1132 		/* Squash the global minimum into the permitted range. */
1133 		if (global.min_perf_pct > pct)
1134 			global.min_perf_pct = pct;
1135 	}
1136 
1137 	mutex_unlock(&intel_pstate_limits_lock);
1138 
1139 	intel_pstate_update_policies();
1140 
1141 	mutex_unlock(&intel_pstate_driver_lock);
1142 
1143 	return count;
1144 }
1145 
1146 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
1147 				  const char *buf, size_t count)
1148 {
1149 	unsigned int input;
1150 	int ret;
1151 
1152 	ret = sscanf(buf, "%u", &input);
1153 	if (ret != 1)
1154 		return -EINVAL;
1155 
1156 	mutex_lock(&intel_pstate_driver_lock);
1157 
1158 	if (!intel_pstate_driver) {
1159 		mutex_unlock(&intel_pstate_driver_lock);
1160 		return -EAGAIN;
1161 	}
1162 
1163 	mutex_lock(&intel_pstate_limits_lock);
1164 
1165 	global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1166 
1167 	mutex_unlock(&intel_pstate_limits_lock);
1168 
1169 	intel_pstate_update_policies();
1170 
1171 	mutex_unlock(&intel_pstate_driver_lock);
1172 
1173 	return count;
1174 }
1175 
1176 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
1177 				  const char *buf, size_t count)
1178 {
1179 	unsigned int input;
1180 	int ret;
1181 
1182 	ret = sscanf(buf, "%u", &input);
1183 	if (ret != 1)
1184 		return -EINVAL;
1185 
1186 	mutex_lock(&intel_pstate_driver_lock);
1187 
1188 	if (!intel_pstate_driver) {
1189 		mutex_unlock(&intel_pstate_driver_lock);
1190 		return -EAGAIN;
1191 	}
1192 
1193 	mutex_lock(&intel_pstate_limits_lock);
1194 
1195 	global.min_perf_pct = clamp_t(int, input,
1196 				      min_perf_pct_min(), global.max_perf_pct);
1197 
1198 	mutex_unlock(&intel_pstate_limits_lock);
1199 
1200 	intel_pstate_update_policies();
1201 
1202 	mutex_unlock(&intel_pstate_driver_lock);
1203 
1204 	return count;
1205 }
1206 
1207 show_one(max_perf_pct, max_perf_pct);
1208 show_one(min_perf_pct, min_perf_pct);
1209 
1210 define_one_global_rw(status);
1211 define_one_global_rw(no_turbo);
1212 define_one_global_rw(max_perf_pct);
1213 define_one_global_rw(min_perf_pct);
1214 define_one_global_ro(turbo_pct);
1215 define_one_global_ro(num_pstates);
1216 
1217 static struct attribute *intel_pstate_attributes[] = {
1218 	&status.attr,
1219 	&no_turbo.attr,
1220 	&turbo_pct.attr,
1221 	&num_pstates.attr,
1222 	NULL
1223 };
1224 
1225 static struct attribute_group intel_pstate_attr_group = {
1226 	.attrs = intel_pstate_attributes,
1227 };
1228 
1229 static void __init intel_pstate_sysfs_expose_params(void)
1230 {
1231 	struct kobject *intel_pstate_kobject;
1232 	int rc;
1233 
1234 	intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1235 						&cpu_subsys.dev_root->kobj);
1236 	if (WARN_ON(!intel_pstate_kobject))
1237 		return;
1238 
1239 	rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1240 	if (WARN_ON(rc))
1241 		return;
1242 
1243 	/*
1244 	 * If per cpu limits are enforced there are no global limits, so
1245 	 * return without creating max/min_perf_pct attributes
1246 	 */
1247 	if (per_cpu_limits)
1248 		return;
1249 
1250 	rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1251 	WARN_ON(rc);
1252 
1253 	rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1254 	WARN_ON(rc);
1255 
1256 }
1257 /************************** sysfs end ************************/
1258 
1259 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1260 {
1261 	/* First disable HWP notification interrupt as we don't process them */
1262 	if (static_cpu_has(X86_FEATURE_HWP_NOTIFY))
1263 		wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1264 
1265 	wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1266 	cpudata->epp_policy = 0;
1267 	if (cpudata->epp_default == -EINVAL)
1268 		cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1269 }
1270 
1271 #define MSR_IA32_POWER_CTL_BIT_EE	19
1272 
1273 /* Disable energy efficiency optimization */
1274 static void intel_pstate_disable_ee(int cpu)
1275 {
1276 	u64 power_ctl;
1277 	int ret;
1278 
1279 	ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1280 	if (ret)
1281 		return;
1282 
1283 	if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1284 		pr_info("Disabling energy efficiency optimization\n");
1285 		power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1286 		wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1287 	}
1288 }
1289 
1290 static int atom_get_min_pstate(void)
1291 {
1292 	u64 value;
1293 
1294 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1295 	return (value >> 8) & 0x7F;
1296 }
1297 
1298 static int atom_get_max_pstate(void)
1299 {
1300 	u64 value;
1301 
1302 	rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1303 	return (value >> 16) & 0x7F;
1304 }
1305 
1306 static int atom_get_turbo_pstate(void)
1307 {
1308 	u64 value;
1309 
1310 	rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1311 	return value & 0x7F;
1312 }
1313 
1314 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1315 {
1316 	u64 val;
1317 	int32_t vid_fp;
1318 	u32 vid;
1319 
1320 	val = (u64)pstate << 8;
1321 	if (global.no_turbo && !global.turbo_disabled)
1322 		val |= (u64)1 << 32;
1323 
1324 	vid_fp = cpudata->vid.min + mul_fp(
1325 		int_tofp(pstate - cpudata->pstate.min_pstate),
1326 		cpudata->vid.ratio);
1327 
1328 	vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1329 	vid = ceiling_fp(vid_fp);
1330 
1331 	if (pstate > cpudata->pstate.max_pstate)
1332 		vid = cpudata->vid.turbo;
1333 
1334 	return val | vid;
1335 }
1336 
1337 static int silvermont_get_scaling(void)
1338 {
1339 	u64 value;
1340 	int i;
1341 	/* Defined in Table 35-6 from SDM (Sept 2015) */
1342 	static int silvermont_freq_table[] = {
1343 		83300, 100000, 133300, 116700, 80000};
1344 
1345 	rdmsrl(MSR_FSB_FREQ, value);
1346 	i = value & 0x7;
1347 	WARN_ON(i > 4);
1348 
1349 	return silvermont_freq_table[i];
1350 }
1351 
1352 static int airmont_get_scaling(void)
1353 {
1354 	u64 value;
1355 	int i;
1356 	/* Defined in Table 35-10 from SDM (Sept 2015) */
1357 	static int airmont_freq_table[] = {
1358 		83300, 100000, 133300, 116700, 80000,
1359 		93300, 90000, 88900, 87500};
1360 
1361 	rdmsrl(MSR_FSB_FREQ, value);
1362 	i = value & 0xF;
1363 	WARN_ON(i > 8);
1364 
1365 	return airmont_freq_table[i];
1366 }
1367 
1368 static void atom_get_vid(struct cpudata *cpudata)
1369 {
1370 	u64 value;
1371 
1372 	rdmsrl(MSR_ATOM_CORE_VIDS, value);
1373 	cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1374 	cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1375 	cpudata->vid.ratio = div_fp(
1376 		cpudata->vid.max - cpudata->vid.min,
1377 		int_tofp(cpudata->pstate.max_pstate -
1378 			cpudata->pstate.min_pstate));
1379 
1380 	rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1381 	cpudata->vid.turbo = value & 0x7f;
1382 }
1383 
1384 static int core_get_min_pstate(void)
1385 {
1386 	u64 value;
1387 
1388 	rdmsrl(MSR_PLATFORM_INFO, value);
1389 	return (value >> 40) & 0xFF;
1390 }
1391 
1392 static int core_get_max_pstate_physical(void)
1393 {
1394 	u64 value;
1395 
1396 	rdmsrl(MSR_PLATFORM_INFO, value);
1397 	return (value >> 8) & 0xFF;
1398 }
1399 
1400 static int core_get_tdp_ratio(u64 plat_info)
1401 {
1402 	/* Check how many TDP levels present */
1403 	if (plat_info & 0x600000000) {
1404 		u64 tdp_ctrl;
1405 		u64 tdp_ratio;
1406 		int tdp_msr;
1407 		int err;
1408 
1409 		/* Get the TDP level (0, 1, 2) to get ratios */
1410 		err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1411 		if (err)
1412 			return err;
1413 
1414 		/* TDP MSR are continuous starting at 0x648 */
1415 		tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1416 		err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1417 		if (err)
1418 			return err;
1419 
1420 		/* For level 1 and 2, bits[23:16] contain the ratio */
1421 		if (tdp_ctrl & 0x03)
1422 			tdp_ratio >>= 16;
1423 
1424 		tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1425 		pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1426 
1427 		return (int)tdp_ratio;
1428 	}
1429 
1430 	return -ENXIO;
1431 }
1432 
1433 static int core_get_max_pstate(void)
1434 {
1435 	u64 tar;
1436 	u64 plat_info;
1437 	int max_pstate;
1438 	int tdp_ratio;
1439 	int err;
1440 
1441 	rdmsrl(MSR_PLATFORM_INFO, plat_info);
1442 	max_pstate = (plat_info >> 8) & 0xFF;
1443 
1444 	tdp_ratio = core_get_tdp_ratio(plat_info);
1445 	if (tdp_ratio <= 0)
1446 		return max_pstate;
1447 
1448 	if (hwp_active) {
1449 		/* Turbo activation ratio is not used on HWP platforms */
1450 		return tdp_ratio;
1451 	}
1452 
1453 	err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1454 	if (!err) {
1455 		int tar_levels;
1456 
1457 		/* Do some sanity checking for safety */
1458 		tar_levels = tar & 0xff;
1459 		if (tdp_ratio - 1 == tar_levels) {
1460 			max_pstate = tar_levels;
1461 			pr_debug("max_pstate=TAC %x\n", max_pstate);
1462 		}
1463 	}
1464 
1465 	return max_pstate;
1466 }
1467 
1468 static int core_get_turbo_pstate(void)
1469 {
1470 	u64 value;
1471 	int nont, ret;
1472 
1473 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1474 	nont = core_get_max_pstate();
1475 	ret = (value) & 255;
1476 	if (ret <= nont)
1477 		ret = nont;
1478 	return ret;
1479 }
1480 
1481 static inline int core_get_scaling(void)
1482 {
1483 	return 100000;
1484 }
1485 
1486 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1487 {
1488 	u64 val;
1489 
1490 	val = (u64)pstate << 8;
1491 	if (global.no_turbo && !global.turbo_disabled)
1492 		val |= (u64)1 << 32;
1493 
1494 	return val;
1495 }
1496 
1497 static int knl_get_turbo_pstate(void)
1498 {
1499 	u64 value;
1500 	int nont, ret;
1501 
1502 	rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1503 	nont = core_get_max_pstate();
1504 	ret = (((value) >> 8) & 0xFF);
1505 	if (ret <= nont)
1506 		ret = nont;
1507 	return ret;
1508 }
1509 
1510 static struct cpu_defaults core_params = {
1511 	.funcs = {
1512 		.get_max = core_get_max_pstate,
1513 		.get_max_physical = core_get_max_pstate_physical,
1514 		.get_min = core_get_min_pstate,
1515 		.get_turbo = core_get_turbo_pstate,
1516 		.get_scaling = core_get_scaling,
1517 		.get_val = core_get_val,
1518 		.get_target_pstate = get_target_pstate_use_performance,
1519 	},
1520 };
1521 
1522 static const struct cpu_defaults silvermont_params = {
1523 	.funcs = {
1524 		.get_max = atom_get_max_pstate,
1525 		.get_max_physical = atom_get_max_pstate,
1526 		.get_min = atom_get_min_pstate,
1527 		.get_turbo = atom_get_turbo_pstate,
1528 		.get_val = atom_get_val,
1529 		.get_scaling = silvermont_get_scaling,
1530 		.get_vid = atom_get_vid,
1531 		.get_target_pstate = get_target_pstate_use_cpu_load,
1532 	},
1533 };
1534 
1535 static const struct cpu_defaults airmont_params = {
1536 	.funcs = {
1537 		.get_max = atom_get_max_pstate,
1538 		.get_max_physical = atom_get_max_pstate,
1539 		.get_min = atom_get_min_pstate,
1540 		.get_turbo = atom_get_turbo_pstate,
1541 		.get_val = atom_get_val,
1542 		.get_scaling = airmont_get_scaling,
1543 		.get_vid = atom_get_vid,
1544 		.get_target_pstate = get_target_pstate_use_cpu_load,
1545 	},
1546 };
1547 
1548 static const struct cpu_defaults knl_params = {
1549 	.funcs = {
1550 		.get_max = core_get_max_pstate,
1551 		.get_max_physical = core_get_max_pstate_physical,
1552 		.get_min = core_get_min_pstate,
1553 		.get_turbo = knl_get_turbo_pstate,
1554 		.get_scaling = core_get_scaling,
1555 		.get_val = core_get_val,
1556 		.get_target_pstate = get_target_pstate_use_performance,
1557 	},
1558 };
1559 
1560 static const struct cpu_defaults bxt_params = {
1561 	.funcs = {
1562 		.get_max = core_get_max_pstate,
1563 		.get_max_physical = core_get_max_pstate_physical,
1564 		.get_min = core_get_min_pstate,
1565 		.get_turbo = core_get_turbo_pstate,
1566 		.get_scaling = core_get_scaling,
1567 		.get_val = core_get_val,
1568 		.get_target_pstate = get_target_pstate_use_cpu_load,
1569 	},
1570 };
1571 
1572 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1573 {
1574 	int max_perf = cpu->pstate.turbo_pstate;
1575 	int max_perf_adj;
1576 	int min_perf;
1577 
1578 	if (global.no_turbo || global.turbo_disabled)
1579 		max_perf = cpu->pstate.max_pstate;
1580 
1581 	/*
1582 	 * performance can be limited by user through sysfs, by cpufreq
1583 	 * policy, or by cpu specific default values determined through
1584 	 * experimentation.
1585 	 */
1586 	max_perf_adj = fp_ext_toint(max_perf * cpu->max_perf);
1587 	*max = clamp_t(int, max_perf_adj,
1588 			cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1589 
1590 	min_perf = fp_ext_toint(max_perf * cpu->min_perf);
1591 	*min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1592 }
1593 
1594 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1595 {
1596 	trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1597 	cpu->pstate.current_pstate = pstate;
1598 	/*
1599 	 * Generally, there is no guarantee that this code will always run on
1600 	 * the CPU being updated, so force the register update to run on the
1601 	 * right CPU.
1602 	 */
1603 	wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1604 		      pstate_funcs.get_val(cpu, pstate));
1605 }
1606 
1607 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1608 {
1609 	intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1610 }
1611 
1612 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1613 {
1614 	int min_pstate, max_pstate;
1615 
1616 	update_turbo_state();
1617 	intel_pstate_get_min_max(cpu, &min_pstate, &max_pstate);
1618 	intel_pstate_set_pstate(cpu, max_pstate);
1619 }
1620 
1621 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1622 {
1623 	cpu->pstate.min_pstate = pstate_funcs.get_min();
1624 	cpu->pstate.max_pstate = pstate_funcs.get_max();
1625 	cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1626 	cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1627 	cpu->pstate.scaling = pstate_funcs.get_scaling();
1628 	cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1629 	cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1630 
1631 	if (pstate_funcs.get_vid)
1632 		pstate_funcs.get_vid(cpu);
1633 
1634 	intel_pstate_set_min_pstate(cpu);
1635 }
1636 
1637 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1638 {
1639 	struct sample *sample = &cpu->sample;
1640 
1641 	sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1642 }
1643 
1644 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1645 {
1646 	u64 aperf, mperf;
1647 	unsigned long flags;
1648 	u64 tsc;
1649 
1650 	local_irq_save(flags);
1651 	rdmsrl(MSR_IA32_APERF, aperf);
1652 	rdmsrl(MSR_IA32_MPERF, mperf);
1653 	tsc = rdtsc();
1654 	if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1655 		local_irq_restore(flags);
1656 		return false;
1657 	}
1658 	local_irq_restore(flags);
1659 
1660 	cpu->last_sample_time = cpu->sample.time;
1661 	cpu->sample.time = time;
1662 	cpu->sample.aperf = aperf;
1663 	cpu->sample.mperf = mperf;
1664 	cpu->sample.tsc =  tsc;
1665 	cpu->sample.aperf -= cpu->prev_aperf;
1666 	cpu->sample.mperf -= cpu->prev_mperf;
1667 	cpu->sample.tsc -= cpu->prev_tsc;
1668 
1669 	cpu->prev_aperf = aperf;
1670 	cpu->prev_mperf = mperf;
1671 	cpu->prev_tsc = tsc;
1672 	/*
1673 	 * First time this function is invoked in a given cycle, all of the
1674 	 * previous sample data fields are equal to zero or stale and they must
1675 	 * be populated with meaningful numbers for things to work, so assume
1676 	 * that sample.time will always be reset before setting the utilization
1677 	 * update hook and make the caller skip the sample then.
1678 	 */
1679 	return !!cpu->last_sample_time;
1680 }
1681 
1682 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1683 {
1684 	return mul_ext_fp(cpu->sample.core_avg_perf,
1685 			  cpu->pstate.max_pstate_physical * cpu->pstate.scaling);
1686 }
1687 
1688 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1689 {
1690 	return mul_ext_fp(cpu->pstate.max_pstate_physical,
1691 			  cpu->sample.core_avg_perf);
1692 }
1693 
1694 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1695 {
1696 	struct sample *sample = &cpu->sample;
1697 	int32_t busy_frac, boost;
1698 	int target, avg_pstate;
1699 
1700 	busy_frac = div_fp(sample->mperf, sample->tsc);
1701 
1702 	boost = cpu->iowait_boost;
1703 	cpu->iowait_boost >>= 1;
1704 
1705 	if (busy_frac < boost)
1706 		busy_frac = boost;
1707 
1708 	sample->busy_scaled = busy_frac * 100;
1709 
1710 	target = global.no_turbo || global.turbo_disabled ?
1711 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1712 	target += target >> 2;
1713 	target = mul_fp(target, busy_frac);
1714 	if (target < cpu->pstate.min_pstate)
1715 		target = cpu->pstate.min_pstate;
1716 
1717 	/*
1718 	 * If the average P-state during the previous cycle was higher than the
1719 	 * current target, add 50% of the difference to the target to reduce
1720 	 * possible performance oscillations and offset possible performance
1721 	 * loss related to moving the workload from one CPU to another within
1722 	 * a package/module.
1723 	 */
1724 	avg_pstate = get_avg_pstate(cpu);
1725 	if (avg_pstate > target)
1726 		target += (avg_pstate - target) >> 1;
1727 
1728 	return target;
1729 }
1730 
1731 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1732 {
1733 	int32_t perf_scaled, max_pstate, current_pstate, sample_ratio;
1734 	u64 duration_ns;
1735 
1736 	/*
1737 	 * perf_scaled is the ratio of the average P-state during the last
1738 	 * sampling period to the P-state requested last time (in percent).
1739 	 *
1740 	 * That measures the system's response to the previous P-state
1741 	 * selection.
1742 	 */
1743 	max_pstate = cpu->pstate.max_pstate_physical;
1744 	current_pstate = cpu->pstate.current_pstate;
1745 	perf_scaled = mul_ext_fp(cpu->sample.core_avg_perf,
1746 			       div_fp(100 * max_pstate, current_pstate));
1747 
1748 	/*
1749 	 * Since our utilization update callback will not run unless we are
1750 	 * in C0, check if the actual elapsed time is significantly greater (3x)
1751 	 * than our sample interval.  If it is, then we were idle for a long
1752 	 * enough period of time to adjust our performance metric.
1753 	 */
1754 	duration_ns = cpu->sample.time - cpu->last_sample_time;
1755 	if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1756 		sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1757 		perf_scaled = mul_fp(perf_scaled, sample_ratio);
1758 	} else {
1759 		sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1760 		if (sample_ratio < int_tofp(1))
1761 			perf_scaled = 0;
1762 	}
1763 
1764 	cpu->sample.busy_scaled = perf_scaled;
1765 	return cpu->pstate.current_pstate - pid_calc(&cpu->pid, perf_scaled);
1766 }
1767 
1768 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1769 {
1770 	int max_perf, min_perf;
1771 
1772 	intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1773 	pstate = clamp_t(int, pstate, min_perf, max_perf);
1774 	return pstate;
1775 }
1776 
1777 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1778 {
1779 	if (pstate == cpu->pstate.current_pstate)
1780 		return;
1781 
1782 	cpu->pstate.current_pstate = pstate;
1783 	wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1784 }
1785 
1786 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1787 {
1788 	int from, target_pstate;
1789 	struct sample *sample;
1790 
1791 	from = cpu->pstate.current_pstate;
1792 
1793 	target_pstate = cpu->policy == CPUFREQ_POLICY_PERFORMANCE ?
1794 		cpu->pstate.turbo_pstate : pstate_funcs.get_target_pstate(cpu);
1795 
1796 	update_turbo_state();
1797 
1798 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1799 	trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1800 	intel_pstate_update_pstate(cpu, target_pstate);
1801 
1802 	sample = &cpu->sample;
1803 	trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1804 		fp_toint(sample->busy_scaled),
1805 		from,
1806 		cpu->pstate.current_pstate,
1807 		sample->mperf,
1808 		sample->aperf,
1809 		sample->tsc,
1810 		get_avg_frequency(cpu),
1811 		fp_toint(cpu->iowait_boost * 100));
1812 }
1813 
1814 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1815 				     unsigned int flags)
1816 {
1817 	struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1818 	u64 delta_ns;
1819 
1820 	if (pstate_funcs.get_target_pstate == get_target_pstate_use_cpu_load) {
1821 		if (flags & SCHED_CPUFREQ_IOWAIT) {
1822 			cpu->iowait_boost = int_tofp(1);
1823 		} else if (cpu->iowait_boost) {
1824 			/* Clear iowait_boost if the CPU may have been idle. */
1825 			delta_ns = time - cpu->last_update;
1826 			if (delta_ns > TICK_NSEC)
1827 				cpu->iowait_boost = 0;
1828 		}
1829 		cpu->last_update = time;
1830 	}
1831 
1832 	delta_ns = time - cpu->sample.time;
1833 	if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1834 		bool sample_taken = intel_pstate_sample(cpu, time);
1835 
1836 		if (sample_taken) {
1837 			intel_pstate_calc_avg_perf(cpu);
1838 			if (!hwp_active)
1839 				intel_pstate_adjust_busy_pstate(cpu);
1840 		}
1841 	}
1842 }
1843 
1844 #define ICPU(model, policy) \
1845 	{ X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1846 			(unsigned long)&policy }
1847 
1848 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1849 	ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_params),
1850 	ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_params),
1851 	ICPU(INTEL_FAM6_ATOM_SILVERMONT1,	silvermont_params),
1852 	ICPU(INTEL_FAM6_IVYBRIDGE,		core_params),
1853 	ICPU(INTEL_FAM6_HASWELL_CORE,		core_params),
1854 	ICPU(INTEL_FAM6_BROADWELL_CORE,		core_params),
1855 	ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_params),
1856 	ICPU(INTEL_FAM6_HASWELL_X,		core_params),
1857 	ICPU(INTEL_FAM6_HASWELL_ULT,		core_params),
1858 	ICPU(INTEL_FAM6_HASWELL_GT3E,		core_params),
1859 	ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_params),
1860 	ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_params),
1861 	ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_params),
1862 	ICPU(INTEL_FAM6_BROADWELL_X,		core_params),
1863 	ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_params),
1864 	ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_params),
1865 	ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_params),
1866 	ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_params),
1867 	ICPU(INTEL_FAM6_ATOM_GOLDMONT,		bxt_params),
1868 	{}
1869 };
1870 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1871 
1872 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1873 	ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_params),
1874 	ICPU(INTEL_FAM6_BROADWELL_X, core_params),
1875 	ICPU(INTEL_FAM6_SKYLAKE_X, core_params),
1876 	{}
1877 };
1878 
1879 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1880 	ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_params),
1881 	{}
1882 };
1883 
1884 static int intel_pstate_init_cpu(unsigned int cpunum)
1885 {
1886 	struct cpudata *cpu;
1887 
1888 	cpu = all_cpu_data[cpunum];
1889 
1890 	if (!cpu) {
1891 		cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1892 		if (!cpu)
1893 			return -ENOMEM;
1894 
1895 		all_cpu_data[cpunum] = cpu;
1896 
1897 		cpu->epp_default = -EINVAL;
1898 		cpu->epp_powersave = -EINVAL;
1899 		cpu->epp_saved = -EINVAL;
1900 	}
1901 
1902 	cpu = all_cpu_data[cpunum];
1903 
1904 	cpu->cpu = cpunum;
1905 
1906 	if (hwp_active) {
1907 		const struct x86_cpu_id *id;
1908 
1909 		id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1910 		if (id)
1911 			intel_pstate_disable_ee(cpunum);
1912 
1913 		intel_pstate_hwp_enable(cpu);
1914 	} else if (pstate_funcs.get_target_pstate == get_target_pstate_use_performance) {
1915 		intel_pstate_pid_reset(cpu);
1916 	}
1917 
1918 	intel_pstate_get_cpu_pstates(cpu);
1919 
1920 	pr_debug("controlling: cpu %d\n", cpunum);
1921 
1922 	return 0;
1923 }
1924 
1925 static unsigned int intel_pstate_get(unsigned int cpu_num)
1926 {
1927 	struct cpudata *cpu = all_cpu_data[cpu_num];
1928 
1929 	return cpu ? get_avg_frequency(cpu) : 0;
1930 }
1931 
1932 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1933 {
1934 	struct cpudata *cpu = all_cpu_data[cpu_num];
1935 
1936 	if (cpu->update_util_set)
1937 		return;
1938 
1939 	/* Prevent intel_pstate_update_util() from using stale data. */
1940 	cpu->sample.time = 0;
1941 	cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1942 				     intel_pstate_update_util);
1943 	cpu->update_util_set = true;
1944 }
1945 
1946 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1947 {
1948 	struct cpudata *cpu_data = all_cpu_data[cpu];
1949 
1950 	if (!cpu_data->update_util_set)
1951 		return;
1952 
1953 	cpufreq_remove_update_util_hook(cpu);
1954 	cpu_data->update_util_set = false;
1955 	synchronize_sched();
1956 }
1957 
1958 static int intel_pstate_get_max_freq(struct cpudata *cpu)
1959 {
1960 	return global.turbo_disabled || global.no_turbo ?
1961 			cpu->pstate.max_freq : cpu->pstate.turbo_freq;
1962 }
1963 
1964 static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy,
1965 					    struct cpudata *cpu)
1966 {
1967 	int max_freq = intel_pstate_get_max_freq(cpu);
1968 	int32_t max_policy_perf, min_policy_perf;
1969 
1970 	max_policy_perf = div_ext_fp(policy->max, max_freq);
1971 	max_policy_perf = clamp_t(int32_t, max_policy_perf, 0, int_ext_tofp(1));
1972 	if (policy->max == policy->min) {
1973 		min_policy_perf = max_policy_perf;
1974 	} else {
1975 		min_policy_perf = div_ext_fp(policy->min, max_freq);
1976 		min_policy_perf = clamp_t(int32_t, min_policy_perf,
1977 					  0, max_policy_perf);
1978 	}
1979 
1980 	/* Normalize user input to [min_perf, max_perf] */
1981 	if (per_cpu_limits) {
1982 		cpu->min_perf = min_policy_perf;
1983 		cpu->max_perf = max_policy_perf;
1984 	} else {
1985 		int32_t global_min, global_max;
1986 
1987 		/* Global limits are in percent of the maximum turbo P-state. */
1988 		global_max = percent_ext_fp(global.max_perf_pct);
1989 		global_min = percent_ext_fp(global.min_perf_pct);
1990 		if (max_freq != cpu->pstate.turbo_freq) {
1991 			int32_t turbo_factor;
1992 
1993 			turbo_factor = div_ext_fp(cpu->pstate.turbo_pstate,
1994 						  cpu->pstate.max_pstate);
1995 			global_min = mul_ext_fp(global_min, turbo_factor);
1996 			global_max = mul_ext_fp(global_max, turbo_factor);
1997 		}
1998 		global_min = clamp_t(int32_t, global_min, 0, global_max);
1999 
2000 		cpu->min_perf = max(min_policy_perf, global_min);
2001 		cpu->min_perf = min(cpu->min_perf, max_policy_perf);
2002 		cpu->max_perf = min(max_policy_perf, global_max);
2003 		cpu->max_perf = max(min_policy_perf, cpu->max_perf);
2004 
2005 		/* Make sure min_perf <= max_perf */
2006 		cpu->min_perf = min(cpu->min_perf, cpu->max_perf);
2007 	}
2008 
2009 	cpu->max_perf = round_up(cpu->max_perf, EXT_FRAC_BITS);
2010 	cpu->min_perf = round_up(cpu->min_perf, EXT_FRAC_BITS);
2011 
2012 	pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy->cpu,
2013 		 fp_ext_toint(cpu->max_perf * 100),
2014 		 fp_ext_toint(cpu->min_perf * 100));
2015 }
2016 
2017 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2018 {
2019 	struct cpudata *cpu;
2020 
2021 	if (!policy->cpuinfo.max_freq)
2022 		return -ENODEV;
2023 
2024 	pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2025 		 policy->cpuinfo.max_freq, policy->max);
2026 
2027 	cpu = all_cpu_data[policy->cpu];
2028 	cpu->policy = policy->policy;
2029 
2030 	mutex_lock(&intel_pstate_limits_lock);
2031 
2032 	intel_pstate_update_perf_limits(policy, cpu);
2033 
2034 	if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2035 		/*
2036 		 * NOHZ_FULL CPUs need this as the governor callback may not
2037 		 * be invoked on them.
2038 		 */
2039 		intel_pstate_clear_update_util_hook(policy->cpu);
2040 		intel_pstate_max_within_limits(cpu);
2041 	}
2042 
2043 	intel_pstate_set_update_util_hook(policy->cpu);
2044 
2045 	if (hwp_active)
2046 		intel_pstate_hwp_set(policy);
2047 
2048 	mutex_unlock(&intel_pstate_limits_lock);
2049 
2050 	return 0;
2051 }
2052 
2053 static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy,
2054 					 struct cpudata *cpu)
2055 {
2056 	if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2057 	    policy->max < policy->cpuinfo.max_freq &&
2058 	    policy->max > cpu->pstate.max_freq) {
2059 		pr_debug("policy->max > max non turbo frequency\n");
2060 		policy->max = policy->cpuinfo.max_freq;
2061 	}
2062 }
2063 
2064 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
2065 {
2066 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2067 
2068 	update_turbo_state();
2069 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2070 				     intel_pstate_get_max_freq(cpu));
2071 
2072 	if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
2073 	    policy->policy != CPUFREQ_POLICY_PERFORMANCE)
2074 		return -EINVAL;
2075 
2076 	intel_pstate_adjust_policy_max(policy, cpu);
2077 
2078 	return 0;
2079 }
2080 
2081 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2082 {
2083 	intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2084 }
2085 
2086 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2087 {
2088 	pr_debug("CPU %d exiting\n", policy->cpu);
2089 
2090 	intel_pstate_clear_update_util_hook(policy->cpu);
2091 	if (hwp_active)
2092 		intel_pstate_hwp_save_state(policy);
2093 	else
2094 		intel_cpufreq_stop_cpu(policy);
2095 }
2096 
2097 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2098 {
2099 	intel_pstate_exit_perf_limits(policy);
2100 
2101 	policy->fast_switch_possible = false;
2102 
2103 	return 0;
2104 }
2105 
2106 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2107 {
2108 	struct cpudata *cpu;
2109 	int rc;
2110 
2111 	rc = intel_pstate_init_cpu(policy->cpu);
2112 	if (rc)
2113 		return rc;
2114 
2115 	cpu = all_cpu_data[policy->cpu];
2116 
2117 	cpu->max_perf = int_ext_tofp(1);
2118 	cpu->min_perf = 0;
2119 
2120 	policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2121 	policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2122 
2123 	/* cpuinfo and default policy values */
2124 	policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2125 	update_turbo_state();
2126 	policy->cpuinfo.max_freq = global.turbo_disabled ?
2127 			cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2128 	policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2129 
2130 	intel_pstate_init_acpi_perf_limits(policy);
2131 	cpumask_set_cpu(policy->cpu, policy->cpus);
2132 
2133 	policy->fast_switch_possible = true;
2134 
2135 	return 0;
2136 }
2137 
2138 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2139 {
2140 	int ret = __intel_pstate_cpu_init(policy);
2141 
2142 	if (ret)
2143 		return ret;
2144 
2145 	policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
2146 	if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2147 		policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2148 	else
2149 		policy->policy = CPUFREQ_POLICY_POWERSAVE;
2150 
2151 	return 0;
2152 }
2153 
2154 static struct cpufreq_driver intel_pstate = {
2155 	.flags		= CPUFREQ_CONST_LOOPS,
2156 	.verify		= intel_pstate_verify_policy,
2157 	.setpolicy	= intel_pstate_set_policy,
2158 	.suspend	= intel_pstate_hwp_save_state,
2159 	.resume		= intel_pstate_resume,
2160 	.get		= intel_pstate_get,
2161 	.init		= intel_pstate_cpu_init,
2162 	.exit		= intel_pstate_cpu_exit,
2163 	.stop_cpu	= intel_pstate_stop_cpu,
2164 	.name		= "intel_pstate",
2165 };
2166 
2167 static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy)
2168 {
2169 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2170 
2171 	update_turbo_state();
2172 	cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2173 				     intel_pstate_get_max_freq(cpu));
2174 
2175 	intel_pstate_adjust_policy_max(policy, cpu);
2176 
2177 	intel_pstate_update_perf_limits(policy, cpu);
2178 
2179 	return 0;
2180 }
2181 
2182 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2183 				unsigned int target_freq,
2184 				unsigned int relation)
2185 {
2186 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2187 	struct cpufreq_freqs freqs;
2188 	int target_pstate;
2189 
2190 	update_turbo_state();
2191 
2192 	freqs.old = policy->cur;
2193 	freqs.new = target_freq;
2194 
2195 	cpufreq_freq_transition_begin(policy, &freqs);
2196 	switch (relation) {
2197 	case CPUFREQ_RELATION_L:
2198 		target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2199 		break;
2200 	case CPUFREQ_RELATION_H:
2201 		target_pstate = freqs.new / cpu->pstate.scaling;
2202 		break;
2203 	default:
2204 		target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2205 		break;
2206 	}
2207 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2208 	if (target_pstate != cpu->pstate.current_pstate) {
2209 		cpu->pstate.current_pstate = target_pstate;
2210 		wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2211 			      pstate_funcs.get_val(cpu, target_pstate));
2212 	}
2213 	freqs.new = target_pstate * cpu->pstate.scaling;
2214 	cpufreq_freq_transition_end(policy, &freqs, false);
2215 
2216 	return 0;
2217 }
2218 
2219 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2220 					      unsigned int target_freq)
2221 {
2222 	struct cpudata *cpu = all_cpu_data[policy->cpu];
2223 	int target_pstate;
2224 
2225 	update_turbo_state();
2226 
2227 	target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2228 	target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2229 	intel_pstate_update_pstate(cpu, target_pstate);
2230 	return target_pstate * cpu->pstate.scaling;
2231 }
2232 
2233 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2234 {
2235 	int ret = __intel_pstate_cpu_init(policy);
2236 
2237 	if (ret)
2238 		return ret;
2239 
2240 	policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2241 	/* This reflects the intel_pstate_get_cpu_pstates() setting. */
2242 	policy->cur = policy->cpuinfo.min_freq;
2243 
2244 	return 0;
2245 }
2246 
2247 static struct cpufreq_driver intel_cpufreq = {
2248 	.flags		= CPUFREQ_CONST_LOOPS,
2249 	.verify		= intel_cpufreq_verify_policy,
2250 	.target		= intel_cpufreq_target,
2251 	.fast_switch	= intel_cpufreq_fast_switch,
2252 	.init		= intel_cpufreq_cpu_init,
2253 	.exit		= intel_pstate_cpu_exit,
2254 	.stop_cpu	= intel_cpufreq_stop_cpu,
2255 	.name		= "intel_cpufreq",
2256 };
2257 
2258 static struct cpufreq_driver *default_driver = &intel_pstate;
2259 
2260 static void intel_pstate_driver_cleanup(void)
2261 {
2262 	unsigned int cpu;
2263 
2264 	get_online_cpus();
2265 	for_each_online_cpu(cpu) {
2266 		if (all_cpu_data[cpu]) {
2267 			if (intel_pstate_driver == &intel_pstate)
2268 				intel_pstate_clear_update_util_hook(cpu);
2269 
2270 			kfree(all_cpu_data[cpu]);
2271 			all_cpu_data[cpu] = NULL;
2272 		}
2273 	}
2274 	put_online_cpus();
2275 	intel_pstate_driver = NULL;
2276 }
2277 
2278 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2279 {
2280 	int ret;
2281 
2282 	memset(&global, 0, sizeof(global));
2283 	global.max_perf_pct = 100;
2284 
2285 	intel_pstate_driver = driver;
2286 	ret = cpufreq_register_driver(intel_pstate_driver);
2287 	if (ret) {
2288 		intel_pstate_driver_cleanup();
2289 		return ret;
2290 	}
2291 
2292 	global.min_perf_pct = min_perf_pct_min();
2293 
2294 	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2295 	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2296 		intel_pstate_debug_expose_params();
2297 
2298 	return 0;
2299 }
2300 
2301 static int intel_pstate_unregister_driver(void)
2302 {
2303 	if (hwp_active)
2304 		return -EBUSY;
2305 
2306 	if (intel_pstate_driver == &intel_pstate && !hwp_active &&
2307 	    pstate_funcs.get_target_pstate != get_target_pstate_use_cpu_load)
2308 		intel_pstate_debug_hide_params();
2309 
2310 	cpufreq_unregister_driver(intel_pstate_driver);
2311 	intel_pstate_driver_cleanup();
2312 
2313 	return 0;
2314 }
2315 
2316 static ssize_t intel_pstate_show_status(char *buf)
2317 {
2318 	if (!intel_pstate_driver)
2319 		return sprintf(buf, "off\n");
2320 
2321 	return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2322 					"active" : "passive");
2323 }
2324 
2325 static int intel_pstate_update_status(const char *buf, size_t size)
2326 {
2327 	int ret;
2328 
2329 	if (size == 3 && !strncmp(buf, "off", size))
2330 		return intel_pstate_driver ?
2331 			intel_pstate_unregister_driver() : -EINVAL;
2332 
2333 	if (size == 6 && !strncmp(buf, "active", size)) {
2334 		if (intel_pstate_driver) {
2335 			if (intel_pstate_driver == &intel_pstate)
2336 				return 0;
2337 
2338 			ret = intel_pstate_unregister_driver();
2339 			if (ret)
2340 				return ret;
2341 		}
2342 
2343 		return intel_pstate_register_driver(&intel_pstate);
2344 	}
2345 
2346 	if (size == 7 && !strncmp(buf, "passive", size)) {
2347 		if (intel_pstate_driver) {
2348 			if (intel_pstate_driver == &intel_cpufreq)
2349 				return 0;
2350 
2351 			ret = intel_pstate_unregister_driver();
2352 			if (ret)
2353 				return ret;
2354 		}
2355 
2356 		return intel_pstate_register_driver(&intel_cpufreq);
2357 	}
2358 
2359 	return -EINVAL;
2360 }
2361 
2362 static int no_load __initdata;
2363 static int no_hwp __initdata;
2364 static int hwp_only __initdata;
2365 static unsigned int force_load __initdata;
2366 
2367 static int __init intel_pstate_msrs_not_valid(void)
2368 {
2369 	if (!pstate_funcs.get_max() ||
2370 	    !pstate_funcs.get_min() ||
2371 	    !pstate_funcs.get_turbo())
2372 		return -ENODEV;
2373 
2374 	return 0;
2375 }
2376 
2377 #ifdef CONFIG_ACPI
2378 static void intel_pstate_use_acpi_profile(void)
2379 {
2380 	switch (acpi_gbl_FADT.preferred_profile) {
2381 	case PM_MOBILE:
2382 	case PM_TABLET:
2383 	case PM_APPLIANCE_PC:
2384 	case PM_DESKTOP:
2385 	case PM_WORKSTATION:
2386 		pstate_funcs.get_target_pstate =
2387 				get_target_pstate_use_cpu_load;
2388 	}
2389 }
2390 #else
2391 static void intel_pstate_use_acpi_profile(void)
2392 {
2393 }
2394 #endif
2395 
2396 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2397 {
2398 	pstate_funcs.get_max   = funcs->get_max;
2399 	pstate_funcs.get_max_physical = funcs->get_max_physical;
2400 	pstate_funcs.get_min   = funcs->get_min;
2401 	pstate_funcs.get_turbo = funcs->get_turbo;
2402 	pstate_funcs.get_scaling = funcs->get_scaling;
2403 	pstate_funcs.get_val   = funcs->get_val;
2404 	pstate_funcs.get_vid   = funcs->get_vid;
2405 	pstate_funcs.get_target_pstate = funcs->get_target_pstate;
2406 
2407 	intel_pstate_use_acpi_profile();
2408 }
2409 
2410 #ifdef CONFIG_ACPI
2411 
2412 static bool __init intel_pstate_no_acpi_pss(void)
2413 {
2414 	int i;
2415 
2416 	for_each_possible_cpu(i) {
2417 		acpi_status status;
2418 		union acpi_object *pss;
2419 		struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2420 		struct acpi_processor *pr = per_cpu(processors, i);
2421 
2422 		if (!pr)
2423 			continue;
2424 
2425 		status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2426 		if (ACPI_FAILURE(status))
2427 			continue;
2428 
2429 		pss = buffer.pointer;
2430 		if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2431 			kfree(pss);
2432 			return false;
2433 		}
2434 
2435 		kfree(pss);
2436 	}
2437 
2438 	return true;
2439 }
2440 
2441 static bool __init intel_pstate_has_acpi_ppc(void)
2442 {
2443 	int i;
2444 
2445 	for_each_possible_cpu(i) {
2446 		struct acpi_processor *pr = per_cpu(processors, i);
2447 
2448 		if (!pr)
2449 			continue;
2450 		if (acpi_has_method(pr->handle, "_PPC"))
2451 			return true;
2452 	}
2453 	return false;
2454 }
2455 
2456 enum {
2457 	PSS,
2458 	PPC,
2459 };
2460 
2461 struct hw_vendor_info {
2462 	u16  valid;
2463 	char oem_id[ACPI_OEM_ID_SIZE];
2464 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
2465 	int  oem_pwr_table;
2466 };
2467 
2468 /* Hardware vendor-specific info that has its own power management modes */
2469 static struct hw_vendor_info vendor_info[] __initdata = {
2470 	{1, "HP    ", "ProLiant", PSS},
2471 	{1, "ORACLE", "X4-2    ", PPC},
2472 	{1, "ORACLE", "X4-2L   ", PPC},
2473 	{1, "ORACLE", "X4-2B   ", PPC},
2474 	{1, "ORACLE", "X3-2    ", PPC},
2475 	{1, "ORACLE", "X3-2L   ", PPC},
2476 	{1, "ORACLE", "X3-2B   ", PPC},
2477 	{1, "ORACLE", "X4470M2 ", PPC},
2478 	{1, "ORACLE", "X4270M3 ", PPC},
2479 	{1, "ORACLE", "X4270M2 ", PPC},
2480 	{1, "ORACLE", "X4170M2 ", PPC},
2481 	{1, "ORACLE", "X4170 M3", PPC},
2482 	{1, "ORACLE", "X4275 M3", PPC},
2483 	{1, "ORACLE", "X6-2    ", PPC},
2484 	{1, "ORACLE", "Sudbury ", PPC},
2485 	{0, "", ""},
2486 };
2487 
2488 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2489 {
2490 	struct acpi_table_header hdr;
2491 	struct hw_vendor_info *v_info;
2492 	const struct x86_cpu_id *id;
2493 	u64 misc_pwr;
2494 
2495 	id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2496 	if (id) {
2497 		rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2498 		if ( misc_pwr & (1 << 8))
2499 			return true;
2500 	}
2501 
2502 	if (acpi_disabled ||
2503 	    ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
2504 		return false;
2505 
2506 	for (v_info = vendor_info; v_info->valid; v_info++) {
2507 		if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
2508 			!strncmp(hdr.oem_table_id, v_info->oem_table_id,
2509 						ACPI_OEM_TABLE_ID_SIZE))
2510 			switch (v_info->oem_pwr_table) {
2511 			case PSS:
2512 				return intel_pstate_no_acpi_pss();
2513 			case PPC:
2514 				return intel_pstate_has_acpi_ppc() &&
2515 					(!force_load);
2516 			}
2517 	}
2518 
2519 	return false;
2520 }
2521 
2522 static void intel_pstate_request_control_from_smm(void)
2523 {
2524 	/*
2525 	 * It may be unsafe to request P-states control from SMM if _PPC support
2526 	 * has not been enabled.
2527 	 */
2528 	if (acpi_ppc)
2529 		acpi_processor_pstate_control();
2530 }
2531 #else /* CONFIG_ACPI not enabled */
2532 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2533 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2534 static inline void intel_pstate_request_control_from_smm(void) {}
2535 #endif /* CONFIG_ACPI */
2536 
2537 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2538 	{ X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
2539 	{}
2540 };
2541 
2542 static int __init intel_pstate_init(void)
2543 {
2544 	int rc;
2545 
2546 	if (no_load)
2547 		return -ENODEV;
2548 
2549 	if (x86_match_cpu(hwp_support_ids)) {
2550 		copy_cpu_funcs(&core_params.funcs);
2551 		if (no_hwp) {
2552 			pstate_funcs.get_target_pstate = get_target_pstate_use_cpu_load;
2553 		} else {
2554 			hwp_active++;
2555 			intel_pstate.attr = hwp_cpufreq_attrs;
2556 			pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
2557 			goto hwp_cpu_matched;
2558 		}
2559 	} else {
2560 		const struct x86_cpu_id *id;
2561 		struct cpu_defaults *cpu_def;
2562 
2563 		id = x86_match_cpu(intel_pstate_cpu_ids);
2564 		if (!id)
2565 			return -ENODEV;
2566 
2567 		cpu_def = (struct cpu_defaults *)id->driver_data;
2568 		copy_cpu_funcs(&cpu_def->funcs);
2569 	}
2570 
2571 	if (intel_pstate_msrs_not_valid())
2572 		return -ENODEV;
2573 
2574 hwp_cpu_matched:
2575 	/*
2576 	 * The Intel pstate driver will be ignored if the platform
2577 	 * firmware has its own power management modes.
2578 	 */
2579 	if (intel_pstate_platform_pwr_mgmt_exists())
2580 		return -ENODEV;
2581 
2582 	if (!hwp_active && hwp_only)
2583 		return -ENOTSUPP;
2584 
2585 	pr_info("Intel P-state driver initializing\n");
2586 
2587 	all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
2588 	if (!all_cpu_data)
2589 		return -ENOMEM;
2590 
2591 	intel_pstate_request_control_from_smm();
2592 
2593 	intel_pstate_sysfs_expose_params();
2594 
2595 	mutex_lock(&intel_pstate_driver_lock);
2596 	rc = intel_pstate_register_driver(default_driver);
2597 	mutex_unlock(&intel_pstate_driver_lock);
2598 	if (rc)
2599 		return rc;
2600 
2601 	if (hwp_active)
2602 		pr_info("HWP enabled\n");
2603 
2604 	return 0;
2605 }
2606 device_initcall(intel_pstate_init);
2607 
2608 static int __init intel_pstate_setup(char *str)
2609 {
2610 	if (!str)
2611 		return -EINVAL;
2612 
2613 	if (!strcmp(str, "disable")) {
2614 		no_load = 1;
2615 	} else if (!strcmp(str, "passive")) {
2616 		pr_info("Passive mode enabled\n");
2617 		default_driver = &intel_cpufreq;
2618 		no_hwp = 1;
2619 	}
2620 	if (!strcmp(str, "no_hwp")) {
2621 		pr_info("HWP disabled\n");
2622 		no_hwp = 1;
2623 	}
2624 	if (!strcmp(str, "force"))
2625 		force_load = 1;
2626 	if (!strcmp(str, "hwp_only"))
2627 		hwp_only = 1;
2628 	if (!strcmp(str, "per_cpu_perf_limits"))
2629 		per_cpu_limits = true;
2630 
2631 #ifdef CONFIG_ACPI
2632 	if (!strcmp(str, "support_acpi_ppc"))
2633 		acpi_ppc = true;
2634 #endif
2635 
2636 	return 0;
2637 }
2638 early_param("intel_pstate", intel_pstate_setup);
2639 
2640 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2641 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2642 MODULE_LICENSE("GPL");
2643