1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pm_opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
18 
19 #define PU_SOC_VOLTAGE_NORMAL	1250000
20 #define PU_SOC_VOLTAGE_HIGH	1275000
21 #define FREQ_1P2_GHZ		1200000000
22 
23 static struct regulator *arm_reg;
24 static struct regulator *pu_reg;
25 static struct regulator *soc_reg;
26 
27 static struct clk *arm_clk;
28 static struct clk *pll1_sys_clk;
29 static struct clk *pll1_sw_clk;
30 static struct clk *step_clk;
31 static struct clk *pll2_pfd2_396m_clk;
32 
33 /* clk used by i.MX6UL */
34 static struct clk *pll2_bus_clk;
35 static struct clk *secondary_sel_clk;
36 
37 static struct device *cpu_dev;
38 static bool free_opp;
39 static struct cpufreq_frequency_table *freq_table;
40 static unsigned int transition_latency;
41 
42 static u32 *imx6_soc_volt;
43 static u32 soc_opp_count;
44 
45 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
46 {
47 	struct dev_pm_opp *opp;
48 	unsigned long freq_hz, volt, volt_old;
49 	unsigned int old_freq, new_freq;
50 	int ret;
51 
52 	new_freq = freq_table[index].frequency;
53 	freq_hz = new_freq * 1000;
54 	old_freq = clk_get_rate(arm_clk) / 1000;
55 
56 	opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
57 	if (IS_ERR(opp)) {
58 		dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
59 		return PTR_ERR(opp);
60 	}
61 
62 	volt = dev_pm_opp_get_voltage(opp);
63 	dev_pm_opp_put(opp);
64 
65 	volt_old = regulator_get_voltage(arm_reg);
66 
67 	dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
68 		old_freq / 1000, volt_old / 1000,
69 		new_freq / 1000, volt / 1000);
70 
71 	/* scaling up?  scale voltage before frequency */
72 	if (new_freq > old_freq) {
73 		if (!IS_ERR(pu_reg)) {
74 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
75 			if (ret) {
76 				dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
77 				return ret;
78 			}
79 		}
80 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
81 		if (ret) {
82 			dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
83 			return ret;
84 		}
85 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
86 		if (ret) {
87 			dev_err(cpu_dev,
88 				"failed to scale vddarm up: %d\n", ret);
89 			return ret;
90 		}
91 	}
92 
93 	/*
94 	 * The setpoints are selected per PLL/PDF frequencies, so we need to
95 	 * reprogram PLL for frequency scaling.  The procedure of reprogramming
96 	 * PLL1 is as below.
97 	 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
98 	 * flow is slightly different from other i.MX6 OSC.
99 	 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
100 	 *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
101 	 *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
102 	 *  - Disable pll2_pfd2_396m_clk
103 	 */
104 	if (of_machine_is_compatible("fsl,imx6ul")) {
105 		/*
106 		 * When changing pll1_sw_clk's parent to pll1_sys_clk,
107 		 * CPU may run at higher than 528MHz, this will lead to
108 		 * the system unstable if the voltage is lower than the
109 		 * voltage of 528MHz, so lower the CPU frequency to one
110 		 * half before changing CPU frequency.
111 		 */
112 		clk_set_rate(arm_clk, (old_freq >> 1) * 1000);
113 		clk_set_parent(pll1_sw_clk, pll1_sys_clk);
114 		if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk))
115 			clk_set_parent(secondary_sel_clk, pll2_bus_clk);
116 		else
117 			clk_set_parent(secondary_sel_clk, pll2_pfd2_396m_clk);
118 		clk_set_parent(step_clk, secondary_sel_clk);
119 		clk_set_parent(pll1_sw_clk, step_clk);
120 	} else {
121 		clk_set_parent(step_clk, pll2_pfd2_396m_clk);
122 		clk_set_parent(pll1_sw_clk, step_clk);
123 		if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
124 			clk_set_rate(pll1_sys_clk, new_freq * 1000);
125 			clk_set_parent(pll1_sw_clk, pll1_sys_clk);
126 		}
127 	}
128 
129 	/* Ensure the arm clock divider is what we expect */
130 	ret = clk_set_rate(arm_clk, new_freq * 1000);
131 	if (ret) {
132 		dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
133 		regulator_set_voltage_tol(arm_reg, volt_old, 0);
134 		return ret;
135 	}
136 
137 	/* scaling down?  scale voltage after frequency */
138 	if (new_freq < old_freq) {
139 		ret = regulator_set_voltage_tol(arm_reg, volt, 0);
140 		if (ret) {
141 			dev_warn(cpu_dev,
142 				 "failed to scale vddarm down: %d\n", ret);
143 			ret = 0;
144 		}
145 		ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
146 		if (ret) {
147 			dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
148 			ret = 0;
149 		}
150 		if (!IS_ERR(pu_reg)) {
151 			ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
152 			if (ret) {
153 				dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
154 				ret = 0;
155 			}
156 		}
157 	}
158 
159 	return 0;
160 }
161 
162 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
163 {
164 	int ret;
165 
166 	policy->clk = arm_clk;
167 	ret = cpufreq_generic_init(policy, freq_table, transition_latency);
168 	policy->suspend_freq = policy->max;
169 
170 	return ret;
171 }
172 
173 static struct cpufreq_driver imx6q_cpufreq_driver = {
174 	.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
175 	.verify = cpufreq_generic_frequency_table_verify,
176 	.target_index = imx6q_set_target,
177 	.get = cpufreq_generic_get,
178 	.init = imx6q_cpufreq_init,
179 	.name = "imx6q-cpufreq",
180 	.attr = cpufreq_generic_attr,
181 	.suspend = cpufreq_generic_suspend,
182 };
183 
184 static int imx6q_cpufreq_probe(struct platform_device *pdev)
185 {
186 	struct device_node *np;
187 	struct dev_pm_opp *opp;
188 	unsigned long min_volt, max_volt;
189 	int num, ret;
190 	const struct property *prop;
191 	const __be32 *val;
192 	u32 nr, i, j;
193 
194 	cpu_dev = get_cpu_device(0);
195 	if (!cpu_dev) {
196 		pr_err("failed to get cpu0 device\n");
197 		return -ENODEV;
198 	}
199 
200 	np = of_node_get(cpu_dev->of_node);
201 	if (!np) {
202 		dev_err(cpu_dev, "failed to find cpu0 node\n");
203 		return -ENOENT;
204 	}
205 
206 	arm_clk = clk_get(cpu_dev, "arm");
207 	pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
208 	pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
209 	step_clk = clk_get(cpu_dev, "step");
210 	pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
211 	if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
212 	    IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
213 		dev_err(cpu_dev, "failed to get clocks\n");
214 		ret = -ENOENT;
215 		goto put_clk;
216 	}
217 
218 	if (of_machine_is_compatible("fsl,imx6ul")) {
219 		pll2_bus_clk = clk_get(cpu_dev, "pll2_bus");
220 		secondary_sel_clk = clk_get(cpu_dev, "secondary_sel");
221 		if (IS_ERR(pll2_bus_clk) || IS_ERR(secondary_sel_clk)) {
222 			dev_err(cpu_dev, "failed to get clocks specific to imx6ul\n");
223 			ret = -ENOENT;
224 			goto put_clk;
225 		}
226 	}
227 
228 	arm_reg = regulator_get(cpu_dev, "arm");
229 	pu_reg = regulator_get_optional(cpu_dev, "pu");
230 	soc_reg = regulator_get(cpu_dev, "soc");
231 	if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
232 			PTR_ERR(soc_reg) == -EPROBE_DEFER ||
233 			PTR_ERR(pu_reg) == -EPROBE_DEFER) {
234 		ret = -EPROBE_DEFER;
235 		dev_dbg(cpu_dev, "regulators not ready, defer\n");
236 		goto put_reg;
237 	}
238 	if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
239 		dev_err(cpu_dev, "failed to get regulators\n");
240 		ret = -ENOENT;
241 		goto put_reg;
242 	}
243 
244 	/*
245 	 * We expect an OPP table supplied by platform.
246 	 * Just, incase the platform did not supply the OPP
247 	 * table, it will try to get it.
248 	 */
249 	num = dev_pm_opp_get_opp_count(cpu_dev);
250 	if (num < 0) {
251 		ret = dev_pm_opp_of_add_table(cpu_dev);
252 		if (ret < 0) {
253 			dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
254 			goto put_reg;
255 		}
256 
257 		/* Because we have added the OPPs here, we must free them */
258 		free_opp = true;
259 
260 		num = dev_pm_opp_get_opp_count(cpu_dev);
261 		if (num < 0) {
262 			ret = num;
263 			dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
264 			goto out_free_opp;
265 		}
266 	}
267 
268 	ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
269 	if (ret) {
270 		dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
271 		goto out_free_opp;
272 	}
273 
274 	/* Make imx6_soc_volt array's size same as arm opp number */
275 	imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
276 	if (imx6_soc_volt == NULL) {
277 		ret = -ENOMEM;
278 		goto free_freq_table;
279 	}
280 
281 	prop = of_find_property(np, "fsl,soc-operating-points", NULL);
282 	if (!prop || !prop->value)
283 		goto soc_opp_out;
284 
285 	/*
286 	 * Each OPP is a set of tuples consisting of frequency and
287 	 * voltage like <freq-kHz vol-uV>.
288 	 */
289 	nr = prop->length / sizeof(u32);
290 	if (nr % 2 || (nr / 2) < num)
291 		goto soc_opp_out;
292 
293 	for (j = 0; j < num; j++) {
294 		val = prop->value;
295 		for (i = 0; i < nr / 2; i++) {
296 			unsigned long freq = be32_to_cpup(val++);
297 			unsigned long volt = be32_to_cpup(val++);
298 			if (freq_table[j].frequency == freq) {
299 				imx6_soc_volt[soc_opp_count++] = volt;
300 				break;
301 			}
302 		}
303 	}
304 
305 soc_opp_out:
306 	/* use fixed soc opp volt if no valid soc opp info found in dtb */
307 	if (soc_opp_count != num) {
308 		dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
309 		for (j = 0; j < num; j++)
310 			imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
311 		if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
312 			imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
313 	}
314 
315 	if (of_property_read_u32(np, "clock-latency", &transition_latency))
316 		transition_latency = CPUFREQ_ETERNAL;
317 
318 	/*
319 	 * Calculate the ramp time for max voltage change in the
320 	 * VDDSOC and VDDPU regulators.
321 	 */
322 	ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
323 	if (ret > 0)
324 		transition_latency += ret * 1000;
325 	if (!IS_ERR(pu_reg)) {
326 		ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
327 		if (ret > 0)
328 			transition_latency += ret * 1000;
329 	}
330 
331 	/*
332 	 * OPP is maintained in order of increasing frequency, and
333 	 * freq_table initialised from OPP is therefore sorted in the
334 	 * same order.
335 	 */
336 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
337 				  freq_table[0].frequency * 1000, true);
338 	min_volt = dev_pm_opp_get_voltage(opp);
339 	dev_pm_opp_put(opp);
340 	opp = dev_pm_opp_find_freq_exact(cpu_dev,
341 				  freq_table[--num].frequency * 1000, true);
342 	max_volt = dev_pm_opp_get_voltage(opp);
343 	dev_pm_opp_put(opp);
344 
345 	ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
346 	if (ret > 0)
347 		transition_latency += ret * 1000;
348 
349 	ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
350 	if (ret) {
351 		dev_err(cpu_dev, "failed register driver: %d\n", ret);
352 		goto free_freq_table;
353 	}
354 
355 	of_node_put(np);
356 	return 0;
357 
358 free_freq_table:
359 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
360 out_free_opp:
361 	if (free_opp)
362 		dev_pm_opp_of_remove_table(cpu_dev);
363 put_reg:
364 	if (!IS_ERR(arm_reg))
365 		regulator_put(arm_reg);
366 	if (!IS_ERR(pu_reg))
367 		regulator_put(pu_reg);
368 	if (!IS_ERR(soc_reg))
369 		regulator_put(soc_reg);
370 put_clk:
371 	if (!IS_ERR(arm_clk))
372 		clk_put(arm_clk);
373 	if (!IS_ERR(pll1_sys_clk))
374 		clk_put(pll1_sys_clk);
375 	if (!IS_ERR(pll1_sw_clk))
376 		clk_put(pll1_sw_clk);
377 	if (!IS_ERR(step_clk))
378 		clk_put(step_clk);
379 	if (!IS_ERR(pll2_pfd2_396m_clk))
380 		clk_put(pll2_pfd2_396m_clk);
381 	if (!IS_ERR(pll2_bus_clk))
382 		clk_put(pll2_bus_clk);
383 	if (!IS_ERR(secondary_sel_clk))
384 		clk_put(secondary_sel_clk);
385 	of_node_put(np);
386 	return ret;
387 }
388 
389 static int imx6q_cpufreq_remove(struct platform_device *pdev)
390 {
391 	cpufreq_unregister_driver(&imx6q_cpufreq_driver);
392 	dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
393 	if (free_opp)
394 		dev_pm_opp_of_remove_table(cpu_dev);
395 	regulator_put(arm_reg);
396 	if (!IS_ERR(pu_reg))
397 		regulator_put(pu_reg);
398 	regulator_put(soc_reg);
399 	clk_put(arm_clk);
400 	clk_put(pll1_sys_clk);
401 	clk_put(pll1_sw_clk);
402 	clk_put(step_clk);
403 	clk_put(pll2_pfd2_396m_clk);
404 	clk_put(pll2_bus_clk);
405 	clk_put(secondary_sel_clk);
406 
407 	return 0;
408 }
409 
410 static struct platform_driver imx6q_cpufreq_platdrv = {
411 	.driver = {
412 		.name	= "imx6q-cpufreq",
413 	},
414 	.probe		= imx6q_cpufreq_probe,
415 	.remove		= imx6q_cpufreq_remove,
416 };
417 module_platform_driver(imx6q_cpufreq_platdrv);
418 
419 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
420 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
421 MODULE_LICENSE("GPL");
422