1 /* 2 * This file provides the ACPI based P-state support. This 3 * module works with generic cpufreq infrastructure. Most of 4 * the code is based on i386 version 5 * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c) 6 * 7 * Copyright (C) 2005 Intel Corp 8 * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/cpufreq.h> 16 #include <linux/proc_fs.h> 17 #include <linux/seq_file.h> 18 #include <asm/io.h> 19 #include <asm/uaccess.h> 20 #include <asm/pal.h> 21 22 #include <linux/acpi.h> 23 #include <acpi/processor.h> 24 25 MODULE_AUTHOR("Venkatesh Pallipadi"); 26 MODULE_DESCRIPTION("ACPI Processor P-States Driver"); 27 MODULE_LICENSE("GPL"); 28 29 30 struct cpufreq_acpi_io { 31 struct acpi_processor_performance acpi_data; 32 unsigned int resume; 33 }; 34 35 static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS]; 36 37 static struct cpufreq_driver acpi_cpufreq_driver; 38 39 40 static int 41 processor_set_pstate ( 42 u32 value) 43 { 44 s64 retval; 45 46 pr_debug("processor_set_pstate\n"); 47 48 retval = ia64_pal_set_pstate((u64)value); 49 50 if (retval) { 51 pr_debug("Failed to set freq to 0x%x, with error 0x%lx\n", 52 value, retval); 53 return -ENODEV; 54 } 55 return (int)retval; 56 } 57 58 59 static int 60 processor_get_pstate ( 61 u32 *value) 62 { 63 u64 pstate_index = 0; 64 s64 retval; 65 66 pr_debug("processor_get_pstate\n"); 67 68 retval = ia64_pal_get_pstate(&pstate_index, 69 PAL_GET_PSTATE_TYPE_INSTANT); 70 *value = (u32) pstate_index; 71 72 if (retval) 73 pr_debug("Failed to get current freq with " 74 "error 0x%lx, idx 0x%x\n", retval, *value); 75 76 return (int)retval; 77 } 78 79 80 /* To be used only after data->acpi_data is initialized */ 81 static unsigned 82 extract_clock ( 83 struct cpufreq_acpi_io *data, 84 unsigned value, 85 unsigned int cpu) 86 { 87 unsigned long i; 88 89 pr_debug("extract_clock\n"); 90 91 for (i = 0; i < data->acpi_data.state_count; i++) { 92 if (value == data->acpi_data.states[i].status) 93 return data->acpi_data.states[i].core_frequency; 94 } 95 return data->acpi_data.states[i-1].core_frequency; 96 } 97 98 99 static unsigned int 100 processor_get_freq ( 101 struct cpufreq_acpi_io *data, 102 unsigned int cpu) 103 { 104 int ret = 0; 105 u32 value = 0; 106 cpumask_t saved_mask; 107 unsigned long clock_freq; 108 109 pr_debug("processor_get_freq\n"); 110 111 saved_mask = current->cpus_allowed; 112 set_cpus_allowed_ptr(current, cpumask_of(cpu)); 113 if (smp_processor_id() != cpu) 114 goto migrate_end; 115 116 /* processor_get_pstate gets the instantaneous frequency */ 117 ret = processor_get_pstate(&value); 118 119 if (ret) { 120 set_cpus_allowed_ptr(current, &saved_mask); 121 printk(KERN_WARNING "get performance failed with error %d\n", 122 ret); 123 ret = 0; 124 goto migrate_end; 125 } 126 clock_freq = extract_clock(data, value, cpu); 127 ret = (clock_freq*1000); 128 129 migrate_end: 130 set_cpus_allowed_ptr(current, &saved_mask); 131 return ret; 132 } 133 134 135 static int 136 processor_set_freq ( 137 struct cpufreq_acpi_io *data, 138 struct cpufreq_policy *policy, 139 int state) 140 { 141 int ret = 0; 142 u32 value = 0; 143 cpumask_t saved_mask; 144 int retval; 145 146 pr_debug("processor_set_freq\n"); 147 148 saved_mask = current->cpus_allowed; 149 set_cpus_allowed_ptr(current, cpumask_of(policy->cpu)); 150 if (smp_processor_id() != policy->cpu) { 151 retval = -EAGAIN; 152 goto migrate_end; 153 } 154 155 if (state == data->acpi_data.state) { 156 if (unlikely(data->resume)) { 157 pr_debug("Called after resume, resetting to P%d\n", state); 158 data->resume = 0; 159 } else { 160 pr_debug("Already at target state (P%d)\n", state); 161 retval = 0; 162 goto migrate_end; 163 } 164 } 165 166 pr_debug("Transitioning from P%d to P%d\n", 167 data->acpi_data.state, state); 168 169 /* 170 * First we write the target state's 'control' value to the 171 * control_register. 172 */ 173 174 value = (u32) data->acpi_data.states[state].control; 175 176 pr_debug("Transitioning to state: 0x%08x\n", value); 177 178 ret = processor_set_pstate(value); 179 if (ret) { 180 printk(KERN_WARNING "Transition failed with error %d\n", ret); 181 retval = -ENODEV; 182 goto migrate_end; 183 } 184 185 data->acpi_data.state = state; 186 187 retval = 0; 188 189 migrate_end: 190 set_cpus_allowed_ptr(current, &saved_mask); 191 return (retval); 192 } 193 194 195 static unsigned int 196 acpi_cpufreq_get ( 197 unsigned int cpu) 198 { 199 struct cpufreq_acpi_io *data = acpi_io_data[cpu]; 200 201 pr_debug("acpi_cpufreq_get\n"); 202 203 return processor_get_freq(data, cpu); 204 } 205 206 207 static int 208 acpi_cpufreq_target ( 209 struct cpufreq_policy *policy, 210 unsigned int index) 211 { 212 return processor_set_freq(acpi_io_data[policy->cpu], policy, index); 213 } 214 215 static int 216 acpi_cpufreq_cpu_init ( 217 struct cpufreq_policy *policy) 218 { 219 unsigned int i; 220 unsigned int cpu = policy->cpu; 221 struct cpufreq_acpi_io *data; 222 unsigned int result = 0; 223 struct cpufreq_frequency_table *freq_table; 224 225 pr_debug("acpi_cpufreq_cpu_init\n"); 226 227 data = kzalloc(sizeof(*data), GFP_KERNEL); 228 if (!data) 229 return (-ENOMEM); 230 231 acpi_io_data[cpu] = data; 232 233 result = acpi_processor_register_performance(&data->acpi_data, cpu); 234 235 if (result) 236 goto err_free; 237 238 /* capability check */ 239 if (data->acpi_data.state_count <= 1) { 240 pr_debug("No P-States\n"); 241 result = -ENODEV; 242 goto err_unreg; 243 } 244 245 if ((data->acpi_data.control_register.space_id != 246 ACPI_ADR_SPACE_FIXED_HARDWARE) || 247 (data->acpi_data.status_register.space_id != 248 ACPI_ADR_SPACE_FIXED_HARDWARE)) { 249 pr_debug("Unsupported address space [%d, %d]\n", 250 (u32) (data->acpi_data.control_register.space_id), 251 (u32) (data->acpi_data.status_register.space_id)); 252 result = -ENODEV; 253 goto err_unreg; 254 } 255 256 /* alloc freq_table */ 257 freq_table = kzalloc(sizeof(*freq_table) * 258 (data->acpi_data.state_count + 1), 259 GFP_KERNEL); 260 if (!freq_table) { 261 result = -ENOMEM; 262 goto err_unreg; 263 } 264 265 /* detect transition latency */ 266 policy->cpuinfo.transition_latency = 0; 267 for (i=0; i<data->acpi_data.state_count; i++) { 268 if ((data->acpi_data.states[i].transition_latency * 1000) > 269 policy->cpuinfo.transition_latency) { 270 policy->cpuinfo.transition_latency = 271 data->acpi_data.states[i].transition_latency * 1000; 272 } 273 } 274 275 /* table init */ 276 for (i = 0; i <= data->acpi_data.state_count; i++) 277 { 278 if (i < data->acpi_data.state_count) { 279 freq_table[i].frequency = 280 data->acpi_data.states[i].core_frequency * 1000; 281 } else { 282 freq_table[i].frequency = CPUFREQ_TABLE_END; 283 } 284 } 285 286 result = cpufreq_table_validate_and_show(policy, freq_table); 287 if (result) { 288 goto err_freqfree; 289 } 290 291 /* notify BIOS that we exist */ 292 acpi_processor_notify_smm(THIS_MODULE); 293 294 printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management " 295 "activated.\n", cpu); 296 297 for (i = 0; i < data->acpi_data.state_count; i++) 298 pr_debug(" %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n", 299 (i == data->acpi_data.state?'*':' '), i, 300 (u32) data->acpi_data.states[i].core_frequency, 301 (u32) data->acpi_data.states[i].power, 302 (u32) data->acpi_data.states[i].transition_latency, 303 (u32) data->acpi_data.states[i].bus_master_latency, 304 (u32) data->acpi_data.states[i].status, 305 (u32) data->acpi_data.states[i].control); 306 307 /* the first call to ->target() should result in us actually 308 * writing something to the appropriate registers. */ 309 data->resume = 1; 310 311 return (result); 312 313 err_freqfree: 314 kfree(freq_table); 315 err_unreg: 316 acpi_processor_unregister_performance(cpu); 317 err_free: 318 kfree(data); 319 acpi_io_data[cpu] = NULL; 320 321 return (result); 322 } 323 324 325 static int 326 acpi_cpufreq_cpu_exit ( 327 struct cpufreq_policy *policy) 328 { 329 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; 330 331 pr_debug("acpi_cpufreq_cpu_exit\n"); 332 333 if (data) { 334 acpi_io_data[policy->cpu] = NULL; 335 acpi_processor_unregister_performance(policy->cpu); 336 kfree(policy->freq_table); 337 kfree(data); 338 } 339 340 return (0); 341 } 342 343 344 static struct cpufreq_driver acpi_cpufreq_driver = { 345 .verify = cpufreq_generic_frequency_table_verify, 346 .target_index = acpi_cpufreq_target, 347 .get = acpi_cpufreq_get, 348 .init = acpi_cpufreq_cpu_init, 349 .exit = acpi_cpufreq_cpu_exit, 350 .name = "acpi-cpufreq", 351 .attr = cpufreq_generic_attr, 352 }; 353 354 355 static int __init 356 acpi_cpufreq_init (void) 357 { 358 pr_debug("acpi_cpufreq_init\n"); 359 360 return cpufreq_register_driver(&acpi_cpufreq_driver); 361 } 362 363 364 static void __exit 365 acpi_cpufreq_exit (void) 366 { 367 pr_debug("acpi_cpufreq_exit\n"); 368 369 cpufreq_unregister_driver(&acpi_cpufreq_driver); 370 return; 371 } 372 373 374 late_initcall(acpi_cpufreq_init); 375 module_exit(acpi_cpufreq_exit); 376 377