1 /* 2 * This file provides the ACPI based P-state support. This 3 * module works with generic cpufreq infrastructure. Most of 4 * the code is based on i386 version 5 * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c) 6 * 7 * Copyright (C) 2005 Intel Corp 8 * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/slab.h> 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/cpufreq.h> 16 #include <linux/proc_fs.h> 17 #include <linux/seq_file.h> 18 #include <asm/io.h> 19 #include <asm/uaccess.h> 20 #include <asm/pal.h> 21 22 #include <linux/acpi.h> 23 #include <acpi/processor.h> 24 25 MODULE_AUTHOR("Venkatesh Pallipadi"); 26 MODULE_DESCRIPTION("ACPI Processor P-States Driver"); 27 MODULE_LICENSE("GPL"); 28 29 30 struct cpufreq_acpi_io { 31 struct acpi_processor_performance acpi_data; 32 struct cpufreq_frequency_table *freq_table; 33 unsigned int resume; 34 }; 35 36 static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS]; 37 38 static struct cpufreq_driver acpi_cpufreq_driver; 39 40 41 static int 42 processor_set_pstate ( 43 u32 value) 44 { 45 s64 retval; 46 47 pr_debug("processor_set_pstate\n"); 48 49 retval = ia64_pal_set_pstate((u64)value); 50 51 if (retval) { 52 pr_debug("Failed to set freq to 0x%x, with error 0x%lx\n", 53 value, retval); 54 return -ENODEV; 55 } 56 return (int)retval; 57 } 58 59 60 static int 61 processor_get_pstate ( 62 u32 *value) 63 { 64 u64 pstate_index = 0; 65 s64 retval; 66 67 pr_debug("processor_get_pstate\n"); 68 69 retval = ia64_pal_get_pstate(&pstate_index, 70 PAL_GET_PSTATE_TYPE_INSTANT); 71 *value = (u32) pstate_index; 72 73 if (retval) 74 pr_debug("Failed to get current freq with " 75 "error 0x%lx, idx 0x%x\n", retval, *value); 76 77 return (int)retval; 78 } 79 80 81 /* To be used only after data->acpi_data is initialized */ 82 static unsigned 83 extract_clock ( 84 struct cpufreq_acpi_io *data, 85 unsigned value, 86 unsigned int cpu) 87 { 88 unsigned long i; 89 90 pr_debug("extract_clock\n"); 91 92 for (i = 0; i < data->acpi_data.state_count; i++) { 93 if (value == data->acpi_data.states[i].status) 94 return data->acpi_data.states[i].core_frequency; 95 } 96 return data->acpi_data.states[i-1].core_frequency; 97 } 98 99 100 static unsigned int 101 processor_get_freq ( 102 struct cpufreq_acpi_io *data, 103 unsigned int cpu) 104 { 105 int ret = 0; 106 u32 value = 0; 107 cpumask_t saved_mask; 108 unsigned long clock_freq; 109 110 pr_debug("processor_get_freq\n"); 111 112 saved_mask = current->cpus_allowed; 113 set_cpus_allowed_ptr(current, cpumask_of(cpu)); 114 if (smp_processor_id() != cpu) 115 goto migrate_end; 116 117 /* processor_get_pstate gets the instantaneous frequency */ 118 ret = processor_get_pstate(&value); 119 120 if (ret) { 121 set_cpus_allowed_ptr(current, &saved_mask); 122 printk(KERN_WARNING "get performance failed with error %d\n", 123 ret); 124 ret = 0; 125 goto migrate_end; 126 } 127 clock_freq = extract_clock(data, value, cpu); 128 ret = (clock_freq*1000); 129 130 migrate_end: 131 set_cpus_allowed_ptr(current, &saved_mask); 132 return ret; 133 } 134 135 136 static int 137 processor_set_freq ( 138 struct cpufreq_acpi_io *data, 139 struct cpufreq_policy *policy, 140 int state) 141 { 142 int ret = 0; 143 u32 value = 0; 144 cpumask_t saved_mask; 145 int retval; 146 147 pr_debug("processor_set_freq\n"); 148 149 saved_mask = current->cpus_allowed; 150 set_cpus_allowed_ptr(current, cpumask_of(policy->cpu)); 151 if (smp_processor_id() != policy->cpu) { 152 retval = -EAGAIN; 153 goto migrate_end; 154 } 155 156 if (state == data->acpi_data.state) { 157 if (unlikely(data->resume)) { 158 pr_debug("Called after resume, resetting to P%d\n", state); 159 data->resume = 0; 160 } else { 161 pr_debug("Already at target state (P%d)\n", state); 162 retval = 0; 163 goto migrate_end; 164 } 165 } 166 167 pr_debug("Transitioning from P%d to P%d\n", 168 data->acpi_data.state, state); 169 170 /* 171 * First we write the target state's 'control' value to the 172 * control_register. 173 */ 174 175 value = (u32) data->acpi_data.states[state].control; 176 177 pr_debug("Transitioning to state: 0x%08x\n", value); 178 179 ret = processor_set_pstate(value); 180 if (ret) { 181 printk(KERN_WARNING "Transition failed with error %d\n", ret); 182 retval = -ENODEV; 183 goto migrate_end; 184 } 185 186 data->acpi_data.state = state; 187 188 retval = 0; 189 190 migrate_end: 191 set_cpus_allowed_ptr(current, &saved_mask); 192 return (retval); 193 } 194 195 196 static unsigned int 197 acpi_cpufreq_get ( 198 unsigned int cpu) 199 { 200 struct cpufreq_acpi_io *data = acpi_io_data[cpu]; 201 202 pr_debug("acpi_cpufreq_get\n"); 203 204 return processor_get_freq(data, cpu); 205 } 206 207 208 static int 209 acpi_cpufreq_target ( 210 struct cpufreq_policy *policy, 211 unsigned int index) 212 { 213 return processor_set_freq(acpi_io_data[policy->cpu], policy, index); 214 } 215 216 static int 217 acpi_cpufreq_cpu_init ( 218 struct cpufreq_policy *policy) 219 { 220 unsigned int i; 221 unsigned int cpu = policy->cpu; 222 struct cpufreq_acpi_io *data; 223 unsigned int result = 0; 224 225 pr_debug("acpi_cpufreq_cpu_init\n"); 226 227 data = kzalloc(sizeof(*data), GFP_KERNEL); 228 if (!data) 229 return (-ENOMEM); 230 231 acpi_io_data[cpu] = data; 232 233 result = acpi_processor_register_performance(&data->acpi_data, cpu); 234 235 if (result) 236 goto err_free; 237 238 /* capability check */ 239 if (data->acpi_data.state_count <= 1) { 240 pr_debug("No P-States\n"); 241 result = -ENODEV; 242 goto err_unreg; 243 } 244 245 if ((data->acpi_data.control_register.space_id != 246 ACPI_ADR_SPACE_FIXED_HARDWARE) || 247 (data->acpi_data.status_register.space_id != 248 ACPI_ADR_SPACE_FIXED_HARDWARE)) { 249 pr_debug("Unsupported address space [%d, %d]\n", 250 (u32) (data->acpi_data.control_register.space_id), 251 (u32) (data->acpi_data.status_register.space_id)); 252 result = -ENODEV; 253 goto err_unreg; 254 } 255 256 /* alloc freq_table */ 257 data->freq_table = kmalloc(sizeof(*data->freq_table) * 258 (data->acpi_data.state_count + 1), 259 GFP_KERNEL); 260 if (!data->freq_table) { 261 result = -ENOMEM; 262 goto err_unreg; 263 } 264 265 /* detect transition latency */ 266 policy->cpuinfo.transition_latency = 0; 267 for (i=0; i<data->acpi_data.state_count; i++) { 268 if ((data->acpi_data.states[i].transition_latency * 1000) > 269 policy->cpuinfo.transition_latency) { 270 policy->cpuinfo.transition_latency = 271 data->acpi_data.states[i].transition_latency * 1000; 272 } 273 } 274 275 /* table init */ 276 for (i = 0; i <= data->acpi_data.state_count; i++) 277 { 278 data->freq_table[i].driver_data = i; 279 if (i < data->acpi_data.state_count) { 280 data->freq_table[i].frequency = 281 data->acpi_data.states[i].core_frequency * 1000; 282 } else { 283 data->freq_table[i].frequency = CPUFREQ_TABLE_END; 284 } 285 } 286 287 result = cpufreq_table_validate_and_show(policy, data->freq_table); 288 if (result) { 289 goto err_freqfree; 290 } 291 292 /* notify BIOS that we exist */ 293 acpi_processor_notify_smm(THIS_MODULE); 294 295 printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management " 296 "activated.\n", cpu); 297 298 for (i = 0; i < data->acpi_data.state_count; i++) 299 pr_debug(" %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n", 300 (i == data->acpi_data.state?'*':' '), i, 301 (u32) data->acpi_data.states[i].core_frequency, 302 (u32) data->acpi_data.states[i].power, 303 (u32) data->acpi_data.states[i].transition_latency, 304 (u32) data->acpi_data.states[i].bus_master_latency, 305 (u32) data->acpi_data.states[i].status, 306 (u32) data->acpi_data.states[i].control); 307 308 /* the first call to ->target() should result in us actually 309 * writing something to the appropriate registers. */ 310 data->resume = 1; 311 312 return (result); 313 314 err_freqfree: 315 kfree(data->freq_table); 316 err_unreg: 317 acpi_processor_unregister_performance(&data->acpi_data, cpu); 318 err_free: 319 kfree(data); 320 acpi_io_data[cpu] = NULL; 321 322 return (result); 323 } 324 325 326 static int 327 acpi_cpufreq_cpu_exit ( 328 struct cpufreq_policy *policy) 329 { 330 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; 331 332 pr_debug("acpi_cpufreq_cpu_exit\n"); 333 334 if (data) { 335 cpufreq_frequency_table_put_attr(policy->cpu); 336 acpi_io_data[policy->cpu] = NULL; 337 acpi_processor_unregister_performance(&data->acpi_data, 338 policy->cpu); 339 kfree(data); 340 } 341 342 return (0); 343 } 344 345 346 static struct cpufreq_driver acpi_cpufreq_driver = { 347 .verify = cpufreq_generic_frequency_table_verify, 348 .target_index = acpi_cpufreq_target, 349 .get = acpi_cpufreq_get, 350 .init = acpi_cpufreq_cpu_init, 351 .exit = acpi_cpufreq_cpu_exit, 352 .name = "acpi-cpufreq", 353 .attr = cpufreq_generic_attr, 354 }; 355 356 357 static int __init 358 acpi_cpufreq_init (void) 359 { 360 pr_debug("acpi_cpufreq_init\n"); 361 362 return cpufreq_register_driver(&acpi_cpufreq_driver); 363 } 364 365 366 static void __exit 367 acpi_cpufreq_exit (void) 368 { 369 pr_debug("acpi_cpufreq_exit\n"); 370 371 cpufreq_unregister_driver(&acpi_cpufreq_driver); 372 return; 373 } 374 375 376 late_initcall(acpi_cpufreq_init); 377 module_exit(acpi_cpufreq_exit); 378 379