xref: /openbmc/linux/drivers/cpufreq/ia64-acpi-cpufreq.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * This file provides the ACPI based P-state support. This
3  * module works with generic cpufreq infrastructure. Most of
4  * the code is based on i386 version
5  * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c)
6  *
7  * Copyright (C) 2005 Intel Corp
8  *      Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/proc_fs.h>
19 #include <asm/io.h>
20 #include <linux/uaccess.h>
21 #include <asm/pal.h>
22 
23 #include <linux/acpi.h>
24 #include <acpi/processor.h>
25 
26 MODULE_AUTHOR("Venkatesh Pallipadi");
27 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
28 MODULE_LICENSE("GPL");
29 
30 struct cpufreq_acpi_io {
31 	struct acpi_processor_performance	acpi_data;
32 	unsigned int				resume;
33 };
34 
35 struct cpufreq_acpi_req {
36 	unsigned int		cpu;
37 	unsigned int		state;
38 };
39 
40 static struct cpufreq_acpi_io	*acpi_io_data[NR_CPUS];
41 
42 static struct cpufreq_driver acpi_cpufreq_driver;
43 
44 
45 static int
46 processor_set_pstate (
47 	u32	value)
48 {
49 	s64 retval;
50 
51 	pr_debug("processor_set_pstate\n");
52 
53 	retval = ia64_pal_set_pstate((u64)value);
54 
55 	if (retval) {
56 		pr_debug("Failed to set freq to 0x%x, with error 0x%lx\n",
57 		        value, retval);
58 		return -ENODEV;
59 	}
60 	return (int)retval;
61 }
62 
63 
64 static int
65 processor_get_pstate (
66 	u32	*value)
67 {
68 	u64	pstate_index = 0;
69 	s64 	retval;
70 
71 	pr_debug("processor_get_pstate\n");
72 
73 	retval = ia64_pal_get_pstate(&pstate_index,
74 	                             PAL_GET_PSTATE_TYPE_INSTANT);
75 	*value = (u32) pstate_index;
76 
77 	if (retval)
78 		pr_debug("Failed to get current freq with "
79 			"error 0x%lx, idx 0x%x\n", retval, *value);
80 
81 	return (int)retval;
82 }
83 
84 
85 /* To be used only after data->acpi_data is initialized */
86 static unsigned
87 extract_clock (
88 	struct cpufreq_acpi_io *data,
89 	unsigned value)
90 {
91 	unsigned long i;
92 
93 	pr_debug("extract_clock\n");
94 
95 	for (i = 0; i < data->acpi_data.state_count; i++) {
96 		if (value == data->acpi_data.states[i].status)
97 			return data->acpi_data.states[i].core_frequency;
98 	}
99 	return data->acpi_data.states[i-1].core_frequency;
100 }
101 
102 
103 static long
104 processor_get_freq (
105 	void *arg)
106 {
107 	struct cpufreq_acpi_req *req = arg;
108 	unsigned int		cpu = req->cpu;
109 	struct cpufreq_acpi_io	*data = acpi_io_data[cpu];
110 	u32			value;
111 	int			ret;
112 
113 	pr_debug("processor_get_freq\n");
114 	if (smp_processor_id() != cpu)
115 		return -EAGAIN;
116 
117 	/* processor_get_pstate gets the instantaneous frequency */
118 	ret = processor_get_pstate(&value);
119 	if (ret) {
120 		pr_warn("get performance failed with error %d\n", ret);
121 		return ret;
122 	}
123 	return 1000 * extract_clock(data, value);
124 }
125 
126 
127 static long
128 processor_set_freq (
129 	void *arg)
130 {
131 	struct cpufreq_acpi_req *req = arg;
132 	unsigned int		cpu = req->cpu;
133 	struct cpufreq_acpi_io	*data = acpi_io_data[cpu];
134 	int			ret, state = req->state;
135 	u32			value;
136 
137 	pr_debug("processor_set_freq\n");
138 	if (smp_processor_id() != cpu)
139 		return -EAGAIN;
140 
141 	if (state == data->acpi_data.state) {
142 		if (unlikely(data->resume)) {
143 			pr_debug("Called after resume, resetting to P%d\n", state);
144 			data->resume = 0;
145 		} else {
146 			pr_debug("Already at target state (P%d)\n", state);
147 			return 0;
148 		}
149 	}
150 
151 	pr_debug("Transitioning from P%d to P%d\n",
152 		data->acpi_data.state, state);
153 
154 	/*
155 	 * First we write the target state's 'control' value to the
156 	 * control_register.
157 	 */
158 	value = (u32) data->acpi_data.states[state].control;
159 
160 	pr_debug("Transitioning to state: 0x%08x\n", value);
161 
162 	ret = processor_set_pstate(value);
163 	if (ret) {
164 		pr_warn("Transition failed with error %d\n", ret);
165 		return -ENODEV;
166 	}
167 
168 	data->acpi_data.state = state;
169 	return 0;
170 }
171 
172 
173 static unsigned int
174 acpi_cpufreq_get (
175 	unsigned int		cpu)
176 {
177 	struct cpufreq_acpi_req req;
178 	long ret;
179 
180 	req.cpu = cpu;
181 	ret = work_on_cpu(cpu, processor_get_freq, &req);
182 
183 	return ret > 0 ? (unsigned int) ret : 0;
184 }
185 
186 
187 static int
188 acpi_cpufreq_target (
189 	struct cpufreq_policy   *policy,
190 	unsigned int index)
191 {
192 	struct cpufreq_acpi_req req;
193 
194 	req.cpu = policy->cpu;
195 	req.state = index;
196 
197 	return work_on_cpu(req.cpu, processor_set_freq, &req);
198 }
199 
200 static int
201 acpi_cpufreq_cpu_init (
202 	struct cpufreq_policy   *policy)
203 {
204 	unsigned int		i;
205 	unsigned int		cpu = policy->cpu;
206 	struct cpufreq_acpi_io	*data;
207 	unsigned int		result = 0;
208 	struct cpufreq_frequency_table *freq_table;
209 
210 	pr_debug("acpi_cpufreq_cpu_init\n");
211 
212 	data = kzalloc(sizeof(*data), GFP_KERNEL);
213 	if (!data)
214 		return (-ENOMEM);
215 
216 	acpi_io_data[cpu] = data;
217 
218 	result = acpi_processor_register_performance(&data->acpi_data, cpu);
219 
220 	if (result)
221 		goto err_free;
222 
223 	/* capability check */
224 	if (data->acpi_data.state_count <= 1) {
225 		pr_debug("No P-States\n");
226 		result = -ENODEV;
227 		goto err_unreg;
228 	}
229 
230 	if ((data->acpi_data.control_register.space_id !=
231 					ACPI_ADR_SPACE_FIXED_HARDWARE) ||
232 	    (data->acpi_data.status_register.space_id !=
233 					ACPI_ADR_SPACE_FIXED_HARDWARE)) {
234 		pr_debug("Unsupported address space [%d, %d]\n",
235 			(u32) (data->acpi_data.control_register.space_id),
236 			(u32) (data->acpi_data.status_register.space_id));
237 		result = -ENODEV;
238 		goto err_unreg;
239 	}
240 
241 	/* alloc freq_table */
242 	freq_table = kcalloc(data->acpi_data.state_count + 1,
243 	                           sizeof(*freq_table),
244 	                           GFP_KERNEL);
245 	if (!freq_table) {
246 		result = -ENOMEM;
247 		goto err_unreg;
248 	}
249 
250 	/* detect transition latency */
251 	policy->cpuinfo.transition_latency = 0;
252 	for (i=0; i<data->acpi_data.state_count; i++) {
253 		if ((data->acpi_data.states[i].transition_latency * 1000) >
254 		    policy->cpuinfo.transition_latency) {
255 			policy->cpuinfo.transition_latency =
256 			    data->acpi_data.states[i].transition_latency * 1000;
257 		}
258 	}
259 
260 	/* table init */
261 	for (i = 0; i <= data->acpi_data.state_count; i++)
262 	{
263 		if (i < data->acpi_data.state_count) {
264 			freq_table[i].frequency =
265 			      data->acpi_data.states[i].core_frequency * 1000;
266 		} else {
267 			freq_table[i].frequency = CPUFREQ_TABLE_END;
268 		}
269 	}
270 
271 	policy->freq_table = freq_table;
272 
273 	/* notify BIOS that we exist */
274 	acpi_processor_notify_smm(THIS_MODULE);
275 
276 	pr_info("CPU%u - ACPI performance management activated\n", cpu);
277 
278 	for (i = 0; i < data->acpi_data.state_count; i++)
279 		pr_debug("     %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n",
280 			(i == data->acpi_data.state?'*':' '), i,
281 			(u32) data->acpi_data.states[i].core_frequency,
282 			(u32) data->acpi_data.states[i].power,
283 			(u32) data->acpi_data.states[i].transition_latency,
284 			(u32) data->acpi_data.states[i].bus_master_latency,
285 			(u32) data->acpi_data.states[i].status,
286 			(u32) data->acpi_data.states[i].control);
287 
288 	/* the first call to ->target() should result in us actually
289 	 * writing something to the appropriate registers. */
290 	data->resume = 1;
291 
292 	return (result);
293 
294  err_unreg:
295 	acpi_processor_unregister_performance(cpu);
296  err_free:
297 	kfree(data);
298 	acpi_io_data[cpu] = NULL;
299 
300 	return (result);
301 }
302 
303 
304 static int
305 acpi_cpufreq_cpu_exit (
306 	struct cpufreq_policy   *policy)
307 {
308 	struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
309 
310 	pr_debug("acpi_cpufreq_cpu_exit\n");
311 
312 	if (data) {
313 		acpi_io_data[policy->cpu] = NULL;
314 		acpi_processor_unregister_performance(policy->cpu);
315 		kfree(policy->freq_table);
316 		kfree(data);
317 	}
318 
319 	return (0);
320 }
321 
322 
323 static struct cpufreq_driver acpi_cpufreq_driver = {
324 	.verify 	= cpufreq_generic_frequency_table_verify,
325 	.target_index	= acpi_cpufreq_target,
326 	.get 		= acpi_cpufreq_get,
327 	.init		= acpi_cpufreq_cpu_init,
328 	.exit		= acpi_cpufreq_cpu_exit,
329 	.name		= "acpi-cpufreq",
330 	.attr		= cpufreq_generic_attr,
331 };
332 
333 
334 static int __init
335 acpi_cpufreq_init (void)
336 {
337 	pr_debug("acpi_cpufreq_init\n");
338 
339  	return cpufreq_register_driver(&acpi_cpufreq_driver);
340 }
341 
342 
343 static void __exit
344 acpi_cpufreq_exit (void)
345 {
346 	pr_debug("acpi_cpufreq_exit\n");
347 
348 	cpufreq_unregister_driver(&acpi_cpufreq_driver);
349 }
350 
351 late_initcall(acpi_cpufreq_init);
352 module_exit(acpi_cpufreq_exit);
353