1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 
20 #include "cpufreq_ondemand.h"
21 
22 /* On-demand governor macros */
23 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
24 #define DEF_SAMPLING_DOWN_FACTOR		(1)
25 #define MAX_SAMPLING_DOWN_FACTOR		(100000)
26 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
27 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
28 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
29 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
30 
31 static struct od_ops od_ops;
32 
33 static unsigned int default_powersave_bias;
34 
35 /*
36  * Not all CPUs want IO time to be accounted as busy; this depends on how
37  * efficient idling at a higher frequency/voltage is.
38  * Pavel Machek says this is not so for various generations of AMD and old
39  * Intel systems.
40  * Mike Chan (android.com) claims this is also not true for ARM.
41  * Because of this, whitelist specific known (series) of CPUs by default, and
42  * leave all others up to the user.
43  */
44 static int should_io_be_busy(void)
45 {
46 #if defined(CONFIG_X86)
47 	/*
48 	 * For Intel, Core 2 (model 15) and later have an efficient idle.
49 	 */
50 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
51 			boot_cpu_data.x86 == 6 &&
52 			boot_cpu_data.x86_model >= 15)
53 		return 1;
54 #endif
55 	return 0;
56 }
57 
58 /*
59  * Find right freq to be set now with powersave_bias on.
60  * Returns the freq_hi to be used right now and will set freq_hi_delay_us,
61  * freq_lo, and freq_lo_delay_us in percpu area for averaging freqs.
62  */
63 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
64 		unsigned int freq_next, unsigned int relation)
65 {
66 	unsigned int freq_req, freq_reduc, freq_avg;
67 	unsigned int freq_hi, freq_lo;
68 	unsigned int index = 0;
69 	unsigned int delay_hi_us;
70 	struct policy_dbs_info *policy_dbs = policy->governor_data;
71 	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
72 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
73 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
74 
75 	if (!dbs_info->freq_table) {
76 		dbs_info->freq_lo = 0;
77 		dbs_info->freq_lo_delay_us = 0;
78 		return freq_next;
79 	}
80 
81 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
82 			relation, &index);
83 	freq_req = dbs_info->freq_table[index].frequency;
84 	freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
85 	freq_avg = freq_req - freq_reduc;
86 
87 	/* Find freq bounds for freq_avg in freq_table */
88 	index = 0;
89 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
90 			CPUFREQ_RELATION_H, &index);
91 	freq_lo = dbs_info->freq_table[index].frequency;
92 	index = 0;
93 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
94 			CPUFREQ_RELATION_L, &index);
95 	freq_hi = dbs_info->freq_table[index].frequency;
96 
97 	/* Find out how long we have to be in hi and lo freqs */
98 	if (freq_hi == freq_lo) {
99 		dbs_info->freq_lo = 0;
100 		dbs_info->freq_lo_delay_us = 0;
101 		return freq_lo;
102 	}
103 	delay_hi_us = (freq_avg - freq_lo) * dbs_data->sampling_rate;
104 	delay_hi_us += (freq_hi - freq_lo) / 2;
105 	delay_hi_us /= freq_hi - freq_lo;
106 	dbs_info->freq_hi_delay_us = delay_hi_us;
107 	dbs_info->freq_lo = freq_lo;
108 	dbs_info->freq_lo_delay_us = dbs_data->sampling_rate - delay_hi_us;
109 	return freq_hi;
110 }
111 
112 static void ondemand_powersave_bias_init(struct cpufreq_policy *policy)
113 {
114 	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
115 
116 	dbs_info->freq_table = policy->freq_table;
117 	dbs_info->freq_lo = 0;
118 }
119 
120 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
121 {
122 	struct policy_dbs_info *policy_dbs = policy->governor_data;
123 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
124 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
125 
126 	if (od_tuners->powersave_bias)
127 		freq = od_ops.powersave_bias_target(policy, freq,
128 				CPUFREQ_RELATION_H);
129 	else if (policy->cur == policy->max)
130 		return;
131 
132 	__cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
133 			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
134 }
135 
136 /*
137  * Every sampling_rate, we check, if current idle time is less than 20%
138  * (default), then we try to increase frequency. Else, we adjust the frequency
139  * proportional to load.
140  */
141 static void od_update(struct cpufreq_policy *policy)
142 {
143 	struct policy_dbs_info *policy_dbs = policy->governor_data;
144 	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
145 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
146 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
147 	unsigned int load = dbs_update(policy);
148 
149 	dbs_info->freq_lo = 0;
150 
151 	/* Check for frequency increase */
152 	if (load > dbs_data->up_threshold) {
153 		/* If switching to max speed, apply sampling_down_factor */
154 		if (policy->cur < policy->max)
155 			policy_dbs->rate_mult = dbs_data->sampling_down_factor;
156 		dbs_freq_increase(policy, policy->max);
157 	} else {
158 		/* Calculate the next frequency proportional to load */
159 		unsigned int freq_next, min_f, max_f;
160 
161 		min_f = policy->cpuinfo.min_freq;
162 		max_f = policy->cpuinfo.max_freq;
163 		freq_next = min_f + load * (max_f - min_f) / 100;
164 
165 		/* No longer fully busy, reset rate_mult */
166 		policy_dbs->rate_mult = 1;
167 
168 		if (od_tuners->powersave_bias)
169 			freq_next = od_ops.powersave_bias_target(policy,
170 								 freq_next,
171 								 CPUFREQ_RELATION_L);
172 
173 		__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
174 	}
175 }
176 
177 static unsigned int od_dbs_timer(struct cpufreq_policy *policy)
178 {
179 	struct policy_dbs_info *policy_dbs = policy->governor_data;
180 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
181 	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
182 	int sample_type = dbs_info->sample_type;
183 
184 	/* Common NORMAL_SAMPLE setup */
185 	dbs_info->sample_type = OD_NORMAL_SAMPLE;
186 	/*
187 	 * OD_SUB_SAMPLE doesn't make sense if sample_delay_ns is 0, so ignore
188 	 * it then.
189 	 */
190 	if (sample_type == OD_SUB_SAMPLE && policy_dbs->sample_delay_ns > 0) {
191 		__cpufreq_driver_target(policy, dbs_info->freq_lo,
192 					CPUFREQ_RELATION_H);
193 		return dbs_info->freq_lo_delay_us;
194 	}
195 
196 	od_update(policy);
197 
198 	if (dbs_info->freq_lo) {
199 		/* Setup timer for SUB_SAMPLE */
200 		dbs_info->sample_type = OD_SUB_SAMPLE;
201 		return dbs_info->freq_hi_delay_us;
202 	}
203 
204 	return dbs_data->sampling_rate * policy_dbs->rate_mult;
205 }
206 
207 /************************** sysfs interface ************************/
208 static struct dbs_governor od_dbs_gov;
209 
210 static ssize_t store_io_is_busy(struct gov_attr_set *attr_set, const char *buf,
211 				size_t count)
212 {
213 	struct dbs_data *dbs_data = to_dbs_data(attr_set);
214 	unsigned int input;
215 	int ret;
216 
217 	ret = sscanf(buf, "%u", &input);
218 	if (ret != 1)
219 		return -EINVAL;
220 	dbs_data->io_is_busy = !!input;
221 
222 	/* we need to re-evaluate prev_cpu_idle */
223 	gov_update_cpu_data(dbs_data);
224 
225 	return count;
226 }
227 
228 static ssize_t store_up_threshold(struct gov_attr_set *attr_set,
229 				  const char *buf, size_t count)
230 {
231 	struct dbs_data *dbs_data = to_dbs_data(attr_set);
232 	unsigned int input;
233 	int ret;
234 	ret = sscanf(buf, "%u", &input);
235 
236 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
237 			input < MIN_FREQUENCY_UP_THRESHOLD) {
238 		return -EINVAL;
239 	}
240 
241 	dbs_data->up_threshold = input;
242 	return count;
243 }
244 
245 static ssize_t store_sampling_down_factor(struct gov_attr_set *attr_set,
246 					  const char *buf, size_t count)
247 {
248 	struct dbs_data *dbs_data = to_dbs_data(attr_set);
249 	struct policy_dbs_info *policy_dbs;
250 	unsigned int input;
251 	int ret;
252 	ret = sscanf(buf, "%u", &input);
253 
254 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
255 		return -EINVAL;
256 
257 	dbs_data->sampling_down_factor = input;
258 
259 	/* Reset down sampling multiplier in case it was active */
260 	list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
261 		/*
262 		 * Doing this without locking might lead to using different
263 		 * rate_mult values in od_update() and od_dbs_timer().
264 		 */
265 		mutex_lock(&policy_dbs->timer_mutex);
266 		policy_dbs->rate_mult = 1;
267 		mutex_unlock(&policy_dbs->timer_mutex);
268 	}
269 
270 	return count;
271 }
272 
273 static ssize_t store_ignore_nice_load(struct gov_attr_set *attr_set,
274 				      const char *buf, size_t count)
275 {
276 	struct dbs_data *dbs_data = to_dbs_data(attr_set);
277 	unsigned int input;
278 	int ret;
279 
280 	ret = sscanf(buf, "%u", &input);
281 	if (ret != 1)
282 		return -EINVAL;
283 
284 	if (input > 1)
285 		input = 1;
286 
287 	if (input == dbs_data->ignore_nice_load) { /* nothing to do */
288 		return count;
289 	}
290 	dbs_data->ignore_nice_load = input;
291 
292 	/* we need to re-evaluate prev_cpu_idle */
293 	gov_update_cpu_data(dbs_data);
294 
295 	return count;
296 }
297 
298 static ssize_t store_powersave_bias(struct gov_attr_set *attr_set,
299 				    const char *buf, size_t count)
300 {
301 	struct dbs_data *dbs_data = to_dbs_data(attr_set);
302 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
303 	struct policy_dbs_info *policy_dbs;
304 	unsigned int input;
305 	int ret;
306 	ret = sscanf(buf, "%u", &input);
307 
308 	if (ret != 1)
309 		return -EINVAL;
310 
311 	if (input > 1000)
312 		input = 1000;
313 
314 	od_tuners->powersave_bias = input;
315 
316 	list_for_each_entry(policy_dbs, &attr_set->policy_list, list)
317 		ondemand_powersave_bias_init(policy_dbs->policy);
318 
319 	return count;
320 }
321 
322 gov_show_one_common(sampling_rate);
323 gov_show_one_common(up_threshold);
324 gov_show_one_common(sampling_down_factor);
325 gov_show_one_common(ignore_nice_load);
326 gov_show_one_common(min_sampling_rate);
327 gov_show_one_common(io_is_busy);
328 gov_show_one(od, powersave_bias);
329 
330 gov_attr_rw(sampling_rate);
331 gov_attr_rw(io_is_busy);
332 gov_attr_rw(up_threshold);
333 gov_attr_rw(sampling_down_factor);
334 gov_attr_rw(ignore_nice_load);
335 gov_attr_rw(powersave_bias);
336 gov_attr_ro(min_sampling_rate);
337 
338 static struct attribute *od_attributes[] = {
339 	&min_sampling_rate.attr,
340 	&sampling_rate.attr,
341 	&up_threshold.attr,
342 	&sampling_down_factor.attr,
343 	&ignore_nice_load.attr,
344 	&powersave_bias.attr,
345 	&io_is_busy.attr,
346 	NULL
347 };
348 
349 /************************** sysfs end ************************/
350 
351 static struct policy_dbs_info *od_alloc(void)
352 {
353 	struct od_policy_dbs_info *dbs_info;
354 
355 	dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
356 	return dbs_info ? &dbs_info->policy_dbs : NULL;
357 }
358 
359 static void od_free(struct policy_dbs_info *policy_dbs)
360 {
361 	kfree(to_dbs_info(policy_dbs));
362 }
363 
364 static int od_init(struct dbs_data *dbs_data)
365 {
366 	struct od_dbs_tuners *tuners;
367 	u64 idle_time;
368 	int cpu;
369 
370 	tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
371 	if (!tuners)
372 		return -ENOMEM;
373 
374 	cpu = get_cpu();
375 	idle_time = get_cpu_idle_time_us(cpu, NULL);
376 	put_cpu();
377 	if (idle_time != -1ULL) {
378 		/* Idle micro accounting is supported. Use finer thresholds */
379 		dbs_data->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
380 		/*
381 		 * In nohz/micro accounting case we set the minimum frequency
382 		 * not depending on HZ, but fixed (very low). The deferred
383 		 * timer might skip some samples if idle/sleeping as needed.
384 		*/
385 		dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
386 	} else {
387 		dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
388 
389 		/* For correct statistics, we need 10 ticks for each measure */
390 		dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
391 			jiffies_to_usecs(10);
392 	}
393 
394 	dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
395 	dbs_data->ignore_nice_load = 0;
396 	tuners->powersave_bias = default_powersave_bias;
397 	dbs_data->io_is_busy = should_io_be_busy();
398 
399 	dbs_data->tuners = tuners;
400 	return 0;
401 }
402 
403 static void od_exit(struct dbs_data *dbs_data)
404 {
405 	kfree(dbs_data->tuners);
406 }
407 
408 static void od_start(struct cpufreq_policy *policy)
409 {
410 	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
411 
412 	dbs_info->sample_type = OD_NORMAL_SAMPLE;
413 	ondemand_powersave_bias_init(policy);
414 }
415 
416 static struct od_ops od_ops = {
417 	.powersave_bias_target = generic_powersave_bias_target,
418 };
419 
420 static struct dbs_governor od_dbs_gov = {
421 	.gov = CPUFREQ_DBS_GOVERNOR_INITIALIZER("ondemand"),
422 	.kobj_type = { .default_attrs = od_attributes },
423 	.gov_dbs_timer = od_dbs_timer,
424 	.alloc = od_alloc,
425 	.free = od_free,
426 	.init = od_init,
427 	.exit = od_exit,
428 	.start = od_start,
429 };
430 
431 #define CPU_FREQ_GOV_ONDEMAND	(&od_dbs_gov.gov)
432 
433 static void od_set_powersave_bias(unsigned int powersave_bias)
434 {
435 	unsigned int cpu;
436 	cpumask_t done;
437 
438 	default_powersave_bias = powersave_bias;
439 	cpumask_clear(&done);
440 
441 	get_online_cpus();
442 	for_each_online_cpu(cpu) {
443 		struct cpufreq_policy *policy;
444 		struct policy_dbs_info *policy_dbs;
445 		struct dbs_data *dbs_data;
446 		struct od_dbs_tuners *od_tuners;
447 
448 		if (cpumask_test_cpu(cpu, &done))
449 			continue;
450 
451 		policy = cpufreq_cpu_get_raw(cpu);
452 		if (!policy || policy->governor != CPU_FREQ_GOV_ONDEMAND)
453 			continue;
454 
455 		policy_dbs = policy->governor_data;
456 		if (!policy_dbs)
457 			continue;
458 
459 		cpumask_or(&done, &done, policy->cpus);
460 
461 		dbs_data = policy_dbs->dbs_data;
462 		od_tuners = dbs_data->tuners;
463 		od_tuners->powersave_bias = default_powersave_bias;
464 	}
465 	put_online_cpus();
466 }
467 
468 void od_register_powersave_bias_handler(unsigned int (*f)
469 		(struct cpufreq_policy *, unsigned int, unsigned int),
470 		unsigned int powersave_bias)
471 {
472 	od_ops.powersave_bias_target = f;
473 	od_set_powersave_bias(powersave_bias);
474 }
475 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
476 
477 void od_unregister_powersave_bias_handler(void)
478 {
479 	od_ops.powersave_bias_target = generic_powersave_bias_target;
480 	od_set_powersave_bias(0);
481 }
482 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
483 
484 static int __init cpufreq_gov_dbs_init(void)
485 {
486 	return cpufreq_register_governor(CPU_FREQ_GOV_ONDEMAND);
487 }
488 
489 static void __exit cpufreq_gov_dbs_exit(void)
490 {
491 	cpufreq_unregister_governor(CPU_FREQ_GOV_ONDEMAND);
492 }
493 
494 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
495 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
496 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
497 	"Low Latency Frequency Transition capable processors");
498 MODULE_LICENSE("GPL");
499 
500 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
501 struct cpufreq_governor *cpufreq_default_governor(void)
502 {
503 	return CPU_FREQ_GOV_ONDEMAND;
504 }
505 
506 fs_initcall(cpufreq_gov_dbs_init);
507 #else
508 module_init(cpufreq_gov_dbs_init);
509 #endif
510 module_exit(cpufreq_gov_dbs_exit);
511