1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cpufreq.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/kobject.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/slab.h>
24 #include <linux/sysfs.h>
25 #include <linux/tick.h>
26 #include <linux/types.h>
27 #include <linux/cpu.h>
28 
29 #include "cpufreq_governor.h"
30 
31 /* On-demand governor macros */
32 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
33 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
34 #define DEF_SAMPLING_DOWN_FACTOR		(1)
35 #define MAX_SAMPLING_DOWN_FACTOR		(100000)
36 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
37 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
38 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
39 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
40 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
41 
42 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
43 
44 static struct od_ops od_ops;
45 
46 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
47 static struct cpufreq_governor cpufreq_gov_ondemand;
48 #endif
49 
50 static unsigned int default_powersave_bias;
51 
52 static void ondemand_powersave_bias_init_cpu(int cpu)
53 {
54 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
55 
56 	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
57 	dbs_info->freq_lo = 0;
58 }
59 
60 /*
61  * Not all CPUs want IO time to be accounted as busy; this depends on how
62  * efficient idling at a higher frequency/voltage is.
63  * Pavel Machek says this is not so for various generations of AMD and old
64  * Intel systems.
65  * Mike Chan (android.com) claims this is also not true for ARM.
66  * Because of this, whitelist specific known (series) of CPUs by default, and
67  * leave all others up to the user.
68  */
69 static int should_io_be_busy(void)
70 {
71 #if defined(CONFIG_X86)
72 	/*
73 	 * For Intel, Core 2 (model 15) and later have an efficient idle.
74 	 */
75 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
76 			boot_cpu_data.x86 == 6 &&
77 			boot_cpu_data.x86_model >= 15)
78 		return 1;
79 #endif
80 	return 0;
81 }
82 
83 /*
84  * Find right freq to be set now with powersave_bias on.
85  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
86  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
87  */
88 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
89 		unsigned int freq_next, unsigned int relation)
90 {
91 	unsigned int freq_req, freq_reduc, freq_avg;
92 	unsigned int freq_hi, freq_lo;
93 	unsigned int index = 0;
94 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
95 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
96 						   policy->cpu);
97 	struct dbs_data *dbs_data = policy->governor_data;
98 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
99 
100 	if (!dbs_info->freq_table) {
101 		dbs_info->freq_lo = 0;
102 		dbs_info->freq_lo_jiffies = 0;
103 		return freq_next;
104 	}
105 
106 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
107 			relation, &index);
108 	freq_req = dbs_info->freq_table[index].frequency;
109 	freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
110 	freq_avg = freq_req - freq_reduc;
111 
112 	/* Find freq bounds for freq_avg in freq_table */
113 	index = 0;
114 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
115 			CPUFREQ_RELATION_H, &index);
116 	freq_lo = dbs_info->freq_table[index].frequency;
117 	index = 0;
118 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
119 			CPUFREQ_RELATION_L, &index);
120 	freq_hi = dbs_info->freq_table[index].frequency;
121 
122 	/* Find out how long we have to be in hi and lo freqs */
123 	if (freq_hi == freq_lo) {
124 		dbs_info->freq_lo = 0;
125 		dbs_info->freq_lo_jiffies = 0;
126 		return freq_lo;
127 	}
128 	jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
129 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
130 	jiffies_hi += ((freq_hi - freq_lo) / 2);
131 	jiffies_hi /= (freq_hi - freq_lo);
132 	jiffies_lo = jiffies_total - jiffies_hi;
133 	dbs_info->freq_lo = freq_lo;
134 	dbs_info->freq_lo_jiffies = jiffies_lo;
135 	dbs_info->freq_hi_jiffies = jiffies_hi;
136 	return freq_hi;
137 }
138 
139 static void ondemand_powersave_bias_init(void)
140 {
141 	int i;
142 	for_each_online_cpu(i) {
143 		ondemand_powersave_bias_init_cpu(i);
144 	}
145 }
146 
147 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
148 {
149 	struct dbs_data *dbs_data = p->governor_data;
150 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
151 
152 	if (od_tuners->powersave_bias)
153 		freq = od_ops.powersave_bias_target(p, freq,
154 				CPUFREQ_RELATION_H);
155 	else if (p->cur == p->max)
156 		return;
157 
158 	__cpufreq_driver_target(p, freq, od_tuners->powersave_bias ?
159 			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
160 }
161 
162 /*
163  * Every sampling_rate, we check, if current idle time is less than 20%
164  * (default), then we try to increase frequency. Every sampling_rate, we look
165  * for the lowest frequency which can sustain the load while keeping idle time
166  * over 30%. If such a frequency exist, we try to decrease to this frequency.
167  *
168  * Any frequency increase takes it to the maximum frequency. Frequency reduction
169  * happens at minimum steps of 5% (default) of current frequency
170  */
171 static void od_check_cpu(int cpu, unsigned int load_freq)
172 {
173 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
174 	struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
175 	struct dbs_data *dbs_data = policy->governor_data;
176 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
177 
178 	dbs_info->freq_lo = 0;
179 
180 	/* Check for frequency increase */
181 	if (load_freq > od_tuners->up_threshold * policy->cur) {
182 		/* If switching to max speed, apply sampling_down_factor */
183 		if (policy->cur < policy->max)
184 			dbs_info->rate_mult =
185 				od_tuners->sampling_down_factor;
186 		dbs_freq_increase(policy, policy->max);
187 		return;
188 	}
189 
190 	/* Check for frequency decrease */
191 	/* if we cannot reduce the frequency anymore, break out early */
192 	if (policy->cur == policy->min)
193 		return;
194 
195 	/*
196 	 * The optimal frequency is the frequency that is the lowest that can
197 	 * support the current CPU usage without triggering the up policy. To be
198 	 * safe, we focus 10 points under the threshold.
199 	 */
200 	if (load_freq < od_tuners->adj_up_threshold
201 			* policy->cur) {
202 		unsigned int freq_next;
203 		freq_next = load_freq / od_tuners->adj_up_threshold;
204 
205 		/* No longer fully busy, reset rate_mult */
206 		dbs_info->rate_mult = 1;
207 
208 		if (freq_next < policy->min)
209 			freq_next = policy->min;
210 
211 		if (!od_tuners->powersave_bias) {
212 			__cpufreq_driver_target(policy, freq_next,
213 					CPUFREQ_RELATION_L);
214 			return;
215 		}
216 
217 		freq_next = od_ops.powersave_bias_target(policy, freq_next,
218 					CPUFREQ_RELATION_L);
219 		__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
220 	}
221 }
222 
223 static void od_dbs_timer(struct work_struct *work)
224 {
225 	struct od_cpu_dbs_info_s *dbs_info =
226 		container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
227 	unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
228 	struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
229 			cpu);
230 	struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
231 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
232 	int delay = 0, sample_type = core_dbs_info->sample_type;
233 	bool modify_all = true;
234 
235 	mutex_lock(&core_dbs_info->cdbs.timer_mutex);
236 	if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate)) {
237 		modify_all = false;
238 		goto max_delay;
239 	}
240 
241 	/* Common NORMAL_SAMPLE setup */
242 	core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
243 	if (sample_type == OD_SUB_SAMPLE) {
244 		delay = core_dbs_info->freq_lo_jiffies;
245 		__cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
246 				core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
247 	} else {
248 		dbs_check_cpu(dbs_data, cpu);
249 		if (core_dbs_info->freq_lo) {
250 			/* Setup timer for SUB_SAMPLE */
251 			core_dbs_info->sample_type = OD_SUB_SAMPLE;
252 			delay = core_dbs_info->freq_hi_jiffies;
253 		}
254 	}
255 
256 max_delay:
257 	if (!delay)
258 		delay = delay_for_sampling_rate(od_tuners->sampling_rate
259 				* core_dbs_info->rate_mult);
260 
261 	gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
262 	mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
263 }
264 
265 /************************** sysfs interface ************************/
266 static struct common_dbs_data od_dbs_cdata;
267 
268 /**
269  * update_sampling_rate - update sampling rate effective immediately if needed.
270  * @new_rate: new sampling rate
271  *
272  * If new rate is smaller than the old, simply updating
273  * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
274  * original sampling_rate was 1 second and the requested new sampling rate is 10
275  * ms because the user needs immediate reaction from ondemand governor, but not
276  * sure if higher frequency will be required or not, then, the governor may
277  * change the sampling rate too late; up to 1 second later. Thus, if we are
278  * reducing the sampling rate, we need to make the new value effective
279  * immediately.
280  */
281 static void update_sampling_rate(struct dbs_data *dbs_data,
282 		unsigned int new_rate)
283 {
284 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
285 	int cpu;
286 
287 	od_tuners->sampling_rate = new_rate = max(new_rate,
288 			dbs_data->min_sampling_rate);
289 
290 	for_each_online_cpu(cpu) {
291 		struct cpufreq_policy *policy;
292 		struct od_cpu_dbs_info_s *dbs_info;
293 		unsigned long next_sampling, appointed_at;
294 
295 		policy = cpufreq_cpu_get(cpu);
296 		if (!policy)
297 			continue;
298 		if (policy->governor != &cpufreq_gov_ondemand) {
299 			cpufreq_cpu_put(policy);
300 			continue;
301 		}
302 		dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
303 		cpufreq_cpu_put(policy);
304 
305 		mutex_lock(&dbs_info->cdbs.timer_mutex);
306 
307 		if (!delayed_work_pending(&dbs_info->cdbs.work)) {
308 			mutex_unlock(&dbs_info->cdbs.timer_mutex);
309 			continue;
310 		}
311 
312 		next_sampling = jiffies + usecs_to_jiffies(new_rate);
313 		appointed_at = dbs_info->cdbs.work.timer.expires;
314 
315 		if (time_before(next_sampling, appointed_at)) {
316 
317 			mutex_unlock(&dbs_info->cdbs.timer_mutex);
318 			cancel_delayed_work_sync(&dbs_info->cdbs.work);
319 			mutex_lock(&dbs_info->cdbs.timer_mutex);
320 
321 			gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy,
322 					usecs_to_jiffies(new_rate), true);
323 
324 		}
325 		mutex_unlock(&dbs_info->cdbs.timer_mutex);
326 	}
327 }
328 
329 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
330 		size_t count)
331 {
332 	unsigned int input;
333 	int ret;
334 	ret = sscanf(buf, "%u", &input);
335 	if (ret != 1)
336 		return -EINVAL;
337 
338 	update_sampling_rate(dbs_data, input);
339 	return count;
340 }
341 
342 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
343 		size_t count)
344 {
345 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
346 	unsigned int input;
347 	int ret;
348 	unsigned int j;
349 
350 	ret = sscanf(buf, "%u", &input);
351 	if (ret != 1)
352 		return -EINVAL;
353 	od_tuners->io_is_busy = !!input;
354 
355 	/* we need to re-evaluate prev_cpu_idle */
356 	for_each_online_cpu(j) {
357 		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
358 									j);
359 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
360 			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
361 	}
362 	return count;
363 }
364 
365 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
366 		size_t count)
367 {
368 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
369 	unsigned int input;
370 	int ret;
371 	ret = sscanf(buf, "%u", &input);
372 
373 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
374 			input < MIN_FREQUENCY_UP_THRESHOLD) {
375 		return -EINVAL;
376 	}
377 	/* Calculate the new adj_up_threshold */
378 	od_tuners->adj_up_threshold += input;
379 	od_tuners->adj_up_threshold -= od_tuners->up_threshold;
380 
381 	od_tuners->up_threshold = input;
382 	return count;
383 }
384 
385 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
386 		const char *buf, size_t count)
387 {
388 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
389 	unsigned int input, j;
390 	int ret;
391 	ret = sscanf(buf, "%u", &input);
392 
393 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
394 		return -EINVAL;
395 	od_tuners->sampling_down_factor = input;
396 
397 	/* Reset down sampling multiplier in case it was active */
398 	for_each_online_cpu(j) {
399 		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
400 				j);
401 		dbs_info->rate_mult = 1;
402 	}
403 	return count;
404 }
405 
406 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
407 		const char *buf, size_t count)
408 {
409 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
410 	unsigned int input;
411 	int ret;
412 
413 	unsigned int j;
414 
415 	ret = sscanf(buf, "%u", &input);
416 	if (ret != 1)
417 		return -EINVAL;
418 
419 	if (input > 1)
420 		input = 1;
421 
422 	if (input == od_tuners->ignore_nice_load) { /* nothing to do */
423 		return count;
424 	}
425 	od_tuners->ignore_nice_load = input;
426 
427 	/* we need to re-evaluate prev_cpu_idle */
428 	for_each_online_cpu(j) {
429 		struct od_cpu_dbs_info_s *dbs_info;
430 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
431 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
432 			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
433 		if (od_tuners->ignore_nice_load)
434 			dbs_info->cdbs.prev_cpu_nice =
435 				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
436 
437 	}
438 	return count;
439 }
440 
441 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
442 		size_t count)
443 {
444 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
445 	unsigned int input;
446 	int ret;
447 	ret = sscanf(buf, "%u", &input);
448 
449 	if (ret != 1)
450 		return -EINVAL;
451 
452 	if (input > 1000)
453 		input = 1000;
454 
455 	od_tuners->powersave_bias = input;
456 	ondemand_powersave_bias_init();
457 	return count;
458 }
459 
460 show_store_one(od, sampling_rate);
461 show_store_one(od, io_is_busy);
462 show_store_one(od, up_threshold);
463 show_store_one(od, sampling_down_factor);
464 show_store_one(od, ignore_nice_load);
465 show_store_one(od, powersave_bias);
466 declare_show_sampling_rate_min(od);
467 
468 gov_sys_pol_attr_rw(sampling_rate);
469 gov_sys_pol_attr_rw(io_is_busy);
470 gov_sys_pol_attr_rw(up_threshold);
471 gov_sys_pol_attr_rw(sampling_down_factor);
472 gov_sys_pol_attr_rw(ignore_nice_load);
473 gov_sys_pol_attr_rw(powersave_bias);
474 gov_sys_pol_attr_ro(sampling_rate_min);
475 
476 static struct attribute *dbs_attributes_gov_sys[] = {
477 	&sampling_rate_min_gov_sys.attr,
478 	&sampling_rate_gov_sys.attr,
479 	&up_threshold_gov_sys.attr,
480 	&sampling_down_factor_gov_sys.attr,
481 	&ignore_nice_load_gov_sys.attr,
482 	&powersave_bias_gov_sys.attr,
483 	&io_is_busy_gov_sys.attr,
484 	NULL
485 };
486 
487 static struct attribute_group od_attr_group_gov_sys = {
488 	.attrs = dbs_attributes_gov_sys,
489 	.name = "ondemand",
490 };
491 
492 static struct attribute *dbs_attributes_gov_pol[] = {
493 	&sampling_rate_min_gov_pol.attr,
494 	&sampling_rate_gov_pol.attr,
495 	&up_threshold_gov_pol.attr,
496 	&sampling_down_factor_gov_pol.attr,
497 	&ignore_nice_load_gov_pol.attr,
498 	&powersave_bias_gov_pol.attr,
499 	&io_is_busy_gov_pol.attr,
500 	NULL
501 };
502 
503 static struct attribute_group od_attr_group_gov_pol = {
504 	.attrs = dbs_attributes_gov_pol,
505 	.name = "ondemand",
506 };
507 
508 /************************** sysfs end ************************/
509 
510 static int od_init(struct dbs_data *dbs_data)
511 {
512 	struct od_dbs_tuners *tuners;
513 	u64 idle_time;
514 	int cpu;
515 
516 	tuners = kzalloc(sizeof(struct od_dbs_tuners), GFP_KERNEL);
517 	if (!tuners) {
518 		pr_err("%s: kzalloc failed\n", __func__);
519 		return -ENOMEM;
520 	}
521 
522 	cpu = get_cpu();
523 	idle_time = get_cpu_idle_time_us(cpu, NULL);
524 	put_cpu();
525 	if (idle_time != -1ULL) {
526 		/* Idle micro accounting is supported. Use finer thresholds */
527 		tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
528 		tuners->adj_up_threshold = MICRO_FREQUENCY_UP_THRESHOLD -
529 			MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
530 		/*
531 		 * In nohz/micro accounting case we set the minimum frequency
532 		 * not depending on HZ, but fixed (very low). The deferred
533 		 * timer might skip some samples if idle/sleeping as needed.
534 		*/
535 		dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
536 	} else {
537 		tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
538 		tuners->adj_up_threshold = DEF_FREQUENCY_UP_THRESHOLD -
539 			DEF_FREQUENCY_DOWN_DIFFERENTIAL;
540 
541 		/* For correct statistics, we need 10 ticks for each measure */
542 		dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
543 			jiffies_to_usecs(10);
544 	}
545 
546 	tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
547 	tuners->ignore_nice_load = 0;
548 	tuners->powersave_bias = default_powersave_bias;
549 	tuners->io_is_busy = should_io_be_busy();
550 
551 	dbs_data->tuners = tuners;
552 	mutex_init(&dbs_data->mutex);
553 	return 0;
554 }
555 
556 static void od_exit(struct dbs_data *dbs_data)
557 {
558 	kfree(dbs_data->tuners);
559 }
560 
561 define_get_cpu_dbs_routines(od_cpu_dbs_info);
562 
563 static struct od_ops od_ops = {
564 	.powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
565 	.powersave_bias_target = generic_powersave_bias_target,
566 	.freq_increase = dbs_freq_increase,
567 };
568 
569 static struct common_dbs_data od_dbs_cdata = {
570 	.governor = GOV_ONDEMAND,
571 	.attr_group_gov_sys = &od_attr_group_gov_sys,
572 	.attr_group_gov_pol = &od_attr_group_gov_pol,
573 	.get_cpu_cdbs = get_cpu_cdbs,
574 	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
575 	.gov_dbs_timer = od_dbs_timer,
576 	.gov_check_cpu = od_check_cpu,
577 	.gov_ops = &od_ops,
578 	.init = od_init,
579 	.exit = od_exit,
580 };
581 
582 static void od_set_powersave_bias(unsigned int powersave_bias)
583 {
584 	struct cpufreq_policy *policy;
585 	struct dbs_data *dbs_data;
586 	struct od_dbs_tuners *od_tuners;
587 	unsigned int cpu;
588 	cpumask_t done;
589 
590 	default_powersave_bias = powersave_bias;
591 	cpumask_clear(&done);
592 
593 	get_online_cpus();
594 	for_each_online_cpu(cpu) {
595 		if (cpumask_test_cpu(cpu, &done))
596 			continue;
597 
598 		policy = per_cpu(od_cpu_dbs_info, cpu).cdbs.cur_policy;
599 		if (!policy)
600 			continue;
601 
602 		cpumask_or(&done, &done, policy->cpus);
603 
604 		if (policy->governor != &cpufreq_gov_ondemand)
605 			continue;
606 
607 		dbs_data = policy->governor_data;
608 		od_tuners = dbs_data->tuners;
609 		od_tuners->powersave_bias = default_powersave_bias;
610 	}
611 	put_online_cpus();
612 }
613 
614 void od_register_powersave_bias_handler(unsigned int (*f)
615 		(struct cpufreq_policy *, unsigned int, unsigned int),
616 		unsigned int powersave_bias)
617 {
618 	od_ops.powersave_bias_target = f;
619 	od_set_powersave_bias(powersave_bias);
620 }
621 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
622 
623 void od_unregister_powersave_bias_handler(void)
624 {
625 	od_ops.powersave_bias_target = generic_powersave_bias_target;
626 	od_set_powersave_bias(0);
627 }
628 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
629 
630 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
631 		unsigned int event)
632 {
633 	return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
634 }
635 
636 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
637 static
638 #endif
639 struct cpufreq_governor cpufreq_gov_ondemand = {
640 	.name			= "ondemand",
641 	.governor		= od_cpufreq_governor_dbs,
642 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
643 	.owner			= THIS_MODULE,
644 };
645 
646 static int __init cpufreq_gov_dbs_init(void)
647 {
648 	return cpufreq_register_governor(&cpufreq_gov_ondemand);
649 }
650 
651 static void __exit cpufreq_gov_dbs_exit(void)
652 {
653 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
654 }
655 
656 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
657 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
658 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
659 	"Low Latency Frequency Transition capable processors");
660 MODULE_LICENSE("GPL");
661 
662 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
663 fs_initcall(cpufreq_gov_dbs_init);
664 #else
665 module_init(cpufreq_gov_dbs_init);
666 #endif
667 module_exit(cpufreq_gov_dbs_exit);
668