xref: /openbmc/linux/drivers/cpufreq/cpufreq_ondemand.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
25 
26 /*
27  * dbs is used in this file as a shortform for demandbased switching
28  * It helps to keep variable names smaller, simpler
29  */
30 
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
32 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 #define DEF_SAMPLING_DOWN_FACTOR		(1)
34 #define MAX_SAMPLING_DOWN_FACTOR		(100000)
35 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
36 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
37 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
38 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
39 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
40 
41 /*
42  * The polling frequency of this governor depends on the capability of
43  * the processor. Default polling frequency is 1000 times the transition
44  * latency of the processor. The governor will work on any processor with
45  * transition latency <= 10mS, using appropriate sampling
46  * rate.
47  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48  * this governor will not work.
49  * All times here are in uS.
50  */
51 #define MIN_SAMPLING_RATE_RATIO			(2)
52 
53 static unsigned int min_sampling_rate;
54 
55 #define LATENCY_MULTIPLIER			(1000)
56 #define MIN_LATENCY_MULTIPLIER			(100)
57 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
58 
59 static void do_dbs_timer(struct work_struct *work);
60 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61 				unsigned int event);
62 
63 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64 static
65 #endif
66 struct cpufreq_governor cpufreq_gov_ondemand = {
67        .name                   = "ondemand",
68        .governor               = cpufreq_governor_dbs,
69        .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70        .owner                  = THIS_MODULE,
71 };
72 
73 /* Sampling types */
74 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
75 
76 struct cpu_dbs_info_s {
77 	cputime64_t prev_cpu_idle;
78 	cputime64_t prev_cpu_iowait;
79 	cputime64_t prev_cpu_wall;
80 	cputime64_t prev_cpu_nice;
81 	struct cpufreq_policy *cur_policy;
82 	struct delayed_work work;
83 	struct cpufreq_frequency_table *freq_table;
84 	unsigned int freq_lo;
85 	unsigned int freq_lo_jiffies;
86 	unsigned int freq_hi_jiffies;
87 	unsigned int rate_mult;
88 	int cpu;
89 	unsigned int sample_type:1;
90 	/*
91 	 * percpu mutex that serializes governor limit change with
92 	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 	 * when user is changing the governor or limits.
94 	 */
95 	struct mutex timer_mutex;
96 };
97 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
98 
99 static unsigned int dbs_enable;	/* number of CPUs using this policy */
100 
101 /*
102  * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
103  * different CPUs. It protects dbs_enable in governor start/stop.
104  */
105 static DEFINE_MUTEX(dbs_mutex);
106 
107 static struct workqueue_struct	*kondemand_wq;
108 
109 static struct dbs_tuners {
110 	unsigned int sampling_rate;
111 	unsigned int up_threshold;
112 	unsigned int down_differential;
113 	unsigned int ignore_nice;
114 	unsigned int sampling_down_factor;
115 	unsigned int powersave_bias;
116 	unsigned int io_is_busy;
117 } dbs_tuners_ins = {
118 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
119 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
120 	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
121 	.ignore_nice = 0,
122 	.powersave_bias = 0,
123 };
124 
125 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
126 							cputime64_t *wall)
127 {
128 	cputime64_t idle_time;
129 	cputime64_t cur_wall_time;
130 	cputime64_t busy_time;
131 
132 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
133 	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
134 			kstat_cpu(cpu).cpustat.system);
135 
136 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
137 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
138 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
139 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
140 
141 	idle_time = cputime64_sub(cur_wall_time, busy_time);
142 	if (wall)
143 		*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
144 
145 	return (cputime64_t)jiffies_to_usecs(idle_time);
146 }
147 
148 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
149 {
150 	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
151 
152 	if (idle_time == -1ULL)
153 		return get_cpu_idle_time_jiffy(cpu, wall);
154 
155 	return idle_time;
156 }
157 
158 static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
159 {
160 	u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
161 
162 	if (iowait_time == -1ULL)
163 		return 0;
164 
165 	return iowait_time;
166 }
167 
168 /*
169  * Find right freq to be set now with powersave_bias on.
170  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
171  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
172  */
173 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
174 					  unsigned int freq_next,
175 					  unsigned int relation)
176 {
177 	unsigned int freq_req, freq_reduc, freq_avg;
178 	unsigned int freq_hi, freq_lo;
179 	unsigned int index = 0;
180 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
181 	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
182 						   policy->cpu);
183 
184 	if (!dbs_info->freq_table) {
185 		dbs_info->freq_lo = 0;
186 		dbs_info->freq_lo_jiffies = 0;
187 		return freq_next;
188 	}
189 
190 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
191 			relation, &index);
192 	freq_req = dbs_info->freq_table[index].frequency;
193 	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
194 	freq_avg = freq_req - freq_reduc;
195 
196 	/* Find freq bounds for freq_avg in freq_table */
197 	index = 0;
198 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
199 			CPUFREQ_RELATION_H, &index);
200 	freq_lo = dbs_info->freq_table[index].frequency;
201 	index = 0;
202 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
203 			CPUFREQ_RELATION_L, &index);
204 	freq_hi = dbs_info->freq_table[index].frequency;
205 
206 	/* Find out how long we have to be in hi and lo freqs */
207 	if (freq_hi == freq_lo) {
208 		dbs_info->freq_lo = 0;
209 		dbs_info->freq_lo_jiffies = 0;
210 		return freq_lo;
211 	}
212 	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
213 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
214 	jiffies_hi += ((freq_hi - freq_lo) / 2);
215 	jiffies_hi /= (freq_hi - freq_lo);
216 	jiffies_lo = jiffies_total - jiffies_hi;
217 	dbs_info->freq_lo = freq_lo;
218 	dbs_info->freq_lo_jiffies = jiffies_lo;
219 	dbs_info->freq_hi_jiffies = jiffies_hi;
220 	return freq_hi;
221 }
222 
223 static void ondemand_powersave_bias_init_cpu(int cpu)
224 {
225 	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
226 	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
227 	dbs_info->freq_lo = 0;
228 }
229 
230 static void ondemand_powersave_bias_init(void)
231 {
232 	int i;
233 	for_each_online_cpu(i) {
234 		ondemand_powersave_bias_init_cpu(i);
235 	}
236 }
237 
238 /************************** sysfs interface ************************/
239 
240 static ssize_t show_sampling_rate_max(struct kobject *kobj,
241 				      struct attribute *attr, char *buf)
242 {
243 	printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
244 	       "sysfs file is deprecated - used by: %s\n", current->comm);
245 	return sprintf(buf, "%u\n", -1U);
246 }
247 
248 static ssize_t show_sampling_rate_min(struct kobject *kobj,
249 				      struct attribute *attr, char *buf)
250 {
251 	return sprintf(buf, "%u\n", min_sampling_rate);
252 }
253 
254 define_one_global_ro(sampling_rate_max);
255 define_one_global_ro(sampling_rate_min);
256 
257 /* cpufreq_ondemand Governor Tunables */
258 #define show_one(file_name, object)					\
259 static ssize_t show_##file_name						\
260 (struct kobject *kobj, struct attribute *attr, char *buf)              \
261 {									\
262 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
263 }
264 show_one(sampling_rate, sampling_rate);
265 show_one(io_is_busy, io_is_busy);
266 show_one(up_threshold, up_threshold);
267 show_one(sampling_down_factor, sampling_down_factor);
268 show_one(ignore_nice_load, ignore_nice);
269 show_one(powersave_bias, powersave_bias);
270 
271 /*** delete after deprecation time ***/
272 
273 #define DEPRECATION_MSG(file_name)					\
274 	printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "	\
275 		    "interface is deprecated - " #file_name "\n");
276 
277 #define show_one_old(file_name)						\
278 static ssize_t show_##file_name##_old					\
279 (struct cpufreq_policy *unused, char *buf)				\
280 {									\
281 	printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "	\
282 		    "interface is deprecated - " #file_name "\n");	\
283 	return show_##file_name(NULL, NULL, buf);			\
284 }
285 show_one_old(sampling_rate);
286 show_one_old(up_threshold);
287 show_one_old(ignore_nice_load);
288 show_one_old(powersave_bias);
289 show_one_old(sampling_rate_min);
290 show_one_old(sampling_rate_max);
291 
292 cpufreq_freq_attr_ro_old(sampling_rate_min);
293 cpufreq_freq_attr_ro_old(sampling_rate_max);
294 
295 /*** delete after deprecation time ***/
296 
297 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
298 				   const char *buf, size_t count)
299 {
300 	unsigned int input;
301 	int ret;
302 	ret = sscanf(buf, "%u", &input);
303 	if (ret != 1)
304 		return -EINVAL;
305 
306 	mutex_lock(&dbs_mutex);
307 	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
308 	mutex_unlock(&dbs_mutex);
309 
310 	return count;
311 }
312 
313 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
314 				   const char *buf, size_t count)
315 {
316 	unsigned int input;
317 	int ret;
318 
319 	ret = sscanf(buf, "%u", &input);
320 	if (ret != 1)
321 		return -EINVAL;
322 
323 	mutex_lock(&dbs_mutex);
324 	dbs_tuners_ins.io_is_busy = !!input;
325 	mutex_unlock(&dbs_mutex);
326 
327 	return count;
328 }
329 
330 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
331 				  const char *buf, size_t count)
332 {
333 	unsigned int input;
334 	int ret;
335 	ret = sscanf(buf, "%u", &input);
336 
337 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
338 			input < MIN_FREQUENCY_UP_THRESHOLD) {
339 		return -EINVAL;
340 	}
341 
342 	mutex_lock(&dbs_mutex);
343 	dbs_tuners_ins.up_threshold = input;
344 	mutex_unlock(&dbs_mutex);
345 
346 	return count;
347 }
348 
349 static ssize_t store_sampling_down_factor(struct kobject *a,
350 			struct attribute *b, const char *buf, size_t count)
351 {
352 	unsigned int input, j;
353 	int ret;
354 	ret = sscanf(buf, "%u", &input);
355 
356 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
357 		return -EINVAL;
358 	mutex_lock(&dbs_mutex);
359 	dbs_tuners_ins.sampling_down_factor = input;
360 
361 	/* Reset down sampling multiplier in case it was active */
362 	for_each_online_cpu(j) {
363 		struct cpu_dbs_info_s *dbs_info;
364 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
365 		dbs_info->rate_mult = 1;
366 	}
367 	mutex_unlock(&dbs_mutex);
368 
369 	return count;
370 }
371 
372 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
373 				      const char *buf, size_t count)
374 {
375 	unsigned int input;
376 	int ret;
377 
378 	unsigned int j;
379 
380 	ret = sscanf(buf, "%u", &input);
381 	if (ret != 1)
382 		return -EINVAL;
383 
384 	if (input > 1)
385 		input = 1;
386 
387 	mutex_lock(&dbs_mutex);
388 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
389 		mutex_unlock(&dbs_mutex);
390 		return count;
391 	}
392 	dbs_tuners_ins.ignore_nice = input;
393 
394 	/* we need to re-evaluate prev_cpu_idle */
395 	for_each_online_cpu(j) {
396 		struct cpu_dbs_info_s *dbs_info;
397 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
398 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
399 						&dbs_info->prev_cpu_wall);
400 		if (dbs_tuners_ins.ignore_nice)
401 			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
402 
403 	}
404 	mutex_unlock(&dbs_mutex);
405 
406 	return count;
407 }
408 
409 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
410 				    const char *buf, size_t count)
411 {
412 	unsigned int input;
413 	int ret;
414 	ret = sscanf(buf, "%u", &input);
415 
416 	if (ret != 1)
417 		return -EINVAL;
418 
419 	if (input > 1000)
420 		input = 1000;
421 
422 	mutex_lock(&dbs_mutex);
423 	dbs_tuners_ins.powersave_bias = input;
424 	ondemand_powersave_bias_init();
425 	mutex_unlock(&dbs_mutex);
426 
427 	return count;
428 }
429 
430 define_one_global_rw(sampling_rate);
431 define_one_global_rw(io_is_busy);
432 define_one_global_rw(up_threshold);
433 define_one_global_rw(sampling_down_factor);
434 define_one_global_rw(ignore_nice_load);
435 define_one_global_rw(powersave_bias);
436 
437 static struct attribute *dbs_attributes[] = {
438 	&sampling_rate_max.attr,
439 	&sampling_rate_min.attr,
440 	&sampling_rate.attr,
441 	&up_threshold.attr,
442 	&sampling_down_factor.attr,
443 	&ignore_nice_load.attr,
444 	&powersave_bias.attr,
445 	&io_is_busy.attr,
446 	NULL
447 };
448 
449 static struct attribute_group dbs_attr_group = {
450 	.attrs = dbs_attributes,
451 	.name = "ondemand",
452 };
453 
454 /*** delete after deprecation time ***/
455 
456 #define write_one_old(file_name)					\
457 static ssize_t store_##file_name##_old					\
458 (struct cpufreq_policy *unused, const char *buf, size_t count)		\
459 {									\
460        printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "	\
461 		   "interface is deprecated - " #file_name "\n");	\
462        return store_##file_name(NULL, NULL, buf, count);		\
463 }
464 write_one_old(sampling_rate);
465 write_one_old(up_threshold);
466 write_one_old(ignore_nice_load);
467 write_one_old(powersave_bias);
468 
469 cpufreq_freq_attr_rw_old(sampling_rate);
470 cpufreq_freq_attr_rw_old(up_threshold);
471 cpufreq_freq_attr_rw_old(ignore_nice_load);
472 cpufreq_freq_attr_rw_old(powersave_bias);
473 
474 static struct attribute *dbs_attributes_old[] = {
475        &sampling_rate_max_old.attr,
476        &sampling_rate_min_old.attr,
477        &sampling_rate_old.attr,
478        &up_threshold_old.attr,
479        &ignore_nice_load_old.attr,
480        &powersave_bias_old.attr,
481        NULL
482 };
483 
484 static struct attribute_group dbs_attr_group_old = {
485        .attrs = dbs_attributes_old,
486        .name = "ondemand",
487 };
488 
489 /*** delete after deprecation time ***/
490 
491 /************************** sysfs end ************************/
492 
493 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
494 {
495 	if (dbs_tuners_ins.powersave_bias)
496 		freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
497 	else if (p->cur == p->max)
498 		return;
499 
500 	__cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
501 			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
502 }
503 
504 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
505 {
506 	unsigned int max_load_freq;
507 
508 	struct cpufreq_policy *policy;
509 	unsigned int j;
510 
511 	this_dbs_info->freq_lo = 0;
512 	policy = this_dbs_info->cur_policy;
513 
514 	/*
515 	 * Every sampling_rate, we check, if current idle time is less
516 	 * than 20% (default), then we try to increase frequency
517 	 * Every sampling_rate, we look for a the lowest
518 	 * frequency which can sustain the load while keeping idle time over
519 	 * 30%. If such a frequency exist, we try to decrease to this frequency.
520 	 *
521 	 * Any frequency increase takes it to the maximum frequency.
522 	 * Frequency reduction happens at minimum steps of
523 	 * 5% (default) of current frequency
524 	 */
525 
526 	/* Get Absolute Load - in terms of freq */
527 	max_load_freq = 0;
528 
529 	for_each_cpu(j, policy->cpus) {
530 		struct cpu_dbs_info_s *j_dbs_info;
531 		cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
532 		unsigned int idle_time, wall_time, iowait_time;
533 		unsigned int load, load_freq;
534 		int freq_avg;
535 
536 		j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
537 
538 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
539 		cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
540 
541 		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
542 				j_dbs_info->prev_cpu_wall);
543 		j_dbs_info->prev_cpu_wall = cur_wall_time;
544 
545 		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
546 				j_dbs_info->prev_cpu_idle);
547 		j_dbs_info->prev_cpu_idle = cur_idle_time;
548 
549 		iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
550 				j_dbs_info->prev_cpu_iowait);
551 		j_dbs_info->prev_cpu_iowait = cur_iowait_time;
552 
553 		if (dbs_tuners_ins.ignore_nice) {
554 			cputime64_t cur_nice;
555 			unsigned long cur_nice_jiffies;
556 
557 			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
558 					 j_dbs_info->prev_cpu_nice);
559 			/*
560 			 * Assumption: nice time between sampling periods will
561 			 * be less than 2^32 jiffies for 32 bit sys
562 			 */
563 			cur_nice_jiffies = (unsigned long)
564 					cputime64_to_jiffies64(cur_nice);
565 
566 			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
567 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
568 		}
569 
570 		/*
571 		 * For the purpose of ondemand, waiting for disk IO is an
572 		 * indication that you're performance critical, and not that
573 		 * the system is actually idle. So subtract the iowait time
574 		 * from the cpu idle time.
575 		 */
576 
577 		if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
578 			idle_time -= iowait_time;
579 
580 		if (unlikely(!wall_time || wall_time < idle_time))
581 			continue;
582 
583 		load = 100 * (wall_time - idle_time) / wall_time;
584 
585 		freq_avg = __cpufreq_driver_getavg(policy, j);
586 		if (freq_avg <= 0)
587 			freq_avg = policy->cur;
588 
589 		load_freq = load * freq_avg;
590 		if (load_freq > max_load_freq)
591 			max_load_freq = load_freq;
592 	}
593 
594 	/* Check for frequency increase */
595 	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
596 		/* If switching to max speed, apply sampling_down_factor */
597 		if (policy->cur < policy->max)
598 			this_dbs_info->rate_mult =
599 				dbs_tuners_ins.sampling_down_factor;
600 		dbs_freq_increase(policy, policy->max);
601 		return;
602 	}
603 
604 	/* Check for frequency decrease */
605 	/* if we cannot reduce the frequency anymore, break out early */
606 	if (policy->cur == policy->min)
607 		return;
608 
609 	/*
610 	 * The optimal frequency is the frequency that is the lowest that
611 	 * can support the current CPU usage without triggering the up
612 	 * policy. To be safe, we focus 10 points under the threshold.
613 	 */
614 	if (max_load_freq <
615 	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
616 	     policy->cur) {
617 		unsigned int freq_next;
618 		freq_next = max_load_freq /
619 				(dbs_tuners_ins.up_threshold -
620 				 dbs_tuners_ins.down_differential);
621 
622 		/* No longer fully busy, reset rate_mult */
623 		this_dbs_info->rate_mult = 1;
624 
625 		if (freq_next < policy->min)
626 			freq_next = policy->min;
627 
628 		if (!dbs_tuners_ins.powersave_bias) {
629 			__cpufreq_driver_target(policy, freq_next,
630 					CPUFREQ_RELATION_L);
631 		} else {
632 			int freq = powersave_bias_target(policy, freq_next,
633 					CPUFREQ_RELATION_L);
634 			__cpufreq_driver_target(policy, freq,
635 				CPUFREQ_RELATION_L);
636 		}
637 	}
638 }
639 
640 static void do_dbs_timer(struct work_struct *work)
641 {
642 	struct cpu_dbs_info_s *dbs_info =
643 		container_of(work, struct cpu_dbs_info_s, work.work);
644 	unsigned int cpu = dbs_info->cpu;
645 	int sample_type = dbs_info->sample_type;
646 
647 	/* We want all CPUs to do sampling nearly on same jiffy */
648 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
649 		* dbs_info->rate_mult);
650 
651 	if (num_online_cpus() > 1)
652 		delay -= jiffies % delay;
653 
654 	mutex_lock(&dbs_info->timer_mutex);
655 
656 	/* Common NORMAL_SAMPLE setup */
657 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
658 	if (!dbs_tuners_ins.powersave_bias ||
659 	    sample_type == DBS_NORMAL_SAMPLE) {
660 		dbs_check_cpu(dbs_info);
661 		if (dbs_info->freq_lo) {
662 			/* Setup timer for SUB_SAMPLE */
663 			dbs_info->sample_type = DBS_SUB_SAMPLE;
664 			delay = dbs_info->freq_hi_jiffies;
665 		}
666 	} else {
667 		__cpufreq_driver_target(dbs_info->cur_policy,
668 			dbs_info->freq_lo, CPUFREQ_RELATION_H);
669 	}
670 	queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
671 	mutex_unlock(&dbs_info->timer_mutex);
672 }
673 
674 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
675 {
676 	/* We want all CPUs to do sampling nearly on same jiffy */
677 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
678 
679 	if (num_online_cpus() > 1)
680 		delay -= jiffies % delay;
681 
682 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
683 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
684 	queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
685 		delay);
686 }
687 
688 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
689 {
690 	cancel_delayed_work_sync(&dbs_info->work);
691 }
692 
693 /*
694  * Not all CPUs want IO time to be accounted as busy; this dependson how
695  * efficient idling at a higher frequency/voltage is.
696  * Pavel Machek says this is not so for various generations of AMD and old
697  * Intel systems.
698  * Mike Chan (androidlcom) calis this is also not true for ARM.
699  * Because of this, whitelist specific known (series) of CPUs by default, and
700  * leave all others up to the user.
701  */
702 static int should_io_be_busy(void)
703 {
704 #if defined(CONFIG_X86)
705 	/*
706 	 * For Intel, Core 2 (model 15) andl later have an efficient idle.
707 	 */
708 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
709 	    boot_cpu_data.x86 == 6 &&
710 	    boot_cpu_data.x86_model >= 15)
711 		return 1;
712 #endif
713 	return 0;
714 }
715 
716 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
717 				   unsigned int event)
718 {
719 	unsigned int cpu = policy->cpu;
720 	struct cpu_dbs_info_s *this_dbs_info;
721 	unsigned int j;
722 	int rc;
723 
724 	this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
725 
726 	switch (event) {
727 	case CPUFREQ_GOV_START:
728 		if ((!cpu_online(cpu)) || (!policy->cur))
729 			return -EINVAL;
730 
731 		mutex_lock(&dbs_mutex);
732 
733 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
734 		if (rc) {
735 			mutex_unlock(&dbs_mutex);
736 			return rc;
737 		}
738 
739 		dbs_enable++;
740 		for_each_cpu(j, policy->cpus) {
741 			struct cpu_dbs_info_s *j_dbs_info;
742 			j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
743 			j_dbs_info->cur_policy = policy;
744 
745 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
746 						&j_dbs_info->prev_cpu_wall);
747 			if (dbs_tuners_ins.ignore_nice) {
748 				j_dbs_info->prev_cpu_nice =
749 						kstat_cpu(j).cpustat.nice;
750 			}
751 		}
752 		this_dbs_info->cpu = cpu;
753 		this_dbs_info->rate_mult = 1;
754 		ondemand_powersave_bias_init_cpu(cpu);
755 		/*
756 		 * Start the timerschedule work, when this governor
757 		 * is used for first time
758 		 */
759 		if (dbs_enable == 1) {
760 			unsigned int latency;
761 
762 			rc = sysfs_create_group(cpufreq_global_kobject,
763 						&dbs_attr_group);
764 			if (rc) {
765 				mutex_unlock(&dbs_mutex);
766 				return rc;
767 			}
768 
769 			/* policy latency is in nS. Convert it to uS first */
770 			latency = policy->cpuinfo.transition_latency / 1000;
771 			if (latency == 0)
772 				latency = 1;
773 			/* Bring kernel and HW constraints together */
774 			min_sampling_rate = max(min_sampling_rate,
775 					MIN_LATENCY_MULTIPLIER * latency);
776 			dbs_tuners_ins.sampling_rate =
777 				max(min_sampling_rate,
778 				    latency * LATENCY_MULTIPLIER);
779 			dbs_tuners_ins.io_is_busy = should_io_be_busy();
780 		}
781 		mutex_unlock(&dbs_mutex);
782 
783 		mutex_init(&this_dbs_info->timer_mutex);
784 		dbs_timer_init(this_dbs_info);
785 		break;
786 
787 	case CPUFREQ_GOV_STOP:
788 		dbs_timer_exit(this_dbs_info);
789 
790 		mutex_lock(&dbs_mutex);
791 		sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
792 		mutex_destroy(&this_dbs_info->timer_mutex);
793 		dbs_enable--;
794 		mutex_unlock(&dbs_mutex);
795 		if (!dbs_enable)
796 			sysfs_remove_group(cpufreq_global_kobject,
797 					   &dbs_attr_group);
798 
799 		break;
800 
801 	case CPUFREQ_GOV_LIMITS:
802 		mutex_lock(&this_dbs_info->timer_mutex);
803 		if (policy->max < this_dbs_info->cur_policy->cur)
804 			__cpufreq_driver_target(this_dbs_info->cur_policy,
805 				policy->max, CPUFREQ_RELATION_H);
806 		else if (policy->min > this_dbs_info->cur_policy->cur)
807 			__cpufreq_driver_target(this_dbs_info->cur_policy,
808 				policy->min, CPUFREQ_RELATION_L);
809 		mutex_unlock(&this_dbs_info->timer_mutex);
810 		break;
811 	}
812 	return 0;
813 }
814 
815 static int __init cpufreq_gov_dbs_init(void)
816 {
817 	int err;
818 	cputime64_t wall;
819 	u64 idle_time;
820 	int cpu = get_cpu();
821 
822 	idle_time = get_cpu_idle_time_us(cpu, &wall);
823 	put_cpu();
824 	if (idle_time != -1ULL) {
825 		/* Idle micro accounting is supported. Use finer thresholds */
826 		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
827 		dbs_tuners_ins.down_differential =
828 					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
829 		/*
830 		 * In no_hz/micro accounting case we set the minimum frequency
831 		 * not depending on HZ, but fixed (very low). The deferred
832 		 * timer might skip some samples if idle/sleeping as needed.
833 		*/
834 		min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
835 	} else {
836 		/* For correct statistics, we need 10 ticks for each measure */
837 		min_sampling_rate =
838 			MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
839 	}
840 
841 	kondemand_wq = create_workqueue("kondemand");
842 	if (!kondemand_wq) {
843 		printk(KERN_ERR "Creation of kondemand failed\n");
844 		return -EFAULT;
845 	}
846 	err = cpufreq_register_governor(&cpufreq_gov_ondemand);
847 	if (err)
848 		destroy_workqueue(kondemand_wq);
849 
850 	return err;
851 }
852 
853 static void __exit cpufreq_gov_dbs_exit(void)
854 {
855 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
856 	destroy_workqueue(kondemand_wq);
857 }
858 
859 
860 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
861 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
862 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
863 	"Low Latency Frequency Transition capable processors");
864 MODULE_LICENSE("GPL");
865 
866 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
867 fs_initcall(cpufreq_gov_dbs_init);
868 #else
869 module_init(cpufreq_gov_dbs_init);
870 #endif
871 module_exit(cpufreq_gov_dbs_exit);
872