xref: /openbmc/linux/drivers/cpufreq/cpufreq_ondemand.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
25 
26 /*
27  * dbs is used in this file as a shortform for demandbased switching
28  * It helps to keep variable names smaller, simpler
29  */
30 
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
32 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
35 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
36 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
37 
38 /*
39  * The polling frequency of this governor depends on the capability of
40  * the processor. Default polling frequency is 1000 times the transition
41  * latency of the processor. The governor will work on any processor with
42  * transition latency <= 10mS, using appropriate sampling
43  * rate.
44  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
45  * this governor will not work.
46  * All times here are in uS.
47  */
48 static unsigned int def_sampling_rate;
49 #define MIN_SAMPLING_RATE_RATIO			(2)
50 /* for correct statistics, we need at least 10 ticks between each measure */
51 #define MIN_STAT_SAMPLING_RATE 			\
52 			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
53 #define MIN_SAMPLING_RATE			\
54 			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
55 /* Above MIN_SAMPLING_RATE will vanish with its sysfs file soon
56  * Define the minimal settable sampling rate to the greater of:
57  *   - "HW transition latency" * 100 (same as default sampling / 10)
58  *   - MIN_STAT_SAMPLING_RATE
59  * To avoid that userspace shoots itself.
60 */
61 static unsigned int minimum_sampling_rate(void)
62 {
63 	return max(def_sampling_rate / 10, MIN_STAT_SAMPLING_RATE);
64 }
65 
66 /* This will also vanish soon with removing sampling_rate_max */
67 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
68 #define LATENCY_MULTIPLIER			(1000)
69 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
70 
71 static void do_dbs_timer(struct work_struct *work);
72 
73 /* Sampling types */
74 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
75 
76 struct cpu_dbs_info_s {
77 	cputime64_t prev_cpu_idle;
78 	cputime64_t prev_cpu_wall;
79 	cputime64_t prev_cpu_nice;
80 	struct cpufreq_policy *cur_policy;
81 	struct delayed_work work;
82 	struct cpufreq_frequency_table *freq_table;
83 	unsigned int freq_lo;
84 	unsigned int freq_lo_jiffies;
85 	unsigned int freq_hi_jiffies;
86 	int cpu;
87 	unsigned int enable:1,
88 		sample_type:1;
89 };
90 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
91 
92 static unsigned int dbs_enable;	/* number of CPUs using this policy */
93 
94 /*
95  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
96  * lock and dbs_mutex. cpu_hotplug lock should always be held before
97  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
98  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
99  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
100  * is recursive for the same process. -Venki
101  */
102 static DEFINE_MUTEX(dbs_mutex);
103 
104 static struct workqueue_struct	*kondemand_wq;
105 
106 static struct dbs_tuners {
107 	unsigned int sampling_rate;
108 	unsigned int up_threshold;
109 	unsigned int down_differential;
110 	unsigned int ignore_nice;
111 	unsigned int powersave_bias;
112 } dbs_tuners_ins = {
113 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
114 	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
115 	.ignore_nice = 0,
116 	.powersave_bias = 0,
117 };
118 
119 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
120 							cputime64_t *wall)
121 {
122 	cputime64_t idle_time;
123 	cputime64_t cur_wall_time;
124 	cputime64_t busy_time;
125 
126 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
127 	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
128 			kstat_cpu(cpu).cpustat.system);
129 
130 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
131 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
132 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
133 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
134 
135 	idle_time = cputime64_sub(cur_wall_time, busy_time);
136 	if (wall)
137 		*wall = cur_wall_time;
138 
139 	return idle_time;
140 }
141 
142 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
143 {
144 	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
145 
146 	if (idle_time == -1ULL)
147 		return get_cpu_idle_time_jiffy(cpu, wall);
148 
149 	return idle_time;
150 }
151 
152 /*
153  * Find right freq to be set now with powersave_bias on.
154  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
155  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
156  */
157 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
158 					  unsigned int freq_next,
159 					  unsigned int relation)
160 {
161 	unsigned int freq_req, freq_reduc, freq_avg;
162 	unsigned int freq_hi, freq_lo;
163 	unsigned int index = 0;
164 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
165 	struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
166 
167 	if (!dbs_info->freq_table) {
168 		dbs_info->freq_lo = 0;
169 		dbs_info->freq_lo_jiffies = 0;
170 		return freq_next;
171 	}
172 
173 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
174 			relation, &index);
175 	freq_req = dbs_info->freq_table[index].frequency;
176 	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
177 	freq_avg = freq_req - freq_reduc;
178 
179 	/* Find freq bounds for freq_avg in freq_table */
180 	index = 0;
181 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
182 			CPUFREQ_RELATION_H, &index);
183 	freq_lo = dbs_info->freq_table[index].frequency;
184 	index = 0;
185 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
186 			CPUFREQ_RELATION_L, &index);
187 	freq_hi = dbs_info->freq_table[index].frequency;
188 
189 	/* Find out how long we have to be in hi and lo freqs */
190 	if (freq_hi == freq_lo) {
191 		dbs_info->freq_lo = 0;
192 		dbs_info->freq_lo_jiffies = 0;
193 		return freq_lo;
194 	}
195 	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
196 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
197 	jiffies_hi += ((freq_hi - freq_lo) / 2);
198 	jiffies_hi /= (freq_hi - freq_lo);
199 	jiffies_lo = jiffies_total - jiffies_hi;
200 	dbs_info->freq_lo = freq_lo;
201 	dbs_info->freq_lo_jiffies = jiffies_lo;
202 	dbs_info->freq_hi_jiffies = jiffies_hi;
203 	return freq_hi;
204 }
205 
206 static void ondemand_powersave_bias_init(void)
207 {
208 	int i;
209 	for_each_online_cpu(i) {
210 		struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
211 		dbs_info->freq_table = cpufreq_frequency_get_table(i);
212 		dbs_info->freq_lo = 0;
213 	}
214 }
215 
216 /************************** sysfs interface ************************/
217 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
218 {
219 	static int print_once;
220 
221 	if (!print_once) {
222 		printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
223 		       "sysfs file is deprecated - used by: %s\n",
224 		       current->comm);
225 		print_once = 1;
226 	}
227 	return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
228 }
229 
230 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
231 {
232 	static int print_once;
233 
234 	if (!print_once) {
235 		printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_min "
236 		       "sysfs file is deprecated - used by: %s\n",
237 		       current->comm);
238 		print_once = 1;
239 	}
240 	return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
241 }
242 
243 #define define_one_ro(_name)		\
244 static struct freq_attr _name =		\
245 __ATTR(_name, 0444, show_##_name, NULL)
246 
247 define_one_ro(sampling_rate_max);
248 define_one_ro(sampling_rate_min);
249 
250 /* cpufreq_ondemand Governor Tunables */
251 #define show_one(file_name, object)					\
252 static ssize_t show_##file_name						\
253 (struct cpufreq_policy *unused, char *buf)				\
254 {									\
255 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
256 }
257 show_one(sampling_rate, sampling_rate);
258 show_one(up_threshold, up_threshold);
259 show_one(ignore_nice_load, ignore_nice);
260 show_one(powersave_bias, powersave_bias);
261 
262 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
263 		const char *buf, size_t count)
264 {
265 	unsigned int input;
266 	int ret;
267 	ret = sscanf(buf, "%u", &input);
268 
269 	mutex_lock(&dbs_mutex);
270 	if (ret != 1) {
271 		mutex_unlock(&dbs_mutex);
272 		return -EINVAL;
273 	}
274 	dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate());
275 	mutex_unlock(&dbs_mutex);
276 
277 	return count;
278 }
279 
280 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
281 		const char *buf, size_t count)
282 {
283 	unsigned int input;
284 	int ret;
285 	ret = sscanf(buf, "%u", &input);
286 
287 	mutex_lock(&dbs_mutex);
288 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
289 			input < MIN_FREQUENCY_UP_THRESHOLD) {
290 		mutex_unlock(&dbs_mutex);
291 		return -EINVAL;
292 	}
293 
294 	dbs_tuners_ins.up_threshold = input;
295 	mutex_unlock(&dbs_mutex);
296 
297 	return count;
298 }
299 
300 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
301 		const char *buf, size_t count)
302 {
303 	unsigned int input;
304 	int ret;
305 
306 	unsigned int j;
307 
308 	ret = sscanf(buf, "%u", &input);
309 	if (ret != 1)
310 		return -EINVAL;
311 
312 	if (input > 1)
313 		input = 1;
314 
315 	mutex_lock(&dbs_mutex);
316 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
317 		mutex_unlock(&dbs_mutex);
318 		return count;
319 	}
320 	dbs_tuners_ins.ignore_nice = input;
321 
322 	/* we need to re-evaluate prev_cpu_idle */
323 	for_each_online_cpu(j) {
324 		struct cpu_dbs_info_s *dbs_info;
325 		dbs_info = &per_cpu(cpu_dbs_info, j);
326 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
327 						&dbs_info->prev_cpu_wall);
328 		if (dbs_tuners_ins.ignore_nice)
329 			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
330 
331 	}
332 	mutex_unlock(&dbs_mutex);
333 
334 	return count;
335 }
336 
337 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
338 		const char *buf, size_t count)
339 {
340 	unsigned int input;
341 	int ret;
342 	ret = sscanf(buf, "%u", &input);
343 
344 	if (ret != 1)
345 		return -EINVAL;
346 
347 	if (input > 1000)
348 		input = 1000;
349 
350 	mutex_lock(&dbs_mutex);
351 	dbs_tuners_ins.powersave_bias = input;
352 	ondemand_powersave_bias_init();
353 	mutex_unlock(&dbs_mutex);
354 
355 	return count;
356 }
357 
358 #define define_one_rw(_name) \
359 static struct freq_attr _name = \
360 __ATTR(_name, 0644, show_##_name, store_##_name)
361 
362 define_one_rw(sampling_rate);
363 define_one_rw(up_threshold);
364 define_one_rw(ignore_nice_load);
365 define_one_rw(powersave_bias);
366 
367 static struct attribute *dbs_attributes[] = {
368 	&sampling_rate_max.attr,
369 	&sampling_rate_min.attr,
370 	&sampling_rate.attr,
371 	&up_threshold.attr,
372 	&ignore_nice_load.attr,
373 	&powersave_bias.attr,
374 	NULL
375 };
376 
377 static struct attribute_group dbs_attr_group = {
378 	.attrs = dbs_attributes,
379 	.name = "ondemand",
380 };
381 
382 /************************** sysfs end ************************/
383 
384 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
385 {
386 	unsigned int max_load_freq;
387 
388 	struct cpufreq_policy *policy;
389 	unsigned int j;
390 
391 	if (!this_dbs_info->enable)
392 		return;
393 
394 	this_dbs_info->freq_lo = 0;
395 	policy = this_dbs_info->cur_policy;
396 
397 	/*
398 	 * Every sampling_rate, we check, if current idle time is less
399 	 * than 20% (default), then we try to increase frequency
400 	 * Every sampling_rate, we look for a the lowest
401 	 * frequency which can sustain the load while keeping idle time over
402 	 * 30%. If such a frequency exist, we try to decrease to this frequency.
403 	 *
404 	 * Any frequency increase takes it to the maximum frequency.
405 	 * Frequency reduction happens at minimum steps of
406 	 * 5% (default) of current frequency
407 	 */
408 
409 	/* Get Absolute Load - in terms of freq */
410 	max_load_freq = 0;
411 
412 	for_each_cpu(j, policy->cpus) {
413 		struct cpu_dbs_info_s *j_dbs_info;
414 		cputime64_t cur_wall_time, cur_idle_time;
415 		unsigned int idle_time, wall_time;
416 		unsigned int load, load_freq;
417 		int freq_avg;
418 
419 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
420 
421 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
422 
423 		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
424 				j_dbs_info->prev_cpu_wall);
425 		j_dbs_info->prev_cpu_wall = cur_wall_time;
426 
427 		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
428 				j_dbs_info->prev_cpu_idle);
429 		j_dbs_info->prev_cpu_idle = cur_idle_time;
430 
431 		if (dbs_tuners_ins.ignore_nice) {
432 			cputime64_t cur_nice;
433 			unsigned long cur_nice_jiffies;
434 
435 			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
436 					 j_dbs_info->prev_cpu_nice);
437 			/*
438 			 * Assumption: nice time between sampling periods will
439 			 * be less than 2^32 jiffies for 32 bit sys
440 			 */
441 			cur_nice_jiffies = (unsigned long)
442 					cputime64_to_jiffies64(cur_nice);
443 
444 			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
445 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
446 		}
447 
448 		if (unlikely(!wall_time || wall_time < idle_time))
449 			continue;
450 
451 		load = 100 * (wall_time - idle_time) / wall_time;
452 
453 		freq_avg = __cpufreq_driver_getavg(policy, j);
454 		if (freq_avg <= 0)
455 			freq_avg = policy->cur;
456 
457 		load_freq = load * freq_avg;
458 		if (load_freq > max_load_freq)
459 			max_load_freq = load_freq;
460 	}
461 
462 	/* Check for frequency increase */
463 	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
464 		/* if we are already at full speed then break out early */
465 		if (!dbs_tuners_ins.powersave_bias) {
466 			if (policy->cur == policy->max)
467 				return;
468 
469 			__cpufreq_driver_target(policy, policy->max,
470 				CPUFREQ_RELATION_H);
471 		} else {
472 			int freq = powersave_bias_target(policy, policy->max,
473 					CPUFREQ_RELATION_H);
474 			__cpufreq_driver_target(policy, freq,
475 				CPUFREQ_RELATION_L);
476 		}
477 		return;
478 	}
479 
480 	/* Check for frequency decrease */
481 	/* if we cannot reduce the frequency anymore, break out early */
482 	if (policy->cur == policy->min)
483 		return;
484 
485 	/*
486 	 * The optimal frequency is the frequency that is the lowest that
487 	 * can support the current CPU usage without triggering the up
488 	 * policy. To be safe, we focus 10 points under the threshold.
489 	 */
490 	if (max_load_freq <
491 	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
492 	     policy->cur) {
493 		unsigned int freq_next;
494 		freq_next = max_load_freq /
495 				(dbs_tuners_ins.up_threshold -
496 				 dbs_tuners_ins.down_differential);
497 
498 		if (!dbs_tuners_ins.powersave_bias) {
499 			__cpufreq_driver_target(policy, freq_next,
500 					CPUFREQ_RELATION_L);
501 		} else {
502 			int freq = powersave_bias_target(policy, freq_next,
503 					CPUFREQ_RELATION_L);
504 			__cpufreq_driver_target(policy, freq,
505 				CPUFREQ_RELATION_L);
506 		}
507 	}
508 }
509 
510 static void do_dbs_timer(struct work_struct *work)
511 {
512 	struct cpu_dbs_info_s *dbs_info =
513 		container_of(work, struct cpu_dbs_info_s, work.work);
514 	unsigned int cpu = dbs_info->cpu;
515 	int sample_type = dbs_info->sample_type;
516 
517 	/* We want all CPUs to do sampling nearly on same jiffy */
518 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
519 
520 	delay -= jiffies % delay;
521 
522 	if (lock_policy_rwsem_write(cpu) < 0)
523 		return;
524 
525 	if (!dbs_info->enable) {
526 		unlock_policy_rwsem_write(cpu);
527 		return;
528 	}
529 
530 	/* Common NORMAL_SAMPLE setup */
531 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
532 	if (!dbs_tuners_ins.powersave_bias ||
533 	    sample_type == DBS_NORMAL_SAMPLE) {
534 		dbs_check_cpu(dbs_info);
535 		if (dbs_info->freq_lo) {
536 			/* Setup timer for SUB_SAMPLE */
537 			dbs_info->sample_type = DBS_SUB_SAMPLE;
538 			delay = dbs_info->freq_hi_jiffies;
539 		}
540 	} else {
541 		__cpufreq_driver_target(dbs_info->cur_policy,
542 			dbs_info->freq_lo, CPUFREQ_RELATION_H);
543 	}
544 	queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
545 	unlock_policy_rwsem_write(cpu);
546 }
547 
548 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
549 {
550 	/* We want all CPUs to do sampling nearly on same jiffy */
551 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
552 	delay -= jiffies % delay;
553 
554 	dbs_info->enable = 1;
555 	ondemand_powersave_bias_init();
556 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
557 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
558 	queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
559 		delay);
560 }
561 
562 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
563 {
564 	dbs_info->enable = 0;
565 	cancel_delayed_work(&dbs_info->work);
566 }
567 
568 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
569 				   unsigned int event)
570 {
571 	unsigned int cpu = policy->cpu;
572 	struct cpu_dbs_info_s *this_dbs_info;
573 	unsigned int j;
574 	int rc;
575 
576 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
577 
578 	switch (event) {
579 	case CPUFREQ_GOV_START:
580 		if ((!cpu_online(cpu)) || (!policy->cur))
581 			return -EINVAL;
582 
583 		if (this_dbs_info->enable) /* Already enabled */
584 			break;
585 
586 		mutex_lock(&dbs_mutex);
587 		dbs_enable++;
588 
589 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
590 		if (rc) {
591 			dbs_enable--;
592 			mutex_unlock(&dbs_mutex);
593 			return rc;
594 		}
595 
596 		for_each_cpu(j, policy->cpus) {
597 			struct cpu_dbs_info_s *j_dbs_info;
598 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
599 			j_dbs_info->cur_policy = policy;
600 
601 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
602 						&j_dbs_info->prev_cpu_wall);
603 			if (dbs_tuners_ins.ignore_nice) {
604 				j_dbs_info->prev_cpu_nice =
605 						kstat_cpu(j).cpustat.nice;
606 			}
607 		}
608 		this_dbs_info->cpu = cpu;
609 		/*
610 		 * Start the timerschedule work, when this governor
611 		 * is used for first time
612 		 */
613 		if (dbs_enable == 1) {
614 			unsigned int latency;
615 			/* policy latency is in nS. Convert it to uS first */
616 			latency = policy->cpuinfo.transition_latency / 1000;
617 			if (latency == 0)
618 				latency = 1;
619 
620 			def_sampling_rate =
621 				max(latency * LATENCY_MULTIPLIER,
622 				    MIN_STAT_SAMPLING_RATE);
623 
624 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
625 		}
626 		dbs_timer_init(this_dbs_info);
627 
628 		mutex_unlock(&dbs_mutex);
629 		break;
630 
631 	case CPUFREQ_GOV_STOP:
632 		mutex_lock(&dbs_mutex);
633 		dbs_timer_exit(this_dbs_info);
634 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
635 		dbs_enable--;
636 		mutex_unlock(&dbs_mutex);
637 
638 		break;
639 
640 	case CPUFREQ_GOV_LIMITS:
641 		mutex_lock(&dbs_mutex);
642 		if (policy->max < this_dbs_info->cur_policy->cur)
643 			__cpufreq_driver_target(this_dbs_info->cur_policy,
644 				policy->max, CPUFREQ_RELATION_H);
645 		else if (policy->min > this_dbs_info->cur_policy->cur)
646 			__cpufreq_driver_target(this_dbs_info->cur_policy,
647 				policy->min, CPUFREQ_RELATION_L);
648 		mutex_unlock(&dbs_mutex);
649 		break;
650 	}
651 	return 0;
652 }
653 
654 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
655 static
656 #endif
657 struct cpufreq_governor cpufreq_gov_ondemand = {
658 	.name			= "ondemand",
659 	.governor		= cpufreq_governor_dbs,
660 	.max_transition_latency = TRANSITION_LATENCY_LIMIT,
661 	.owner			= THIS_MODULE,
662 };
663 
664 static int __init cpufreq_gov_dbs_init(void)
665 {
666 	int err;
667 	cputime64_t wall;
668 	u64 idle_time;
669 	int cpu = get_cpu();
670 
671 	idle_time = get_cpu_idle_time_us(cpu, &wall);
672 	put_cpu();
673 	if (idle_time != -1ULL) {
674 		/* Idle micro accounting is supported. Use finer thresholds */
675 		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
676 		dbs_tuners_ins.down_differential =
677 					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
678 	}
679 
680 	kondemand_wq = create_workqueue("kondemand");
681 	if (!kondemand_wq) {
682 		printk(KERN_ERR "Creation of kondemand failed\n");
683 		return -EFAULT;
684 	}
685 	err = cpufreq_register_governor(&cpufreq_gov_ondemand);
686 	if (err)
687 		destroy_workqueue(kondemand_wq);
688 
689 	return err;
690 }
691 
692 static void __exit cpufreq_gov_dbs_exit(void)
693 {
694 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
695 	destroy_workqueue(kondemand_wq);
696 }
697 
698 
699 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
700 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
701 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
702 	"Low Latency Frequency Transition capable processors");
703 MODULE_LICENSE("GPL");
704 
705 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
706 fs_initcall(cpufreq_gov_dbs_init);
707 #else
708 module_init(cpufreq_gov_dbs_init);
709 #endif
710 module_exit(cpufreq_gov_dbs_exit);
711