1 /* 2 * drivers/cpufreq/cpufreq_ondemand.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. 6 * Jun Nakajima <jun.nakajima@intel.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/cpufreq.h> 17 #include <linux/cpu.h> 18 #include <linux/jiffies.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mutex.h> 21 22 /* 23 * dbs is used in this file as a shortform for demandbased switching 24 * It helps to keep variable names smaller, simpler 25 */ 26 27 #define DEF_FREQUENCY_UP_THRESHOLD (80) 28 #define MIN_FREQUENCY_UP_THRESHOLD (11) 29 #define MAX_FREQUENCY_UP_THRESHOLD (100) 30 31 /* 32 * The polling frequency of this governor depends on the capability of 33 * the processor. Default polling frequency is 1000 times the transition 34 * latency of the processor. The governor will work on any processor with 35 * transition latency <= 10mS, using appropriate sampling 36 * rate. 37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL) 38 * this governor will not work. 39 * All times here are in uS. 40 */ 41 static unsigned int def_sampling_rate; 42 #define MIN_SAMPLING_RATE_RATIO (2) 43 /* for correct statistics, we need at least 10 ticks between each measure */ 44 #define MIN_STAT_SAMPLING_RATE \ 45 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10)) 46 #define MIN_SAMPLING_RATE \ 47 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO) 48 #define MAX_SAMPLING_RATE (500 * def_sampling_rate) 49 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000) 50 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000) 51 52 static void do_dbs_timer(struct work_struct *work); 53 54 /* Sampling types */ 55 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE}; 56 57 struct cpu_dbs_info_s { 58 cputime64_t prev_cpu_idle; 59 cputime64_t prev_cpu_wall; 60 struct cpufreq_policy *cur_policy; 61 struct delayed_work work; 62 struct cpufreq_frequency_table *freq_table; 63 unsigned int freq_lo; 64 unsigned int freq_lo_jiffies; 65 unsigned int freq_hi_jiffies; 66 int cpu; 67 unsigned int enable:1, 68 sample_type:1; 69 }; 70 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info); 71 72 static unsigned int dbs_enable; /* number of CPUs using this policy */ 73 74 /* 75 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug 76 * lock and dbs_mutex. cpu_hotplug lock should always be held before 77 * dbs_mutex. If any function that can potentially take cpu_hotplug lock 78 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then 79 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock 80 * is recursive for the same process. -Venki 81 */ 82 static DEFINE_MUTEX(dbs_mutex); 83 84 static struct workqueue_struct *kondemand_wq; 85 86 static struct dbs_tuners { 87 unsigned int sampling_rate; 88 unsigned int up_threshold; 89 unsigned int ignore_nice; 90 unsigned int powersave_bias; 91 } dbs_tuners_ins = { 92 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, 93 .ignore_nice = 0, 94 .powersave_bias = 0, 95 }; 96 97 static inline cputime64_t get_cpu_idle_time(unsigned int cpu) 98 { 99 cputime64_t idle_time; 100 cputime64_t cur_jiffies; 101 cputime64_t busy_time; 102 103 cur_jiffies = jiffies64_to_cputime64(get_jiffies_64()); 104 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user, 105 kstat_cpu(cpu).cpustat.system); 106 107 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq); 108 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq); 109 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal); 110 111 if (!dbs_tuners_ins.ignore_nice) { 112 busy_time = cputime64_add(busy_time, 113 kstat_cpu(cpu).cpustat.nice); 114 } 115 116 idle_time = cputime64_sub(cur_jiffies, busy_time); 117 return idle_time; 118 } 119 120 /* 121 * Find right freq to be set now with powersave_bias on. 122 * Returns the freq_hi to be used right now and will set freq_hi_jiffies, 123 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs. 124 */ 125 static unsigned int powersave_bias_target(struct cpufreq_policy *policy, 126 unsigned int freq_next, 127 unsigned int relation) 128 { 129 unsigned int freq_req, freq_reduc, freq_avg; 130 unsigned int freq_hi, freq_lo; 131 unsigned int index = 0; 132 unsigned int jiffies_total, jiffies_hi, jiffies_lo; 133 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu); 134 135 if (!dbs_info->freq_table) { 136 dbs_info->freq_lo = 0; 137 dbs_info->freq_lo_jiffies = 0; 138 return freq_next; 139 } 140 141 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next, 142 relation, &index); 143 freq_req = dbs_info->freq_table[index].frequency; 144 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000; 145 freq_avg = freq_req - freq_reduc; 146 147 /* Find freq bounds for freq_avg in freq_table */ 148 index = 0; 149 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, 150 CPUFREQ_RELATION_H, &index); 151 freq_lo = dbs_info->freq_table[index].frequency; 152 index = 0; 153 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, 154 CPUFREQ_RELATION_L, &index); 155 freq_hi = dbs_info->freq_table[index].frequency; 156 157 /* Find out how long we have to be in hi and lo freqs */ 158 if (freq_hi == freq_lo) { 159 dbs_info->freq_lo = 0; 160 dbs_info->freq_lo_jiffies = 0; 161 return freq_lo; 162 } 163 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); 164 jiffies_hi = (freq_avg - freq_lo) * jiffies_total; 165 jiffies_hi += ((freq_hi - freq_lo) / 2); 166 jiffies_hi /= (freq_hi - freq_lo); 167 jiffies_lo = jiffies_total - jiffies_hi; 168 dbs_info->freq_lo = freq_lo; 169 dbs_info->freq_lo_jiffies = jiffies_lo; 170 dbs_info->freq_hi_jiffies = jiffies_hi; 171 return freq_hi; 172 } 173 174 static void ondemand_powersave_bias_init(void) 175 { 176 int i; 177 for_each_online_cpu(i) { 178 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i); 179 dbs_info->freq_table = cpufreq_frequency_get_table(i); 180 dbs_info->freq_lo = 0; 181 } 182 } 183 184 /************************** sysfs interface ************************/ 185 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf) 186 { 187 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE); 188 } 189 190 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf) 191 { 192 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE); 193 } 194 195 #define define_one_ro(_name) \ 196 static struct freq_attr _name = \ 197 __ATTR(_name, 0444, show_##_name, NULL) 198 199 define_one_ro(sampling_rate_max); 200 define_one_ro(sampling_rate_min); 201 202 /* cpufreq_ondemand Governor Tunables */ 203 #define show_one(file_name, object) \ 204 static ssize_t show_##file_name \ 205 (struct cpufreq_policy *unused, char *buf) \ 206 { \ 207 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \ 208 } 209 show_one(sampling_rate, sampling_rate); 210 show_one(up_threshold, up_threshold); 211 show_one(ignore_nice_load, ignore_nice); 212 show_one(powersave_bias, powersave_bias); 213 214 static ssize_t store_sampling_rate(struct cpufreq_policy *unused, 215 const char *buf, size_t count) 216 { 217 unsigned int input; 218 int ret; 219 ret = sscanf(buf, "%u", &input); 220 221 mutex_lock(&dbs_mutex); 222 if (ret != 1 || input > MAX_SAMPLING_RATE 223 || input < MIN_SAMPLING_RATE) { 224 mutex_unlock(&dbs_mutex); 225 return -EINVAL; 226 } 227 228 dbs_tuners_ins.sampling_rate = input; 229 mutex_unlock(&dbs_mutex); 230 231 return count; 232 } 233 234 static ssize_t store_up_threshold(struct cpufreq_policy *unused, 235 const char *buf, size_t count) 236 { 237 unsigned int input; 238 int ret; 239 ret = sscanf(buf, "%u", &input); 240 241 mutex_lock(&dbs_mutex); 242 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || 243 input < MIN_FREQUENCY_UP_THRESHOLD) { 244 mutex_unlock(&dbs_mutex); 245 return -EINVAL; 246 } 247 248 dbs_tuners_ins.up_threshold = input; 249 mutex_unlock(&dbs_mutex); 250 251 return count; 252 } 253 254 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy, 255 const char *buf, size_t count) 256 { 257 unsigned int input; 258 int ret; 259 260 unsigned int j; 261 262 ret = sscanf(buf, "%u", &input); 263 if ( ret != 1 ) 264 return -EINVAL; 265 266 if ( input > 1 ) 267 input = 1; 268 269 mutex_lock(&dbs_mutex); 270 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */ 271 mutex_unlock(&dbs_mutex); 272 return count; 273 } 274 dbs_tuners_ins.ignore_nice = input; 275 276 /* we need to re-evaluate prev_cpu_idle */ 277 for_each_online_cpu(j) { 278 struct cpu_dbs_info_s *dbs_info; 279 dbs_info = &per_cpu(cpu_dbs_info, j); 280 dbs_info->prev_cpu_idle = get_cpu_idle_time(j); 281 dbs_info->prev_cpu_wall = get_jiffies_64(); 282 } 283 mutex_unlock(&dbs_mutex); 284 285 return count; 286 } 287 288 static ssize_t store_powersave_bias(struct cpufreq_policy *unused, 289 const char *buf, size_t count) 290 { 291 unsigned int input; 292 int ret; 293 ret = sscanf(buf, "%u", &input); 294 295 if (ret != 1) 296 return -EINVAL; 297 298 if (input > 1000) 299 input = 1000; 300 301 mutex_lock(&dbs_mutex); 302 dbs_tuners_ins.powersave_bias = input; 303 ondemand_powersave_bias_init(); 304 mutex_unlock(&dbs_mutex); 305 306 return count; 307 } 308 309 #define define_one_rw(_name) \ 310 static struct freq_attr _name = \ 311 __ATTR(_name, 0644, show_##_name, store_##_name) 312 313 define_one_rw(sampling_rate); 314 define_one_rw(up_threshold); 315 define_one_rw(ignore_nice_load); 316 define_one_rw(powersave_bias); 317 318 static struct attribute * dbs_attributes[] = { 319 &sampling_rate_max.attr, 320 &sampling_rate_min.attr, 321 &sampling_rate.attr, 322 &up_threshold.attr, 323 &ignore_nice_load.attr, 324 &powersave_bias.attr, 325 NULL 326 }; 327 328 static struct attribute_group dbs_attr_group = { 329 .attrs = dbs_attributes, 330 .name = "ondemand", 331 }; 332 333 /************************** sysfs end ************************/ 334 335 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info) 336 { 337 unsigned int idle_ticks, total_ticks; 338 unsigned int load = 0; 339 cputime64_t cur_jiffies; 340 341 struct cpufreq_policy *policy; 342 unsigned int j; 343 344 if (!this_dbs_info->enable) 345 return; 346 347 this_dbs_info->freq_lo = 0; 348 policy = this_dbs_info->cur_policy; 349 cur_jiffies = jiffies64_to_cputime64(get_jiffies_64()); 350 total_ticks = (unsigned int) cputime64_sub(cur_jiffies, 351 this_dbs_info->prev_cpu_wall); 352 this_dbs_info->prev_cpu_wall = get_jiffies_64(); 353 354 if (!total_ticks) 355 return; 356 /* 357 * Every sampling_rate, we check, if current idle time is less 358 * than 20% (default), then we try to increase frequency 359 * Every sampling_rate, we look for a the lowest 360 * frequency which can sustain the load while keeping idle time over 361 * 30%. If such a frequency exist, we try to decrease to this frequency. 362 * 363 * Any frequency increase takes it to the maximum frequency. 364 * Frequency reduction happens at minimum steps of 365 * 5% (default) of current frequency 366 */ 367 368 /* Get Idle Time */ 369 idle_ticks = UINT_MAX; 370 for_each_cpu_mask(j, policy->cpus) { 371 cputime64_t total_idle_ticks; 372 unsigned int tmp_idle_ticks; 373 struct cpu_dbs_info_s *j_dbs_info; 374 375 j_dbs_info = &per_cpu(cpu_dbs_info, j); 376 total_idle_ticks = get_cpu_idle_time(j); 377 tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks, 378 j_dbs_info->prev_cpu_idle); 379 j_dbs_info->prev_cpu_idle = total_idle_ticks; 380 381 if (tmp_idle_ticks < idle_ticks) 382 idle_ticks = tmp_idle_ticks; 383 } 384 if (likely(total_ticks > idle_ticks)) 385 load = (100 * (total_ticks - idle_ticks)) / total_ticks; 386 387 /* Check for frequency increase */ 388 if (load > dbs_tuners_ins.up_threshold) { 389 /* if we are already at full speed then break out early */ 390 if (!dbs_tuners_ins.powersave_bias) { 391 if (policy->cur == policy->max) 392 return; 393 394 __cpufreq_driver_target(policy, policy->max, 395 CPUFREQ_RELATION_H); 396 } else { 397 int freq = powersave_bias_target(policy, policy->max, 398 CPUFREQ_RELATION_H); 399 __cpufreq_driver_target(policy, freq, 400 CPUFREQ_RELATION_L); 401 } 402 return; 403 } 404 405 /* Check for frequency decrease */ 406 /* if we cannot reduce the frequency anymore, break out early */ 407 if (policy->cur == policy->min) 408 return; 409 410 /* 411 * The optimal frequency is the frequency that is the lowest that 412 * can support the current CPU usage without triggering the up 413 * policy. To be safe, we focus 10 points under the threshold. 414 */ 415 if (load < (dbs_tuners_ins.up_threshold - 10)) { 416 unsigned int freq_next, freq_cur; 417 418 freq_cur = __cpufreq_driver_getavg(policy); 419 if (!freq_cur) 420 freq_cur = policy->cur; 421 422 freq_next = (freq_cur * load) / 423 (dbs_tuners_ins.up_threshold - 10); 424 425 if (!dbs_tuners_ins.powersave_bias) { 426 __cpufreq_driver_target(policy, freq_next, 427 CPUFREQ_RELATION_L); 428 } else { 429 int freq = powersave_bias_target(policy, freq_next, 430 CPUFREQ_RELATION_L); 431 __cpufreq_driver_target(policy, freq, 432 CPUFREQ_RELATION_L); 433 } 434 } 435 } 436 437 static void do_dbs_timer(struct work_struct *work) 438 { 439 struct cpu_dbs_info_s *dbs_info = 440 container_of(work, struct cpu_dbs_info_s, work.work); 441 unsigned int cpu = dbs_info->cpu; 442 int sample_type = dbs_info->sample_type; 443 444 /* We want all CPUs to do sampling nearly on same jiffy */ 445 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); 446 447 delay -= jiffies % delay; 448 449 if (lock_policy_rwsem_write(cpu) < 0) 450 return; 451 452 if (!dbs_info->enable) { 453 unlock_policy_rwsem_write(cpu); 454 return; 455 } 456 457 /* Common NORMAL_SAMPLE setup */ 458 dbs_info->sample_type = DBS_NORMAL_SAMPLE; 459 if (!dbs_tuners_ins.powersave_bias || 460 sample_type == DBS_NORMAL_SAMPLE) { 461 dbs_check_cpu(dbs_info); 462 if (dbs_info->freq_lo) { 463 /* Setup timer for SUB_SAMPLE */ 464 dbs_info->sample_type = DBS_SUB_SAMPLE; 465 delay = dbs_info->freq_hi_jiffies; 466 } 467 } else { 468 __cpufreq_driver_target(dbs_info->cur_policy, 469 dbs_info->freq_lo, 470 CPUFREQ_RELATION_H); 471 } 472 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay); 473 unlock_policy_rwsem_write(cpu); 474 } 475 476 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info) 477 { 478 /* We want all CPUs to do sampling nearly on same jiffy */ 479 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); 480 delay -= jiffies % delay; 481 482 dbs_info->enable = 1; 483 ondemand_powersave_bias_init(); 484 dbs_info->sample_type = DBS_NORMAL_SAMPLE; 485 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer); 486 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work, 487 delay); 488 } 489 490 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info) 491 { 492 dbs_info->enable = 0; 493 cancel_delayed_work(&dbs_info->work); 494 } 495 496 static int cpufreq_governor_dbs(struct cpufreq_policy *policy, 497 unsigned int event) 498 { 499 unsigned int cpu = policy->cpu; 500 struct cpu_dbs_info_s *this_dbs_info; 501 unsigned int j; 502 int rc; 503 504 this_dbs_info = &per_cpu(cpu_dbs_info, cpu); 505 506 switch (event) { 507 case CPUFREQ_GOV_START: 508 if ((!cpu_online(cpu)) || (!policy->cur)) 509 return -EINVAL; 510 511 if (this_dbs_info->enable) /* Already enabled */ 512 break; 513 514 mutex_lock(&dbs_mutex); 515 dbs_enable++; 516 517 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group); 518 if (rc) { 519 dbs_enable--; 520 mutex_unlock(&dbs_mutex); 521 return rc; 522 } 523 524 for_each_cpu_mask(j, policy->cpus) { 525 struct cpu_dbs_info_s *j_dbs_info; 526 j_dbs_info = &per_cpu(cpu_dbs_info, j); 527 j_dbs_info->cur_policy = policy; 528 529 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j); 530 j_dbs_info->prev_cpu_wall = get_jiffies_64(); 531 } 532 this_dbs_info->cpu = cpu; 533 /* 534 * Start the timerschedule work, when this governor 535 * is used for first time 536 */ 537 if (dbs_enable == 1) { 538 unsigned int latency; 539 /* policy latency is in nS. Convert it to uS first */ 540 latency = policy->cpuinfo.transition_latency / 1000; 541 if (latency == 0) 542 latency = 1; 543 544 def_sampling_rate = latency * 545 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER; 546 547 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE) 548 def_sampling_rate = MIN_STAT_SAMPLING_RATE; 549 550 dbs_tuners_ins.sampling_rate = def_sampling_rate; 551 } 552 dbs_timer_init(this_dbs_info); 553 554 mutex_unlock(&dbs_mutex); 555 break; 556 557 case CPUFREQ_GOV_STOP: 558 mutex_lock(&dbs_mutex); 559 dbs_timer_exit(this_dbs_info); 560 sysfs_remove_group(&policy->kobj, &dbs_attr_group); 561 dbs_enable--; 562 mutex_unlock(&dbs_mutex); 563 564 break; 565 566 case CPUFREQ_GOV_LIMITS: 567 mutex_lock(&dbs_mutex); 568 if (policy->max < this_dbs_info->cur_policy->cur) 569 __cpufreq_driver_target(this_dbs_info->cur_policy, 570 policy->max, 571 CPUFREQ_RELATION_H); 572 else if (policy->min > this_dbs_info->cur_policy->cur) 573 __cpufreq_driver_target(this_dbs_info->cur_policy, 574 policy->min, 575 CPUFREQ_RELATION_L); 576 mutex_unlock(&dbs_mutex); 577 break; 578 } 579 return 0; 580 } 581 582 struct cpufreq_governor cpufreq_gov_ondemand = { 583 .name = "ondemand", 584 .governor = cpufreq_governor_dbs, 585 .max_transition_latency = TRANSITION_LATENCY_LIMIT, 586 .owner = THIS_MODULE, 587 }; 588 EXPORT_SYMBOL(cpufreq_gov_ondemand); 589 590 static int __init cpufreq_gov_dbs_init(void) 591 { 592 kondemand_wq = create_workqueue("kondemand"); 593 if (!kondemand_wq) { 594 printk(KERN_ERR "Creation of kondemand failed\n"); 595 return -EFAULT; 596 } 597 return cpufreq_register_governor(&cpufreq_gov_ondemand); 598 } 599 600 static void __exit cpufreq_gov_dbs_exit(void) 601 { 602 cpufreq_unregister_governor(&cpufreq_gov_ondemand); 603 destroy_workqueue(kondemand_wq); 604 } 605 606 607 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>"); 608 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>"); 609 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for " 610 "Low Latency Frequency Transition capable processors"); 611 MODULE_LICENSE("GPL"); 612 613 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND 614 fs_initcall(cpufreq_gov_dbs_init); 615 #else 616 module_init(cpufreq_gov_dbs_init); 617 #endif 618 module_exit(cpufreq_gov_dbs_exit); 619