1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
25 
26 /*
27  * dbs is used in this file as a shortform for demandbased switching
28  * It helps to keep variable names smaller, simpler
29  */
30 
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
32 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
35 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
36 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
37 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
38 
39 /*
40  * The polling frequency of this governor depends on the capability of
41  * the processor. Default polling frequency is 1000 times the transition
42  * latency of the processor. The governor will work on any processor with
43  * transition latency <= 10mS, using appropriate sampling
44  * rate.
45  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
46  * this governor will not work.
47  * All times here are in uS.
48  */
49 #define MIN_SAMPLING_RATE_RATIO			(2)
50 
51 static unsigned int min_sampling_rate;
52 
53 #define LATENCY_MULTIPLIER			(1000)
54 #define MIN_LATENCY_MULTIPLIER			(100)
55 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
56 
57 static void do_dbs_timer(struct work_struct *work);
58 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
59 				unsigned int event);
60 
61 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
62 static
63 #endif
64 struct cpufreq_governor cpufreq_gov_ondemand = {
65        .name                   = "ondemand",
66        .governor               = cpufreq_governor_dbs,
67        .max_transition_latency = TRANSITION_LATENCY_LIMIT,
68        .owner                  = THIS_MODULE,
69 };
70 
71 /* Sampling types */
72 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
73 
74 struct cpu_dbs_info_s {
75 	cputime64_t prev_cpu_idle;
76 	cputime64_t prev_cpu_wall;
77 	cputime64_t prev_cpu_nice;
78 	struct cpufreq_policy *cur_policy;
79 	struct delayed_work work;
80 	struct cpufreq_frequency_table *freq_table;
81 	unsigned int freq_lo;
82 	unsigned int freq_lo_jiffies;
83 	unsigned int freq_hi_jiffies;
84 	int cpu;
85 	unsigned int sample_type:1;
86 	/*
87 	 * percpu mutex that serializes governor limit change with
88 	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
89 	 * when user is changing the governor or limits.
90 	 */
91 	struct mutex timer_mutex;
92 };
93 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
94 
95 static unsigned int dbs_enable;	/* number of CPUs using this policy */
96 
97 /*
98  * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
99  * different CPUs. It protects dbs_enable in governor start/stop.
100  */
101 static DEFINE_MUTEX(dbs_mutex);
102 
103 static struct workqueue_struct	*kondemand_wq;
104 
105 static struct dbs_tuners {
106 	unsigned int sampling_rate;
107 	unsigned int up_threshold;
108 	unsigned int down_differential;
109 	unsigned int ignore_nice;
110 	unsigned int powersave_bias;
111 } dbs_tuners_ins = {
112 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
113 	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
114 	.ignore_nice = 0,
115 	.powersave_bias = 0,
116 };
117 
118 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
119 							cputime64_t *wall)
120 {
121 	cputime64_t idle_time;
122 	cputime64_t cur_wall_time;
123 	cputime64_t busy_time;
124 
125 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
126 	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
127 			kstat_cpu(cpu).cpustat.system);
128 
129 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
130 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
131 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
132 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
133 
134 	idle_time = cputime64_sub(cur_wall_time, busy_time);
135 	if (wall)
136 		*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
137 
138 	return (cputime64_t)jiffies_to_usecs(idle_time);
139 }
140 
141 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
142 {
143 	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
144 
145 	if (idle_time == -1ULL)
146 		return get_cpu_idle_time_jiffy(cpu, wall);
147 
148 	return idle_time;
149 }
150 
151 /*
152  * Find right freq to be set now with powersave_bias on.
153  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
154  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
155  */
156 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
157 					  unsigned int freq_next,
158 					  unsigned int relation)
159 {
160 	unsigned int freq_req, freq_reduc, freq_avg;
161 	unsigned int freq_hi, freq_lo;
162 	unsigned int index = 0;
163 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
164 	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
165 						   policy->cpu);
166 
167 	if (!dbs_info->freq_table) {
168 		dbs_info->freq_lo = 0;
169 		dbs_info->freq_lo_jiffies = 0;
170 		return freq_next;
171 	}
172 
173 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
174 			relation, &index);
175 	freq_req = dbs_info->freq_table[index].frequency;
176 	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
177 	freq_avg = freq_req - freq_reduc;
178 
179 	/* Find freq bounds for freq_avg in freq_table */
180 	index = 0;
181 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
182 			CPUFREQ_RELATION_H, &index);
183 	freq_lo = dbs_info->freq_table[index].frequency;
184 	index = 0;
185 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
186 			CPUFREQ_RELATION_L, &index);
187 	freq_hi = dbs_info->freq_table[index].frequency;
188 
189 	/* Find out how long we have to be in hi and lo freqs */
190 	if (freq_hi == freq_lo) {
191 		dbs_info->freq_lo = 0;
192 		dbs_info->freq_lo_jiffies = 0;
193 		return freq_lo;
194 	}
195 	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
196 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
197 	jiffies_hi += ((freq_hi - freq_lo) / 2);
198 	jiffies_hi /= (freq_hi - freq_lo);
199 	jiffies_lo = jiffies_total - jiffies_hi;
200 	dbs_info->freq_lo = freq_lo;
201 	dbs_info->freq_lo_jiffies = jiffies_lo;
202 	dbs_info->freq_hi_jiffies = jiffies_hi;
203 	return freq_hi;
204 }
205 
206 static void ondemand_powersave_bias_init_cpu(int cpu)
207 {
208 	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
209 	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
210 	dbs_info->freq_lo = 0;
211 }
212 
213 static void ondemand_powersave_bias_init(void)
214 {
215 	int i;
216 	for_each_online_cpu(i) {
217 		ondemand_powersave_bias_init_cpu(i);
218 	}
219 }
220 
221 /************************** sysfs interface ************************/
222 
223 static ssize_t show_sampling_rate_max(struct kobject *kobj,
224 				      struct attribute *attr, char *buf)
225 {
226 	printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
227 	       "sysfs file is deprecated - used by: %s\n", current->comm);
228 	return sprintf(buf, "%u\n", -1U);
229 }
230 
231 static ssize_t show_sampling_rate_min(struct kobject *kobj,
232 				      struct attribute *attr, char *buf)
233 {
234 	return sprintf(buf, "%u\n", min_sampling_rate);
235 }
236 
237 #define define_one_ro(_name)		\
238 static struct global_attr _name =	\
239 __ATTR(_name, 0444, show_##_name, NULL)
240 
241 define_one_ro(sampling_rate_max);
242 define_one_ro(sampling_rate_min);
243 
244 /* cpufreq_ondemand Governor Tunables */
245 #define show_one(file_name, object)					\
246 static ssize_t show_##file_name						\
247 (struct kobject *kobj, struct attribute *attr, char *buf)              \
248 {									\
249 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
250 }
251 show_one(sampling_rate, sampling_rate);
252 show_one(up_threshold, up_threshold);
253 show_one(ignore_nice_load, ignore_nice);
254 show_one(powersave_bias, powersave_bias);
255 
256 /*** delete after deprecation time ***/
257 
258 #define DEPRECATION_MSG(file_name)					\
259 	printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "	\
260 		    "interface is deprecated - " #file_name "\n");
261 
262 #define show_one_old(file_name)						\
263 static ssize_t show_##file_name##_old					\
264 (struct cpufreq_policy *unused, char *buf)				\
265 {									\
266 	printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "	\
267 		    "interface is deprecated - " #file_name "\n");	\
268 	return show_##file_name(NULL, NULL, buf);			\
269 }
270 show_one_old(sampling_rate);
271 show_one_old(up_threshold);
272 show_one_old(ignore_nice_load);
273 show_one_old(powersave_bias);
274 show_one_old(sampling_rate_min);
275 show_one_old(sampling_rate_max);
276 
277 #define define_one_ro_old(object, _name)       \
278 static struct freq_attr object =               \
279 __ATTR(_name, 0444, show_##_name##_old, NULL)
280 
281 define_one_ro_old(sampling_rate_min_old, sampling_rate_min);
282 define_one_ro_old(sampling_rate_max_old, sampling_rate_max);
283 
284 /*** delete after deprecation time ***/
285 
286 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
287 				   const char *buf, size_t count)
288 {
289 	unsigned int input;
290 	int ret;
291 	ret = sscanf(buf, "%u", &input);
292 	if (ret != 1)
293 		return -EINVAL;
294 
295 	mutex_lock(&dbs_mutex);
296 	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
297 	mutex_unlock(&dbs_mutex);
298 
299 	return count;
300 }
301 
302 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
303 				  const char *buf, size_t count)
304 {
305 	unsigned int input;
306 	int ret;
307 	ret = sscanf(buf, "%u", &input);
308 
309 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
310 			input < MIN_FREQUENCY_UP_THRESHOLD) {
311 		return -EINVAL;
312 	}
313 
314 	mutex_lock(&dbs_mutex);
315 	dbs_tuners_ins.up_threshold = input;
316 	mutex_unlock(&dbs_mutex);
317 
318 	return count;
319 }
320 
321 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
322 				      const char *buf, size_t count)
323 {
324 	unsigned int input;
325 	int ret;
326 
327 	unsigned int j;
328 
329 	ret = sscanf(buf, "%u", &input);
330 	if (ret != 1)
331 		return -EINVAL;
332 
333 	if (input > 1)
334 		input = 1;
335 
336 	mutex_lock(&dbs_mutex);
337 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
338 		mutex_unlock(&dbs_mutex);
339 		return count;
340 	}
341 	dbs_tuners_ins.ignore_nice = input;
342 
343 	/* we need to re-evaluate prev_cpu_idle */
344 	for_each_online_cpu(j) {
345 		struct cpu_dbs_info_s *dbs_info;
346 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
347 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
348 						&dbs_info->prev_cpu_wall);
349 		if (dbs_tuners_ins.ignore_nice)
350 			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
351 
352 	}
353 	mutex_unlock(&dbs_mutex);
354 
355 	return count;
356 }
357 
358 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
359 				    const char *buf, size_t count)
360 {
361 	unsigned int input;
362 	int ret;
363 	ret = sscanf(buf, "%u", &input);
364 
365 	if (ret != 1)
366 		return -EINVAL;
367 
368 	if (input > 1000)
369 		input = 1000;
370 
371 	mutex_lock(&dbs_mutex);
372 	dbs_tuners_ins.powersave_bias = input;
373 	ondemand_powersave_bias_init();
374 	mutex_unlock(&dbs_mutex);
375 
376 	return count;
377 }
378 
379 #define define_one_rw(_name) \
380 static struct global_attr _name = \
381 __ATTR(_name, 0644, show_##_name, store_##_name)
382 
383 define_one_rw(sampling_rate);
384 define_one_rw(up_threshold);
385 define_one_rw(ignore_nice_load);
386 define_one_rw(powersave_bias);
387 
388 static struct attribute *dbs_attributes[] = {
389 	&sampling_rate_max.attr,
390 	&sampling_rate_min.attr,
391 	&sampling_rate.attr,
392 	&up_threshold.attr,
393 	&ignore_nice_load.attr,
394 	&powersave_bias.attr,
395 	NULL
396 };
397 
398 static struct attribute_group dbs_attr_group = {
399 	.attrs = dbs_attributes,
400 	.name = "ondemand",
401 };
402 
403 /*** delete after deprecation time ***/
404 
405 #define write_one_old(file_name)					\
406 static ssize_t store_##file_name##_old					\
407 (struct cpufreq_policy *unused, const char *buf, size_t count)		\
408 {									\
409        printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "	\
410 		   "interface is deprecated - " #file_name "\n");	\
411        return store_##file_name(NULL, NULL, buf, count);		\
412 }
413 write_one_old(sampling_rate);
414 write_one_old(up_threshold);
415 write_one_old(ignore_nice_load);
416 write_one_old(powersave_bias);
417 
418 #define define_one_rw_old(object, _name)       \
419 static struct freq_attr object =               \
420 __ATTR(_name, 0644, show_##_name##_old, store_##_name##_old)
421 
422 define_one_rw_old(sampling_rate_old, sampling_rate);
423 define_one_rw_old(up_threshold_old, up_threshold);
424 define_one_rw_old(ignore_nice_load_old, ignore_nice_load);
425 define_one_rw_old(powersave_bias_old, powersave_bias);
426 
427 static struct attribute *dbs_attributes_old[] = {
428        &sampling_rate_max_old.attr,
429        &sampling_rate_min_old.attr,
430        &sampling_rate_old.attr,
431        &up_threshold_old.attr,
432        &ignore_nice_load_old.attr,
433        &powersave_bias_old.attr,
434        NULL
435 };
436 
437 static struct attribute_group dbs_attr_group_old = {
438        .attrs = dbs_attributes_old,
439        .name = "ondemand",
440 };
441 
442 /*** delete after deprecation time ***/
443 
444 /************************** sysfs end ************************/
445 
446 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
447 {
448 	unsigned int max_load_freq;
449 
450 	struct cpufreq_policy *policy;
451 	unsigned int j;
452 
453 	this_dbs_info->freq_lo = 0;
454 	policy = this_dbs_info->cur_policy;
455 
456 	/*
457 	 * Every sampling_rate, we check, if current idle time is less
458 	 * than 20% (default), then we try to increase frequency
459 	 * Every sampling_rate, we look for a the lowest
460 	 * frequency which can sustain the load while keeping idle time over
461 	 * 30%. If such a frequency exist, we try to decrease to this frequency.
462 	 *
463 	 * Any frequency increase takes it to the maximum frequency.
464 	 * Frequency reduction happens at minimum steps of
465 	 * 5% (default) of current frequency
466 	 */
467 
468 	/* Get Absolute Load - in terms of freq */
469 	max_load_freq = 0;
470 
471 	for_each_cpu(j, policy->cpus) {
472 		struct cpu_dbs_info_s *j_dbs_info;
473 		cputime64_t cur_wall_time, cur_idle_time;
474 		unsigned int idle_time, wall_time;
475 		unsigned int load, load_freq;
476 		int freq_avg;
477 
478 		j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
479 
480 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
481 
482 		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
483 				j_dbs_info->prev_cpu_wall);
484 		j_dbs_info->prev_cpu_wall = cur_wall_time;
485 
486 		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
487 				j_dbs_info->prev_cpu_idle);
488 		j_dbs_info->prev_cpu_idle = cur_idle_time;
489 
490 		if (dbs_tuners_ins.ignore_nice) {
491 			cputime64_t cur_nice;
492 			unsigned long cur_nice_jiffies;
493 
494 			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
495 					 j_dbs_info->prev_cpu_nice);
496 			/*
497 			 * Assumption: nice time between sampling periods will
498 			 * be less than 2^32 jiffies for 32 bit sys
499 			 */
500 			cur_nice_jiffies = (unsigned long)
501 					cputime64_to_jiffies64(cur_nice);
502 
503 			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
504 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
505 		}
506 
507 		if (unlikely(!wall_time || wall_time < idle_time))
508 			continue;
509 
510 		load = 100 * (wall_time - idle_time) / wall_time;
511 
512 		freq_avg = __cpufreq_driver_getavg(policy, j);
513 		if (freq_avg <= 0)
514 			freq_avg = policy->cur;
515 
516 		load_freq = load * freq_avg;
517 		if (load_freq > max_load_freq)
518 			max_load_freq = load_freq;
519 	}
520 
521 	/* Check for frequency increase */
522 	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
523 		/* if we are already at full speed then break out early */
524 		if (!dbs_tuners_ins.powersave_bias) {
525 			if (policy->cur == policy->max)
526 				return;
527 
528 			__cpufreq_driver_target(policy, policy->max,
529 				CPUFREQ_RELATION_H);
530 		} else {
531 			int freq = powersave_bias_target(policy, policy->max,
532 					CPUFREQ_RELATION_H);
533 			__cpufreq_driver_target(policy, freq,
534 				CPUFREQ_RELATION_L);
535 		}
536 		return;
537 	}
538 
539 	/* Check for frequency decrease */
540 	/* if we cannot reduce the frequency anymore, break out early */
541 	if (policy->cur == policy->min)
542 		return;
543 
544 	/*
545 	 * The optimal frequency is the frequency that is the lowest that
546 	 * can support the current CPU usage without triggering the up
547 	 * policy. To be safe, we focus 10 points under the threshold.
548 	 */
549 	if (max_load_freq <
550 	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
551 	     policy->cur) {
552 		unsigned int freq_next;
553 		freq_next = max_load_freq /
554 				(dbs_tuners_ins.up_threshold -
555 				 dbs_tuners_ins.down_differential);
556 
557 		if (!dbs_tuners_ins.powersave_bias) {
558 			__cpufreq_driver_target(policy, freq_next,
559 					CPUFREQ_RELATION_L);
560 		} else {
561 			int freq = powersave_bias_target(policy, freq_next,
562 					CPUFREQ_RELATION_L);
563 			__cpufreq_driver_target(policy, freq,
564 				CPUFREQ_RELATION_L);
565 		}
566 	}
567 }
568 
569 static void do_dbs_timer(struct work_struct *work)
570 {
571 	struct cpu_dbs_info_s *dbs_info =
572 		container_of(work, struct cpu_dbs_info_s, work.work);
573 	unsigned int cpu = dbs_info->cpu;
574 	int sample_type = dbs_info->sample_type;
575 
576 	/* We want all CPUs to do sampling nearly on same jiffy */
577 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
578 
579 	delay -= jiffies % delay;
580 	mutex_lock(&dbs_info->timer_mutex);
581 
582 	/* Common NORMAL_SAMPLE setup */
583 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
584 	if (!dbs_tuners_ins.powersave_bias ||
585 	    sample_type == DBS_NORMAL_SAMPLE) {
586 		dbs_check_cpu(dbs_info);
587 		if (dbs_info->freq_lo) {
588 			/* Setup timer for SUB_SAMPLE */
589 			dbs_info->sample_type = DBS_SUB_SAMPLE;
590 			delay = dbs_info->freq_hi_jiffies;
591 		}
592 	} else {
593 		__cpufreq_driver_target(dbs_info->cur_policy,
594 			dbs_info->freq_lo, CPUFREQ_RELATION_H);
595 	}
596 	queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
597 	mutex_unlock(&dbs_info->timer_mutex);
598 }
599 
600 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
601 {
602 	/* We want all CPUs to do sampling nearly on same jiffy */
603 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
604 	delay -= jiffies % delay;
605 
606 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
607 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
608 	queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
609 		delay);
610 }
611 
612 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
613 {
614 	cancel_delayed_work_sync(&dbs_info->work);
615 }
616 
617 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
618 				   unsigned int event)
619 {
620 	unsigned int cpu = policy->cpu;
621 	struct cpu_dbs_info_s *this_dbs_info;
622 	unsigned int j;
623 	int rc;
624 
625 	this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
626 
627 	switch (event) {
628 	case CPUFREQ_GOV_START:
629 		if ((!cpu_online(cpu)) || (!policy->cur))
630 			return -EINVAL;
631 
632 		mutex_lock(&dbs_mutex);
633 
634 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
635 		if (rc) {
636 			mutex_unlock(&dbs_mutex);
637 			return rc;
638 		}
639 
640 		dbs_enable++;
641 		for_each_cpu(j, policy->cpus) {
642 			struct cpu_dbs_info_s *j_dbs_info;
643 			j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
644 			j_dbs_info->cur_policy = policy;
645 
646 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
647 						&j_dbs_info->prev_cpu_wall);
648 			if (dbs_tuners_ins.ignore_nice) {
649 				j_dbs_info->prev_cpu_nice =
650 						kstat_cpu(j).cpustat.nice;
651 			}
652 		}
653 		this_dbs_info->cpu = cpu;
654 		ondemand_powersave_bias_init_cpu(cpu);
655 		/*
656 		 * Start the timerschedule work, when this governor
657 		 * is used for first time
658 		 */
659 		if (dbs_enable == 1) {
660 			unsigned int latency;
661 
662 			rc = sysfs_create_group(cpufreq_global_kobject,
663 						&dbs_attr_group);
664 			if (rc) {
665 				mutex_unlock(&dbs_mutex);
666 				return rc;
667 			}
668 
669 			/* policy latency is in nS. Convert it to uS first */
670 			latency = policy->cpuinfo.transition_latency / 1000;
671 			if (latency == 0)
672 				latency = 1;
673 			/* Bring kernel and HW constraints together */
674 			min_sampling_rate = max(min_sampling_rate,
675 					MIN_LATENCY_MULTIPLIER * latency);
676 			dbs_tuners_ins.sampling_rate =
677 				max(min_sampling_rate,
678 				    latency * LATENCY_MULTIPLIER);
679 		}
680 		mutex_unlock(&dbs_mutex);
681 
682 		mutex_init(&this_dbs_info->timer_mutex);
683 		dbs_timer_init(this_dbs_info);
684 		break;
685 
686 	case CPUFREQ_GOV_STOP:
687 		dbs_timer_exit(this_dbs_info);
688 
689 		mutex_lock(&dbs_mutex);
690 		sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
691 		mutex_destroy(&this_dbs_info->timer_mutex);
692 		dbs_enable--;
693 		mutex_unlock(&dbs_mutex);
694 		if (!dbs_enable)
695 			sysfs_remove_group(cpufreq_global_kobject,
696 					   &dbs_attr_group);
697 
698 		break;
699 
700 	case CPUFREQ_GOV_LIMITS:
701 		mutex_lock(&this_dbs_info->timer_mutex);
702 		if (policy->max < this_dbs_info->cur_policy->cur)
703 			__cpufreq_driver_target(this_dbs_info->cur_policy,
704 				policy->max, CPUFREQ_RELATION_H);
705 		else if (policy->min > this_dbs_info->cur_policy->cur)
706 			__cpufreq_driver_target(this_dbs_info->cur_policy,
707 				policy->min, CPUFREQ_RELATION_L);
708 		mutex_unlock(&this_dbs_info->timer_mutex);
709 		break;
710 	}
711 	return 0;
712 }
713 
714 static int __init cpufreq_gov_dbs_init(void)
715 {
716 	int err;
717 	cputime64_t wall;
718 	u64 idle_time;
719 	int cpu = get_cpu();
720 
721 	idle_time = get_cpu_idle_time_us(cpu, &wall);
722 	put_cpu();
723 	if (idle_time != -1ULL) {
724 		/* Idle micro accounting is supported. Use finer thresholds */
725 		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
726 		dbs_tuners_ins.down_differential =
727 					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
728 		/*
729 		 * In no_hz/micro accounting case we set the minimum frequency
730 		 * not depending on HZ, but fixed (very low). The deferred
731 		 * timer might skip some samples if idle/sleeping as needed.
732 		*/
733 		min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
734 	} else {
735 		/* For correct statistics, we need 10 ticks for each measure */
736 		min_sampling_rate =
737 			MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
738 	}
739 
740 	kondemand_wq = create_workqueue("kondemand");
741 	if (!kondemand_wq) {
742 		printk(KERN_ERR "Creation of kondemand failed\n");
743 		return -EFAULT;
744 	}
745 	err = cpufreq_register_governor(&cpufreq_gov_ondemand);
746 	if (err)
747 		destroy_workqueue(kondemand_wq);
748 
749 	return err;
750 }
751 
752 static void __exit cpufreq_gov_dbs_exit(void)
753 {
754 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
755 	destroy_workqueue(kondemand_wq);
756 }
757 
758 
759 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
760 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
761 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
762 	"Low Latency Frequency Transition capable processors");
763 MODULE_LICENSE("GPL");
764 
765 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
766 fs_initcall(cpufreq_gov_dbs_init);
767 #else
768 module_init(cpufreq_gov_dbs_init);
769 #endif
770 module_exit(cpufreq_gov_dbs_exit);
771