1 /* 2 * drivers/cpufreq/cpufreq_ondemand.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. 6 * Jun Nakajima <jun.nakajima@intel.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cpufreq.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/kobject.h> 20 #include <linux/module.h> 21 #include <linux/mutex.h> 22 #include <linux/percpu-defs.h> 23 #include <linux/sysfs.h> 24 #include <linux/tick.h> 25 #include <linux/types.h> 26 27 #include "cpufreq_governor.h" 28 29 /* On-demand governor macros */ 30 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10) 31 #define DEF_FREQUENCY_UP_THRESHOLD (80) 32 #define DEF_SAMPLING_DOWN_FACTOR (1) 33 #define MAX_SAMPLING_DOWN_FACTOR (100000) 34 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3) 35 #define MICRO_FREQUENCY_UP_THRESHOLD (95) 36 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000) 37 #define MIN_FREQUENCY_UP_THRESHOLD (11) 38 #define MAX_FREQUENCY_UP_THRESHOLD (100) 39 40 static struct dbs_data od_dbs_data; 41 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info); 42 43 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND 44 static struct cpufreq_governor cpufreq_gov_ondemand; 45 #endif 46 47 static struct od_dbs_tuners od_tuners = { 48 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, 49 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR, 50 .adj_up_threshold = DEF_FREQUENCY_UP_THRESHOLD - 51 DEF_FREQUENCY_DOWN_DIFFERENTIAL, 52 .ignore_nice = 0, 53 .powersave_bias = 0, 54 }; 55 56 static void ondemand_powersave_bias_init_cpu(int cpu) 57 { 58 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu); 59 60 dbs_info->freq_table = cpufreq_frequency_get_table(cpu); 61 dbs_info->freq_lo = 0; 62 } 63 64 /* 65 * Not all CPUs want IO time to be accounted as busy; this depends on how 66 * efficient idling at a higher frequency/voltage is. 67 * Pavel Machek says this is not so for various generations of AMD and old 68 * Intel systems. 69 * Mike Chan (android.com) claims this is also not true for ARM. 70 * Because of this, whitelist specific known (series) of CPUs by default, and 71 * leave all others up to the user. 72 */ 73 static int should_io_be_busy(void) 74 { 75 #if defined(CONFIG_X86) 76 /* 77 * For Intel, Core 2 (model 15) and later have an efficient idle. 78 */ 79 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && 80 boot_cpu_data.x86 == 6 && 81 boot_cpu_data.x86_model >= 15) 82 return 1; 83 #endif 84 return 0; 85 } 86 87 /* 88 * Find right freq to be set now with powersave_bias on. 89 * Returns the freq_hi to be used right now and will set freq_hi_jiffies, 90 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs. 91 */ 92 static unsigned int powersave_bias_target(struct cpufreq_policy *policy, 93 unsigned int freq_next, unsigned int relation) 94 { 95 unsigned int freq_req, freq_reduc, freq_avg; 96 unsigned int freq_hi, freq_lo; 97 unsigned int index = 0; 98 unsigned int jiffies_total, jiffies_hi, jiffies_lo; 99 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, 100 policy->cpu); 101 102 if (!dbs_info->freq_table) { 103 dbs_info->freq_lo = 0; 104 dbs_info->freq_lo_jiffies = 0; 105 return freq_next; 106 } 107 108 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next, 109 relation, &index); 110 freq_req = dbs_info->freq_table[index].frequency; 111 freq_reduc = freq_req * od_tuners.powersave_bias / 1000; 112 freq_avg = freq_req - freq_reduc; 113 114 /* Find freq bounds for freq_avg in freq_table */ 115 index = 0; 116 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, 117 CPUFREQ_RELATION_H, &index); 118 freq_lo = dbs_info->freq_table[index].frequency; 119 index = 0; 120 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, 121 CPUFREQ_RELATION_L, &index); 122 freq_hi = dbs_info->freq_table[index].frequency; 123 124 /* Find out how long we have to be in hi and lo freqs */ 125 if (freq_hi == freq_lo) { 126 dbs_info->freq_lo = 0; 127 dbs_info->freq_lo_jiffies = 0; 128 return freq_lo; 129 } 130 jiffies_total = usecs_to_jiffies(od_tuners.sampling_rate); 131 jiffies_hi = (freq_avg - freq_lo) * jiffies_total; 132 jiffies_hi += ((freq_hi - freq_lo) / 2); 133 jiffies_hi /= (freq_hi - freq_lo); 134 jiffies_lo = jiffies_total - jiffies_hi; 135 dbs_info->freq_lo = freq_lo; 136 dbs_info->freq_lo_jiffies = jiffies_lo; 137 dbs_info->freq_hi_jiffies = jiffies_hi; 138 return freq_hi; 139 } 140 141 static void ondemand_powersave_bias_init(void) 142 { 143 int i; 144 for_each_online_cpu(i) { 145 ondemand_powersave_bias_init_cpu(i); 146 } 147 } 148 149 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq) 150 { 151 if (od_tuners.powersave_bias) 152 freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H); 153 else if (p->cur == p->max) 154 return; 155 156 __cpufreq_driver_target(p, freq, od_tuners.powersave_bias ? 157 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H); 158 } 159 160 /* 161 * Every sampling_rate, we check, if current idle time is less than 20% 162 * (default), then we try to increase frequency. Every sampling_rate, we look 163 * for the lowest frequency which can sustain the load while keeping idle time 164 * over 30%. If such a frequency exist, we try to decrease to this frequency. 165 * 166 * Any frequency increase takes it to the maximum frequency. Frequency reduction 167 * happens at minimum steps of 5% (default) of current frequency 168 */ 169 static void od_check_cpu(int cpu, unsigned int load_freq) 170 { 171 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu); 172 struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy; 173 174 dbs_info->freq_lo = 0; 175 176 /* Check for frequency increase */ 177 if (load_freq > od_tuners.up_threshold * policy->cur) { 178 /* If switching to max speed, apply sampling_down_factor */ 179 if (policy->cur < policy->max) 180 dbs_info->rate_mult = 181 od_tuners.sampling_down_factor; 182 dbs_freq_increase(policy, policy->max); 183 return; 184 } 185 186 /* Check for frequency decrease */ 187 /* if we cannot reduce the frequency anymore, break out early */ 188 if (policy->cur == policy->min) 189 return; 190 191 /* 192 * The optimal frequency is the frequency that is the lowest that can 193 * support the current CPU usage without triggering the up policy. To be 194 * safe, we focus 10 points under the threshold. 195 */ 196 if (load_freq < od_tuners.adj_up_threshold * policy->cur) { 197 unsigned int freq_next; 198 freq_next = load_freq / od_tuners.adj_up_threshold; 199 200 /* No longer fully busy, reset rate_mult */ 201 dbs_info->rate_mult = 1; 202 203 if (freq_next < policy->min) 204 freq_next = policy->min; 205 206 if (!od_tuners.powersave_bias) { 207 __cpufreq_driver_target(policy, freq_next, 208 CPUFREQ_RELATION_L); 209 } else { 210 int freq = powersave_bias_target(policy, freq_next, 211 CPUFREQ_RELATION_L); 212 __cpufreq_driver_target(policy, freq, 213 CPUFREQ_RELATION_L); 214 } 215 } 216 } 217 218 static void od_dbs_timer(struct work_struct *work) 219 { 220 struct delayed_work *dw = to_delayed_work(work); 221 struct od_cpu_dbs_info_s *dbs_info = 222 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work); 223 unsigned int cpu = dbs_info->cdbs.cur_policy->cpu; 224 struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info, 225 cpu); 226 int delay, sample_type = core_dbs_info->sample_type; 227 bool eval_load; 228 229 mutex_lock(&core_dbs_info->cdbs.timer_mutex); 230 eval_load = need_load_eval(&core_dbs_info->cdbs, 231 od_tuners.sampling_rate); 232 233 /* Common NORMAL_SAMPLE setup */ 234 core_dbs_info->sample_type = OD_NORMAL_SAMPLE; 235 if (sample_type == OD_SUB_SAMPLE) { 236 delay = core_dbs_info->freq_lo_jiffies; 237 if (eval_load) 238 __cpufreq_driver_target(core_dbs_info->cdbs.cur_policy, 239 core_dbs_info->freq_lo, 240 CPUFREQ_RELATION_H); 241 } else { 242 if (eval_load) 243 dbs_check_cpu(&od_dbs_data, cpu); 244 if (core_dbs_info->freq_lo) { 245 /* Setup timer for SUB_SAMPLE */ 246 core_dbs_info->sample_type = OD_SUB_SAMPLE; 247 delay = core_dbs_info->freq_hi_jiffies; 248 } else { 249 delay = delay_for_sampling_rate(od_tuners.sampling_rate 250 * core_dbs_info->rate_mult); 251 } 252 } 253 254 schedule_delayed_work_on(smp_processor_id(), dw, delay); 255 mutex_unlock(&core_dbs_info->cdbs.timer_mutex); 256 } 257 258 /************************** sysfs interface ************************/ 259 260 static ssize_t show_sampling_rate_min(struct kobject *kobj, 261 struct attribute *attr, char *buf) 262 { 263 return sprintf(buf, "%u\n", od_dbs_data.min_sampling_rate); 264 } 265 266 /** 267 * update_sampling_rate - update sampling rate effective immediately if needed. 268 * @new_rate: new sampling rate 269 * 270 * If new rate is smaller than the old, simply updating 271 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the 272 * original sampling_rate was 1 second and the requested new sampling rate is 10 273 * ms because the user needs immediate reaction from ondemand governor, but not 274 * sure if higher frequency will be required or not, then, the governor may 275 * change the sampling rate too late; up to 1 second later. Thus, if we are 276 * reducing the sampling rate, we need to make the new value effective 277 * immediately. 278 */ 279 static void update_sampling_rate(unsigned int new_rate) 280 { 281 int cpu; 282 283 od_tuners.sampling_rate = new_rate = max(new_rate, 284 od_dbs_data.min_sampling_rate); 285 286 for_each_online_cpu(cpu) { 287 struct cpufreq_policy *policy; 288 struct od_cpu_dbs_info_s *dbs_info; 289 unsigned long next_sampling, appointed_at; 290 291 policy = cpufreq_cpu_get(cpu); 292 if (!policy) 293 continue; 294 if (policy->governor != &cpufreq_gov_ondemand) { 295 cpufreq_cpu_put(policy); 296 continue; 297 } 298 dbs_info = &per_cpu(od_cpu_dbs_info, cpu); 299 cpufreq_cpu_put(policy); 300 301 mutex_lock(&dbs_info->cdbs.timer_mutex); 302 303 if (!delayed_work_pending(&dbs_info->cdbs.work)) { 304 mutex_unlock(&dbs_info->cdbs.timer_mutex); 305 continue; 306 } 307 308 next_sampling = jiffies + usecs_to_jiffies(new_rate); 309 appointed_at = dbs_info->cdbs.work.timer.expires; 310 311 if (time_before(next_sampling, appointed_at)) { 312 313 mutex_unlock(&dbs_info->cdbs.timer_mutex); 314 cancel_delayed_work_sync(&dbs_info->cdbs.work); 315 mutex_lock(&dbs_info->cdbs.timer_mutex); 316 317 schedule_delayed_work_on(cpu, &dbs_info->cdbs.work, 318 usecs_to_jiffies(new_rate)); 319 320 } 321 mutex_unlock(&dbs_info->cdbs.timer_mutex); 322 } 323 } 324 325 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b, 326 const char *buf, size_t count) 327 { 328 unsigned int input; 329 int ret; 330 ret = sscanf(buf, "%u", &input); 331 if (ret != 1) 332 return -EINVAL; 333 update_sampling_rate(input); 334 return count; 335 } 336 337 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b, 338 const char *buf, size_t count) 339 { 340 unsigned int input; 341 int ret; 342 343 ret = sscanf(buf, "%u", &input); 344 if (ret != 1) 345 return -EINVAL; 346 od_tuners.io_is_busy = !!input; 347 return count; 348 } 349 350 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b, 351 const char *buf, size_t count) 352 { 353 unsigned int input; 354 int ret; 355 ret = sscanf(buf, "%u", &input); 356 357 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || 358 input < MIN_FREQUENCY_UP_THRESHOLD) { 359 return -EINVAL; 360 } 361 /* Calculate the new adj_up_threshold */ 362 od_tuners.adj_up_threshold += input; 363 od_tuners.adj_up_threshold -= od_tuners.up_threshold; 364 365 od_tuners.up_threshold = input; 366 return count; 367 } 368 369 static ssize_t store_sampling_down_factor(struct kobject *a, 370 struct attribute *b, const char *buf, size_t count) 371 { 372 unsigned int input, j; 373 int ret; 374 ret = sscanf(buf, "%u", &input); 375 376 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1) 377 return -EINVAL; 378 od_tuners.sampling_down_factor = input; 379 380 /* Reset down sampling multiplier in case it was active */ 381 for_each_online_cpu(j) { 382 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, 383 j); 384 dbs_info->rate_mult = 1; 385 } 386 return count; 387 } 388 389 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b, 390 const char *buf, size_t count) 391 { 392 unsigned int input; 393 int ret; 394 395 unsigned int j; 396 397 ret = sscanf(buf, "%u", &input); 398 if (ret != 1) 399 return -EINVAL; 400 401 if (input > 1) 402 input = 1; 403 404 if (input == od_tuners.ignore_nice) { /* nothing to do */ 405 return count; 406 } 407 od_tuners.ignore_nice = input; 408 409 /* we need to re-evaluate prev_cpu_idle */ 410 for_each_online_cpu(j) { 411 struct od_cpu_dbs_info_s *dbs_info; 412 dbs_info = &per_cpu(od_cpu_dbs_info, j); 413 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j, 414 &dbs_info->cdbs.prev_cpu_wall); 415 if (od_tuners.ignore_nice) 416 dbs_info->cdbs.prev_cpu_nice = 417 kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 418 419 } 420 return count; 421 } 422 423 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b, 424 const char *buf, size_t count) 425 { 426 unsigned int input; 427 int ret; 428 ret = sscanf(buf, "%u", &input); 429 430 if (ret != 1) 431 return -EINVAL; 432 433 if (input > 1000) 434 input = 1000; 435 436 od_tuners.powersave_bias = input; 437 ondemand_powersave_bias_init(); 438 return count; 439 } 440 441 show_one(od, sampling_rate, sampling_rate); 442 show_one(od, io_is_busy, io_is_busy); 443 show_one(od, up_threshold, up_threshold); 444 show_one(od, sampling_down_factor, sampling_down_factor); 445 show_one(od, ignore_nice_load, ignore_nice); 446 show_one(od, powersave_bias, powersave_bias); 447 448 define_one_global_rw(sampling_rate); 449 define_one_global_rw(io_is_busy); 450 define_one_global_rw(up_threshold); 451 define_one_global_rw(sampling_down_factor); 452 define_one_global_rw(ignore_nice_load); 453 define_one_global_rw(powersave_bias); 454 define_one_global_ro(sampling_rate_min); 455 456 static struct attribute *dbs_attributes[] = { 457 &sampling_rate_min.attr, 458 &sampling_rate.attr, 459 &up_threshold.attr, 460 &sampling_down_factor.attr, 461 &ignore_nice_load.attr, 462 &powersave_bias.attr, 463 &io_is_busy.attr, 464 NULL 465 }; 466 467 static struct attribute_group od_attr_group = { 468 .attrs = dbs_attributes, 469 .name = "ondemand", 470 }; 471 472 /************************** sysfs end ************************/ 473 474 define_get_cpu_dbs_routines(od_cpu_dbs_info); 475 476 static struct od_ops od_ops = { 477 .io_busy = should_io_be_busy, 478 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu, 479 .powersave_bias_target = powersave_bias_target, 480 .freq_increase = dbs_freq_increase, 481 }; 482 483 static struct dbs_data od_dbs_data = { 484 .governor = GOV_ONDEMAND, 485 .attr_group = &od_attr_group, 486 .tuners = &od_tuners, 487 .get_cpu_cdbs = get_cpu_cdbs, 488 .get_cpu_dbs_info_s = get_cpu_dbs_info_s, 489 .gov_dbs_timer = od_dbs_timer, 490 .gov_check_cpu = od_check_cpu, 491 .gov_ops = &od_ops, 492 }; 493 494 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy, 495 unsigned int event) 496 { 497 return cpufreq_governor_dbs(&od_dbs_data, policy, event); 498 } 499 500 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND 501 static 502 #endif 503 struct cpufreq_governor cpufreq_gov_ondemand = { 504 .name = "ondemand", 505 .governor = od_cpufreq_governor_dbs, 506 .max_transition_latency = TRANSITION_LATENCY_LIMIT, 507 .owner = THIS_MODULE, 508 }; 509 510 static int __init cpufreq_gov_dbs_init(void) 511 { 512 u64 idle_time; 513 int cpu = get_cpu(); 514 515 mutex_init(&od_dbs_data.mutex); 516 idle_time = get_cpu_idle_time_us(cpu, NULL); 517 put_cpu(); 518 if (idle_time != -1ULL) { 519 /* Idle micro accounting is supported. Use finer thresholds */ 520 od_tuners.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD; 521 od_tuners.adj_up_threshold = MICRO_FREQUENCY_UP_THRESHOLD - 522 MICRO_FREQUENCY_DOWN_DIFFERENTIAL; 523 /* 524 * In nohz/micro accounting case we set the minimum frequency 525 * not depending on HZ, but fixed (very low). The deferred 526 * timer might skip some samples if idle/sleeping as needed. 527 */ 528 od_dbs_data.min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE; 529 } else { 530 /* For correct statistics, we need 10 ticks for each measure */ 531 od_dbs_data.min_sampling_rate = MIN_SAMPLING_RATE_RATIO * 532 jiffies_to_usecs(10); 533 } 534 535 return cpufreq_register_governor(&cpufreq_gov_ondemand); 536 } 537 538 static void __exit cpufreq_gov_dbs_exit(void) 539 { 540 cpufreq_unregister_governor(&cpufreq_gov_ondemand); 541 } 542 543 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>"); 544 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>"); 545 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for " 546 "Low Latency Frequency Transition capable processors"); 547 MODULE_LICENSE("GPL"); 548 549 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND 550 fs_initcall(cpufreq_gov_dbs_init); 551 #else 552 module_init(cpufreq_gov_dbs_init); 553 #endif 554 module_exit(cpufreq_gov_dbs_exit); 555