1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cpufreq.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/kobject.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/sysfs.h>
24 #include <linux/tick.h>
25 #include <linux/types.h>
26 
27 #include "cpufreq_governor.h"
28 
29 /* On-demand governor macros */
30 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
31 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
32 #define DEF_SAMPLING_DOWN_FACTOR		(1)
33 #define MAX_SAMPLING_DOWN_FACTOR		(100000)
34 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
35 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
36 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
37 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
38 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
39 
40 static struct dbs_data od_dbs_data;
41 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
42 
43 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
44 static struct cpufreq_governor cpufreq_gov_ondemand;
45 #endif
46 
47 static struct od_dbs_tuners od_tuners = {
48 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
49 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
50 	.adj_up_threshold = DEF_FREQUENCY_UP_THRESHOLD -
51 			    DEF_FREQUENCY_DOWN_DIFFERENTIAL,
52 	.ignore_nice = 0,
53 	.powersave_bias = 0,
54 };
55 
56 static void ondemand_powersave_bias_init_cpu(int cpu)
57 {
58 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
59 
60 	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
61 	dbs_info->freq_lo = 0;
62 }
63 
64 /*
65  * Not all CPUs want IO time to be accounted as busy; this depends on how
66  * efficient idling at a higher frequency/voltage is.
67  * Pavel Machek says this is not so for various generations of AMD and old
68  * Intel systems.
69  * Mike Chan (android.com) claims this is also not true for ARM.
70  * Because of this, whitelist specific known (series) of CPUs by default, and
71  * leave all others up to the user.
72  */
73 static int should_io_be_busy(void)
74 {
75 #if defined(CONFIG_X86)
76 	/*
77 	 * For Intel, Core 2 (model 15) and later have an efficient idle.
78 	 */
79 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
80 			boot_cpu_data.x86 == 6 &&
81 			boot_cpu_data.x86_model >= 15)
82 		return 1;
83 #endif
84 	return 0;
85 }
86 
87 /*
88  * Find right freq to be set now with powersave_bias on.
89  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
90  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
91  */
92 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
93 		unsigned int freq_next, unsigned int relation)
94 {
95 	unsigned int freq_req, freq_reduc, freq_avg;
96 	unsigned int freq_hi, freq_lo;
97 	unsigned int index = 0;
98 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
99 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
100 						   policy->cpu);
101 
102 	if (!dbs_info->freq_table) {
103 		dbs_info->freq_lo = 0;
104 		dbs_info->freq_lo_jiffies = 0;
105 		return freq_next;
106 	}
107 
108 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
109 			relation, &index);
110 	freq_req = dbs_info->freq_table[index].frequency;
111 	freq_reduc = freq_req * od_tuners.powersave_bias / 1000;
112 	freq_avg = freq_req - freq_reduc;
113 
114 	/* Find freq bounds for freq_avg in freq_table */
115 	index = 0;
116 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
117 			CPUFREQ_RELATION_H, &index);
118 	freq_lo = dbs_info->freq_table[index].frequency;
119 	index = 0;
120 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
121 			CPUFREQ_RELATION_L, &index);
122 	freq_hi = dbs_info->freq_table[index].frequency;
123 
124 	/* Find out how long we have to be in hi and lo freqs */
125 	if (freq_hi == freq_lo) {
126 		dbs_info->freq_lo = 0;
127 		dbs_info->freq_lo_jiffies = 0;
128 		return freq_lo;
129 	}
130 	jiffies_total = usecs_to_jiffies(od_tuners.sampling_rate);
131 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
132 	jiffies_hi += ((freq_hi - freq_lo) / 2);
133 	jiffies_hi /= (freq_hi - freq_lo);
134 	jiffies_lo = jiffies_total - jiffies_hi;
135 	dbs_info->freq_lo = freq_lo;
136 	dbs_info->freq_lo_jiffies = jiffies_lo;
137 	dbs_info->freq_hi_jiffies = jiffies_hi;
138 	return freq_hi;
139 }
140 
141 static void ondemand_powersave_bias_init(void)
142 {
143 	int i;
144 	for_each_online_cpu(i) {
145 		ondemand_powersave_bias_init_cpu(i);
146 	}
147 }
148 
149 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
150 {
151 	if (od_tuners.powersave_bias)
152 		freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
153 	else if (p->cur == p->max)
154 		return;
155 
156 	__cpufreq_driver_target(p, freq, od_tuners.powersave_bias ?
157 			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
158 }
159 
160 /*
161  * Every sampling_rate, we check, if current idle time is less than 20%
162  * (default), then we try to increase frequency. Every sampling_rate, we look
163  * for the lowest frequency which can sustain the load while keeping idle time
164  * over 30%. If such a frequency exist, we try to decrease to this frequency.
165  *
166  * Any frequency increase takes it to the maximum frequency. Frequency reduction
167  * happens at minimum steps of 5% (default) of current frequency
168  */
169 static void od_check_cpu(int cpu, unsigned int load_freq)
170 {
171 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
172 	struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
173 
174 	dbs_info->freq_lo = 0;
175 
176 	/* Check for frequency increase */
177 	if (load_freq > od_tuners.up_threshold * policy->cur) {
178 		/* If switching to max speed, apply sampling_down_factor */
179 		if (policy->cur < policy->max)
180 			dbs_info->rate_mult =
181 				od_tuners.sampling_down_factor;
182 		dbs_freq_increase(policy, policy->max);
183 		return;
184 	}
185 
186 	/* Check for frequency decrease */
187 	/* if we cannot reduce the frequency anymore, break out early */
188 	if (policy->cur == policy->min)
189 		return;
190 
191 	/*
192 	 * The optimal frequency is the frequency that is the lowest that can
193 	 * support the current CPU usage without triggering the up policy. To be
194 	 * safe, we focus 10 points under the threshold.
195 	 */
196 	if (load_freq < od_tuners.adj_up_threshold * policy->cur) {
197 		unsigned int freq_next;
198 		freq_next = load_freq / od_tuners.adj_up_threshold;
199 
200 		/* No longer fully busy, reset rate_mult */
201 		dbs_info->rate_mult = 1;
202 
203 		if (freq_next < policy->min)
204 			freq_next = policy->min;
205 
206 		if (!od_tuners.powersave_bias) {
207 			__cpufreq_driver_target(policy, freq_next,
208 					CPUFREQ_RELATION_L);
209 		} else {
210 			int freq = powersave_bias_target(policy, freq_next,
211 					CPUFREQ_RELATION_L);
212 			__cpufreq_driver_target(policy, freq,
213 					CPUFREQ_RELATION_L);
214 		}
215 	}
216 }
217 
218 static void od_dbs_timer(struct work_struct *work)
219 {
220 	struct delayed_work *dw = to_delayed_work(work);
221 	struct od_cpu_dbs_info_s *dbs_info =
222 		container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
223 	unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
224 	struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
225 			cpu);
226 	int delay, sample_type = core_dbs_info->sample_type;
227 	bool eval_load;
228 
229 	mutex_lock(&core_dbs_info->cdbs.timer_mutex);
230 	eval_load = need_load_eval(&core_dbs_info->cdbs,
231 			od_tuners.sampling_rate);
232 
233 	/* Common NORMAL_SAMPLE setup */
234 	core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
235 	if (sample_type == OD_SUB_SAMPLE) {
236 		delay = core_dbs_info->freq_lo_jiffies;
237 		if (eval_load)
238 			__cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
239 						core_dbs_info->freq_lo,
240 						CPUFREQ_RELATION_H);
241 	} else {
242 		if (eval_load)
243 			dbs_check_cpu(&od_dbs_data, cpu);
244 		if (core_dbs_info->freq_lo) {
245 			/* Setup timer for SUB_SAMPLE */
246 			core_dbs_info->sample_type = OD_SUB_SAMPLE;
247 			delay = core_dbs_info->freq_hi_jiffies;
248 		} else {
249 			delay = delay_for_sampling_rate(od_tuners.sampling_rate
250 						* core_dbs_info->rate_mult);
251 		}
252 	}
253 
254 	schedule_delayed_work_on(smp_processor_id(), dw, delay);
255 	mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
256 }
257 
258 /************************** sysfs interface ************************/
259 
260 static ssize_t show_sampling_rate_min(struct kobject *kobj,
261 				      struct attribute *attr, char *buf)
262 {
263 	return sprintf(buf, "%u\n", od_dbs_data.min_sampling_rate);
264 }
265 
266 /**
267  * update_sampling_rate - update sampling rate effective immediately if needed.
268  * @new_rate: new sampling rate
269  *
270  * If new rate is smaller than the old, simply updating
271  * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
272  * original sampling_rate was 1 second and the requested new sampling rate is 10
273  * ms because the user needs immediate reaction from ondemand governor, but not
274  * sure if higher frequency will be required or not, then, the governor may
275  * change the sampling rate too late; up to 1 second later. Thus, if we are
276  * reducing the sampling rate, we need to make the new value effective
277  * immediately.
278  */
279 static void update_sampling_rate(unsigned int new_rate)
280 {
281 	int cpu;
282 
283 	od_tuners.sampling_rate = new_rate = max(new_rate,
284 			od_dbs_data.min_sampling_rate);
285 
286 	for_each_online_cpu(cpu) {
287 		struct cpufreq_policy *policy;
288 		struct od_cpu_dbs_info_s *dbs_info;
289 		unsigned long next_sampling, appointed_at;
290 
291 		policy = cpufreq_cpu_get(cpu);
292 		if (!policy)
293 			continue;
294 		if (policy->governor != &cpufreq_gov_ondemand) {
295 			cpufreq_cpu_put(policy);
296 			continue;
297 		}
298 		dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
299 		cpufreq_cpu_put(policy);
300 
301 		mutex_lock(&dbs_info->cdbs.timer_mutex);
302 
303 		if (!delayed_work_pending(&dbs_info->cdbs.work)) {
304 			mutex_unlock(&dbs_info->cdbs.timer_mutex);
305 			continue;
306 		}
307 
308 		next_sampling = jiffies + usecs_to_jiffies(new_rate);
309 		appointed_at = dbs_info->cdbs.work.timer.expires;
310 
311 		if (time_before(next_sampling, appointed_at)) {
312 
313 			mutex_unlock(&dbs_info->cdbs.timer_mutex);
314 			cancel_delayed_work_sync(&dbs_info->cdbs.work);
315 			mutex_lock(&dbs_info->cdbs.timer_mutex);
316 
317 			schedule_delayed_work_on(cpu, &dbs_info->cdbs.work,
318 					usecs_to_jiffies(new_rate));
319 
320 		}
321 		mutex_unlock(&dbs_info->cdbs.timer_mutex);
322 	}
323 }
324 
325 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
326 				   const char *buf, size_t count)
327 {
328 	unsigned int input;
329 	int ret;
330 	ret = sscanf(buf, "%u", &input);
331 	if (ret != 1)
332 		return -EINVAL;
333 	update_sampling_rate(input);
334 	return count;
335 }
336 
337 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
338 				   const char *buf, size_t count)
339 {
340 	unsigned int input;
341 	int ret;
342 
343 	ret = sscanf(buf, "%u", &input);
344 	if (ret != 1)
345 		return -EINVAL;
346 	od_tuners.io_is_busy = !!input;
347 	return count;
348 }
349 
350 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
351 				  const char *buf, size_t count)
352 {
353 	unsigned int input;
354 	int ret;
355 	ret = sscanf(buf, "%u", &input);
356 
357 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
358 			input < MIN_FREQUENCY_UP_THRESHOLD) {
359 		return -EINVAL;
360 	}
361 	/* Calculate the new adj_up_threshold */
362 	od_tuners.adj_up_threshold += input;
363 	od_tuners.adj_up_threshold -= od_tuners.up_threshold;
364 
365 	od_tuners.up_threshold = input;
366 	return count;
367 }
368 
369 static ssize_t store_sampling_down_factor(struct kobject *a,
370 			struct attribute *b, const char *buf, size_t count)
371 {
372 	unsigned int input, j;
373 	int ret;
374 	ret = sscanf(buf, "%u", &input);
375 
376 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
377 		return -EINVAL;
378 	od_tuners.sampling_down_factor = input;
379 
380 	/* Reset down sampling multiplier in case it was active */
381 	for_each_online_cpu(j) {
382 		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
383 				j);
384 		dbs_info->rate_mult = 1;
385 	}
386 	return count;
387 }
388 
389 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
390 				      const char *buf, size_t count)
391 {
392 	unsigned int input;
393 	int ret;
394 
395 	unsigned int j;
396 
397 	ret = sscanf(buf, "%u", &input);
398 	if (ret != 1)
399 		return -EINVAL;
400 
401 	if (input > 1)
402 		input = 1;
403 
404 	if (input == od_tuners.ignore_nice) { /* nothing to do */
405 		return count;
406 	}
407 	od_tuners.ignore_nice = input;
408 
409 	/* we need to re-evaluate prev_cpu_idle */
410 	for_each_online_cpu(j) {
411 		struct od_cpu_dbs_info_s *dbs_info;
412 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
413 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
414 						&dbs_info->cdbs.prev_cpu_wall);
415 		if (od_tuners.ignore_nice)
416 			dbs_info->cdbs.prev_cpu_nice =
417 				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
418 
419 	}
420 	return count;
421 }
422 
423 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
424 				    const char *buf, size_t count)
425 {
426 	unsigned int input;
427 	int ret;
428 	ret = sscanf(buf, "%u", &input);
429 
430 	if (ret != 1)
431 		return -EINVAL;
432 
433 	if (input > 1000)
434 		input = 1000;
435 
436 	od_tuners.powersave_bias = input;
437 	ondemand_powersave_bias_init();
438 	return count;
439 }
440 
441 show_one(od, sampling_rate, sampling_rate);
442 show_one(od, io_is_busy, io_is_busy);
443 show_one(od, up_threshold, up_threshold);
444 show_one(od, sampling_down_factor, sampling_down_factor);
445 show_one(od, ignore_nice_load, ignore_nice);
446 show_one(od, powersave_bias, powersave_bias);
447 
448 define_one_global_rw(sampling_rate);
449 define_one_global_rw(io_is_busy);
450 define_one_global_rw(up_threshold);
451 define_one_global_rw(sampling_down_factor);
452 define_one_global_rw(ignore_nice_load);
453 define_one_global_rw(powersave_bias);
454 define_one_global_ro(sampling_rate_min);
455 
456 static struct attribute *dbs_attributes[] = {
457 	&sampling_rate_min.attr,
458 	&sampling_rate.attr,
459 	&up_threshold.attr,
460 	&sampling_down_factor.attr,
461 	&ignore_nice_load.attr,
462 	&powersave_bias.attr,
463 	&io_is_busy.attr,
464 	NULL
465 };
466 
467 static struct attribute_group od_attr_group = {
468 	.attrs = dbs_attributes,
469 	.name = "ondemand",
470 };
471 
472 /************************** sysfs end ************************/
473 
474 define_get_cpu_dbs_routines(od_cpu_dbs_info);
475 
476 static struct od_ops od_ops = {
477 	.io_busy = should_io_be_busy,
478 	.powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
479 	.powersave_bias_target = powersave_bias_target,
480 	.freq_increase = dbs_freq_increase,
481 };
482 
483 static struct dbs_data od_dbs_data = {
484 	.governor = GOV_ONDEMAND,
485 	.attr_group = &od_attr_group,
486 	.tuners = &od_tuners,
487 	.get_cpu_cdbs = get_cpu_cdbs,
488 	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
489 	.gov_dbs_timer = od_dbs_timer,
490 	.gov_check_cpu = od_check_cpu,
491 	.gov_ops = &od_ops,
492 };
493 
494 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
495 		unsigned int event)
496 {
497 	return cpufreq_governor_dbs(&od_dbs_data, policy, event);
498 }
499 
500 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
501 static
502 #endif
503 struct cpufreq_governor cpufreq_gov_ondemand = {
504 	.name			= "ondemand",
505 	.governor		= od_cpufreq_governor_dbs,
506 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
507 	.owner			= THIS_MODULE,
508 };
509 
510 static int __init cpufreq_gov_dbs_init(void)
511 {
512 	u64 idle_time;
513 	int cpu = get_cpu();
514 
515 	mutex_init(&od_dbs_data.mutex);
516 	idle_time = get_cpu_idle_time_us(cpu, NULL);
517 	put_cpu();
518 	if (idle_time != -1ULL) {
519 		/* Idle micro accounting is supported. Use finer thresholds */
520 		od_tuners.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
521 		od_tuners.adj_up_threshold = MICRO_FREQUENCY_UP_THRESHOLD -
522 					     MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
523 		/*
524 		 * In nohz/micro accounting case we set the minimum frequency
525 		 * not depending on HZ, but fixed (very low). The deferred
526 		 * timer might skip some samples if idle/sleeping as needed.
527 		*/
528 		od_dbs_data.min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
529 	} else {
530 		/* For correct statistics, we need 10 ticks for each measure */
531 		od_dbs_data.min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
532 			jiffies_to_usecs(10);
533 	}
534 
535 	return cpufreq_register_governor(&cpufreq_gov_ondemand);
536 }
537 
538 static void __exit cpufreq_gov_dbs_exit(void)
539 {
540 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
541 }
542 
543 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
544 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
545 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
546 	"Low Latency Frequency Transition capable processors");
547 MODULE_LICENSE("GPL");
548 
549 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
550 fs_initcall(cpufreq_gov_dbs_init);
551 #else
552 module_init(cpufreq_gov_dbs_init);
553 #endif
554 module_exit(cpufreq_gov_dbs_exit);
555