1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 #include "cpufreq_governor.h"
20 
21 /* On-demand governor macros */
22 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
23 #define DEF_SAMPLING_DOWN_FACTOR		(1)
24 #define MAX_SAMPLING_DOWN_FACTOR		(100000)
25 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
26 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
27 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
28 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
29 
30 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
31 
32 static struct od_ops od_ops;
33 
34 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
35 static struct cpufreq_governor cpufreq_gov_ondemand;
36 #endif
37 
38 static unsigned int default_powersave_bias;
39 
40 static void ondemand_powersave_bias_init_cpu(int cpu)
41 {
42 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
43 
44 	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
45 	dbs_info->freq_lo = 0;
46 }
47 
48 /*
49  * Not all CPUs want IO time to be accounted as busy; this depends on how
50  * efficient idling at a higher frequency/voltage is.
51  * Pavel Machek says this is not so for various generations of AMD and old
52  * Intel systems.
53  * Mike Chan (android.com) claims this is also not true for ARM.
54  * Because of this, whitelist specific known (series) of CPUs by default, and
55  * leave all others up to the user.
56  */
57 static int should_io_be_busy(void)
58 {
59 #if defined(CONFIG_X86)
60 	/*
61 	 * For Intel, Core 2 (model 15) and later have an efficient idle.
62 	 */
63 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
64 			boot_cpu_data.x86 == 6 &&
65 			boot_cpu_data.x86_model >= 15)
66 		return 1;
67 #endif
68 	return 0;
69 }
70 
71 /*
72  * Find right freq to be set now with powersave_bias on.
73  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
74  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
75  */
76 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
77 		unsigned int freq_next, unsigned int relation)
78 {
79 	unsigned int freq_req, freq_reduc, freq_avg;
80 	unsigned int freq_hi, freq_lo;
81 	unsigned int index = 0;
82 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
83 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
84 						   policy->cpu);
85 	struct dbs_data *dbs_data = policy->governor_data;
86 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
87 
88 	if (!dbs_info->freq_table) {
89 		dbs_info->freq_lo = 0;
90 		dbs_info->freq_lo_jiffies = 0;
91 		return freq_next;
92 	}
93 
94 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
95 			relation, &index);
96 	freq_req = dbs_info->freq_table[index].frequency;
97 	freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
98 	freq_avg = freq_req - freq_reduc;
99 
100 	/* Find freq bounds for freq_avg in freq_table */
101 	index = 0;
102 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
103 			CPUFREQ_RELATION_H, &index);
104 	freq_lo = dbs_info->freq_table[index].frequency;
105 	index = 0;
106 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
107 			CPUFREQ_RELATION_L, &index);
108 	freq_hi = dbs_info->freq_table[index].frequency;
109 
110 	/* Find out how long we have to be in hi and lo freqs */
111 	if (freq_hi == freq_lo) {
112 		dbs_info->freq_lo = 0;
113 		dbs_info->freq_lo_jiffies = 0;
114 		return freq_lo;
115 	}
116 	jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
117 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
118 	jiffies_hi += ((freq_hi - freq_lo) / 2);
119 	jiffies_hi /= (freq_hi - freq_lo);
120 	jiffies_lo = jiffies_total - jiffies_hi;
121 	dbs_info->freq_lo = freq_lo;
122 	dbs_info->freq_lo_jiffies = jiffies_lo;
123 	dbs_info->freq_hi_jiffies = jiffies_hi;
124 	return freq_hi;
125 }
126 
127 static void ondemand_powersave_bias_init(void)
128 {
129 	int i;
130 	for_each_online_cpu(i) {
131 		ondemand_powersave_bias_init_cpu(i);
132 	}
133 }
134 
135 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
136 {
137 	struct dbs_data *dbs_data = policy->governor_data;
138 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
139 
140 	if (od_tuners->powersave_bias)
141 		freq = od_ops.powersave_bias_target(policy, freq,
142 				CPUFREQ_RELATION_H);
143 	else if (policy->cur == policy->max)
144 		return;
145 
146 	__cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
147 			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
148 }
149 
150 /*
151  * Every sampling_rate, we check, if current idle time is less than 20%
152  * (default), then we try to increase frequency. Else, we adjust the frequency
153  * proportional to load.
154  */
155 static void od_check_cpu(int cpu, unsigned int load)
156 {
157 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
158 	struct cpufreq_policy *policy = dbs_info->cdbs.shared->policy;
159 	struct dbs_data *dbs_data = policy->governor_data;
160 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
161 
162 	dbs_info->freq_lo = 0;
163 
164 	/* Check for frequency increase */
165 	if (load > od_tuners->up_threshold) {
166 		/* If switching to max speed, apply sampling_down_factor */
167 		if (policy->cur < policy->max)
168 			dbs_info->rate_mult =
169 				od_tuners->sampling_down_factor;
170 		dbs_freq_increase(policy, policy->max);
171 	} else {
172 		/* Calculate the next frequency proportional to load */
173 		unsigned int freq_next, min_f, max_f;
174 
175 		min_f = policy->cpuinfo.min_freq;
176 		max_f = policy->cpuinfo.max_freq;
177 		freq_next = min_f + load * (max_f - min_f) / 100;
178 
179 		/* No longer fully busy, reset rate_mult */
180 		dbs_info->rate_mult = 1;
181 
182 		if (!od_tuners->powersave_bias) {
183 			__cpufreq_driver_target(policy, freq_next,
184 					CPUFREQ_RELATION_C);
185 			return;
186 		}
187 
188 		freq_next = od_ops.powersave_bias_target(policy, freq_next,
189 					CPUFREQ_RELATION_L);
190 		__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
191 	}
192 }
193 
194 static unsigned int od_dbs_timer(struct cpu_dbs_info *cdbs,
195 				 struct dbs_data *dbs_data, bool modify_all)
196 {
197 	struct cpufreq_policy *policy = cdbs->shared->policy;
198 	unsigned int cpu = policy->cpu;
199 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
200 			cpu);
201 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
202 	int delay = 0, sample_type = dbs_info->sample_type;
203 
204 	if (!modify_all)
205 		goto max_delay;
206 
207 	/* Common NORMAL_SAMPLE setup */
208 	dbs_info->sample_type = OD_NORMAL_SAMPLE;
209 	if (sample_type == OD_SUB_SAMPLE) {
210 		delay = dbs_info->freq_lo_jiffies;
211 		__cpufreq_driver_target(policy, dbs_info->freq_lo,
212 					CPUFREQ_RELATION_H);
213 	} else {
214 		dbs_check_cpu(dbs_data, cpu);
215 		if (dbs_info->freq_lo) {
216 			/* Setup timer for SUB_SAMPLE */
217 			dbs_info->sample_type = OD_SUB_SAMPLE;
218 			delay = dbs_info->freq_hi_jiffies;
219 		}
220 	}
221 
222 max_delay:
223 	if (!delay)
224 		delay = delay_for_sampling_rate(od_tuners->sampling_rate
225 				* dbs_info->rate_mult);
226 
227 	return delay;
228 }
229 
230 /************************** sysfs interface ************************/
231 static struct common_dbs_data od_dbs_cdata;
232 
233 /**
234  * update_sampling_rate - update sampling rate effective immediately if needed.
235  * @new_rate: new sampling rate
236  *
237  * If new rate is smaller than the old, simply updating
238  * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
239  * original sampling_rate was 1 second and the requested new sampling rate is 10
240  * ms because the user needs immediate reaction from ondemand governor, but not
241  * sure if higher frequency will be required or not, then, the governor may
242  * change the sampling rate too late; up to 1 second later. Thus, if we are
243  * reducing the sampling rate, we need to make the new value effective
244  * immediately.
245  */
246 static void update_sampling_rate(struct dbs_data *dbs_data,
247 		unsigned int new_rate)
248 {
249 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
250 	int cpu;
251 
252 	od_tuners->sampling_rate = new_rate = max(new_rate,
253 			dbs_data->min_sampling_rate);
254 
255 	for_each_online_cpu(cpu) {
256 		struct cpufreq_policy *policy;
257 		struct od_cpu_dbs_info_s *dbs_info;
258 		unsigned long next_sampling, appointed_at;
259 
260 		policy = cpufreq_cpu_get(cpu);
261 		if (!policy)
262 			continue;
263 		if (policy->governor != &cpufreq_gov_ondemand) {
264 			cpufreq_cpu_put(policy);
265 			continue;
266 		}
267 		dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
268 		cpufreq_cpu_put(policy);
269 
270 		if (!delayed_work_pending(&dbs_info->cdbs.dwork))
271 			continue;
272 
273 		next_sampling = jiffies + usecs_to_jiffies(new_rate);
274 		appointed_at = dbs_info->cdbs.dwork.timer.expires;
275 
276 		if (time_before(next_sampling, appointed_at)) {
277 			cancel_delayed_work_sync(&dbs_info->cdbs.dwork);
278 
279 			gov_queue_work(dbs_data, policy,
280 				       usecs_to_jiffies(new_rate), true);
281 
282 		}
283 	}
284 }
285 
286 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
287 		size_t count)
288 {
289 	unsigned int input;
290 	int ret;
291 	ret = sscanf(buf, "%u", &input);
292 	if (ret != 1)
293 		return -EINVAL;
294 
295 	update_sampling_rate(dbs_data, input);
296 	return count;
297 }
298 
299 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
300 		size_t count)
301 {
302 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
303 	unsigned int input;
304 	int ret;
305 	unsigned int j;
306 
307 	ret = sscanf(buf, "%u", &input);
308 	if (ret != 1)
309 		return -EINVAL;
310 	od_tuners->io_is_busy = !!input;
311 
312 	/* we need to re-evaluate prev_cpu_idle */
313 	for_each_online_cpu(j) {
314 		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
315 									j);
316 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
317 			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
318 	}
319 	return count;
320 }
321 
322 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
323 		size_t count)
324 {
325 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
326 	unsigned int input;
327 	int ret;
328 	ret = sscanf(buf, "%u", &input);
329 
330 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
331 			input < MIN_FREQUENCY_UP_THRESHOLD) {
332 		return -EINVAL;
333 	}
334 
335 	od_tuners->up_threshold = input;
336 	return count;
337 }
338 
339 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
340 		const char *buf, size_t count)
341 {
342 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
343 	unsigned int input, j;
344 	int ret;
345 	ret = sscanf(buf, "%u", &input);
346 
347 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
348 		return -EINVAL;
349 	od_tuners->sampling_down_factor = input;
350 
351 	/* Reset down sampling multiplier in case it was active */
352 	for_each_online_cpu(j) {
353 		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
354 				j);
355 		dbs_info->rate_mult = 1;
356 	}
357 	return count;
358 }
359 
360 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
361 		const char *buf, size_t count)
362 {
363 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
364 	unsigned int input;
365 	int ret;
366 
367 	unsigned int j;
368 
369 	ret = sscanf(buf, "%u", &input);
370 	if (ret != 1)
371 		return -EINVAL;
372 
373 	if (input > 1)
374 		input = 1;
375 
376 	if (input == od_tuners->ignore_nice_load) { /* nothing to do */
377 		return count;
378 	}
379 	od_tuners->ignore_nice_load = input;
380 
381 	/* we need to re-evaluate prev_cpu_idle */
382 	for_each_online_cpu(j) {
383 		struct od_cpu_dbs_info_s *dbs_info;
384 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
385 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
386 			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
387 		if (od_tuners->ignore_nice_load)
388 			dbs_info->cdbs.prev_cpu_nice =
389 				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
390 
391 	}
392 	return count;
393 }
394 
395 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
396 		size_t count)
397 {
398 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
399 	unsigned int input;
400 	int ret;
401 	ret = sscanf(buf, "%u", &input);
402 
403 	if (ret != 1)
404 		return -EINVAL;
405 
406 	if (input > 1000)
407 		input = 1000;
408 
409 	od_tuners->powersave_bias = input;
410 	ondemand_powersave_bias_init();
411 	return count;
412 }
413 
414 show_store_one(od, sampling_rate);
415 show_store_one(od, io_is_busy);
416 show_store_one(od, up_threshold);
417 show_store_one(od, sampling_down_factor);
418 show_store_one(od, ignore_nice_load);
419 show_store_one(od, powersave_bias);
420 declare_show_sampling_rate_min(od);
421 
422 gov_sys_pol_attr_rw(sampling_rate);
423 gov_sys_pol_attr_rw(io_is_busy);
424 gov_sys_pol_attr_rw(up_threshold);
425 gov_sys_pol_attr_rw(sampling_down_factor);
426 gov_sys_pol_attr_rw(ignore_nice_load);
427 gov_sys_pol_attr_rw(powersave_bias);
428 gov_sys_pol_attr_ro(sampling_rate_min);
429 
430 static struct attribute *dbs_attributes_gov_sys[] = {
431 	&sampling_rate_min_gov_sys.attr,
432 	&sampling_rate_gov_sys.attr,
433 	&up_threshold_gov_sys.attr,
434 	&sampling_down_factor_gov_sys.attr,
435 	&ignore_nice_load_gov_sys.attr,
436 	&powersave_bias_gov_sys.attr,
437 	&io_is_busy_gov_sys.attr,
438 	NULL
439 };
440 
441 static struct attribute_group od_attr_group_gov_sys = {
442 	.attrs = dbs_attributes_gov_sys,
443 	.name = "ondemand",
444 };
445 
446 static struct attribute *dbs_attributes_gov_pol[] = {
447 	&sampling_rate_min_gov_pol.attr,
448 	&sampling_rate_gov_pol.attr,
449 	&up_threshold_gov_pol.attr,
450 	&sampling_down_factor_gov_pol.attr,
451 	&ignore_nice_load_gov_pol.attr,
452 	&powersave_bias_gov_pol.attr,
453 	&io_is_busy_gov_pol.attr,
454 	NULL
455 };
456 
457 static struct attribute_group od_attr_group_gov_pol = {
458 	.attrs = dbs_attributes_gov_pol,
459 	.name = "ondemand",
460 };
461 
462 /************************** sysfs end ************************/
463 
464 static int od_init(struct dbs_data *dbs_data, bool notify)
465 {
466 	struct od_dbs_tuners *tuners;
467 	u64 idle_time;
468 	int cpu;
469 
470 	tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
471 	if (!tuners) {
472 		pr_err("%s: kzalloc failed\n", __func__);
473 		return -ENOMEM;
474 	}
475 
476 	cpu = get_cpu();
477 	idle_time = get_cpu_idle_time_us(cpu, NULL);
478 	put_cpu();
479 	if (idle_time != -1ULL) {
480 		/* Idle micro accounting is supported. Use finer thresholds */
481 		tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
482 		/*
483 		 * In nohz/micro accounting case we set the minimum frequency
484 		 * not depending on HZ, but fixed (very low). The deferred
485 		 * timer might skip some samples if idle/sleeping as needed.
486 		*/
487 		dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
488 	} else {
489 		tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
490 
491 		/* For correct statistics, we need 10 ticks for each measure */
492 		dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
493 			jiffies_to_usecs(10);
494 	}
495 
496 	tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
497 	tuners->ignore_nice_load = 0;
498 	tuners->powersave_bias = default_powersave_bias;
499 	tuners->io_is_busy = should_io_be_busy();
500 
501 	dbs_data->tuners = tuners;
502 	return 0;
503 }
504 
505 static void od_exit(struct dbs_data *dbs_data, bool notify)
506 {
507 	kfree(dbs_data->tuners);
508 }
509 
510 define_get_cpu_dbs_routines(od_cpu_dbs_info);
511 
512 static struct od_ops od_ops = {
513 	.powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
514 	.powersave_bias_target = generic_powersave_bias_target,
515 	.freq_increase = dbs_freq_increase,
516 };
517 
518 static struct common_dbs_data od_dbs_cdata = {
519 	.governor = GOV_ONDEMAND,
520 	.attr_group_gov_sys = &od_attr_group_gov_sys,
521 	.attr_group_gov_pol = &od_attr_group_gov_pol,
522 	.get_cpu_cdbs = get_cpu_cdbs,
523 	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
524 	.gov_dbs_timer = od_dbs_timer,
525 	.gov_check_cpu = od_check_cpu,
526 	.gov_ops = &od_ops,
527 	.init = od_init,
528 	.exit = od_exit,
529 	.mutex = __MUTEX_INITIALIZER(od_dbs_cdata.mutex),
530 };
531 
532 static void od_set_powersave_bias(unsigned int powersave_bias)
533 {
534 	struct cpufreq_policy *policy;
535 	struct dbs_data *dbs_data;
536 	struct od_dbs_tuners *od_tuners;
537 	unsigned int cpu;
538 	cpumask_t done;
539 
540 	default_powersave_bias = powersave_bias;
541 	cpumask_clear(&done);
542 
543 	get_online_cpus();
544 	for_each_online_cpu(cpu) {
545 		struct cpu_common_dbs_info *shared;
546 
547 		if (cpumask_test_cpu(cpu, &done))
548 			continue;
549 
550 		shared = per_cpu(od_cpu_dbs_info, cpu).cdbs.shared;
551 		if (!shared)
552 			continue;
553 
554 		policy = shared->policy;
555 		cpumask_or(&done, &done, policy->cpus);
556 
557 		if (policy->governor != &cpufreq_gov_ondemand)
558 			continue;
559 
560 		dbs_data = policy->governor_data;
561 		od_tuners = dbs_data->tuners;
562 		od_tuners->powersave_bias = default_powersave_bias;
563 	}
564 	put_online_cpus();
565 }
566 
567 void od_register_powersave_bias_handler(unsigned int (*f)
568 		(struct cpufreq_policy *, unsigned int, unsigned int),
569 		unsigned int powersave_bias)
570 {
571 	od_ops.powersave_bias_target = f;
572 	od_set_powersave_bias(powersave_bias);
573 }
574 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
575 
576 void od_unregister_powersave_bias_handler(void)
577 {
578 	od_ops.powersave_bias_target = generic_powersave_bias_target;
579 	od_set_powersave_bias(0);
580 }
581 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
582 
583 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
584 		unsigned int event)
585 {
586 	return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
587 }
588 
589 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
590 static
591 #endif
592 struct cpufreq_governor cpufreq_gov_ondemand = {
593 	.name			= "ondemand",
594 	.governor		= od_cpufreq_governor_dbs,
595 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
596 	.owner			= THIS_MODULE,
597 };
598 
599 static int __init cpufreq_gov_dbs_init(void)
600 {
601 	return cpufreq_register_governor(&cpufreq_gov_ondemand);
602 }
603 
604 static void __exit cpufreq_gov_dbs_exit(void)
605 {
606 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
607 }
608 
609 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
610 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
611 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
612 	"Low Latency Frequency Transition capable processors");
613 MODULE_LICENSE("GPL");
614 
615 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
616 fs_initcall(cpufreq_gov_dbs_init);
617 #else
618 module_init(cpufreq_gov_dbs_init);
619 #endif
620 module_exit(cpufreq_gov_dbs_exit);
621