1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 #include "cpufreq_governor.h"
20 
21 /* On-demand governor macros */
22 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
23 #define DEF_SAMPLING_DOWN_FACTOR		(1)
24 #define MAX_SAMPLING_DOWN_FACTOR		(100000)
25 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
26 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
27 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
28 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
29 
30 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
31 
32 static struct od_ops od_ops;
33 
34 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
35 static struct cpufreq_governor cpufreq_gov_ondemand;
36 #endif
37 
38 static unsigned int default_powersave_bias;
39 
40 static void ondemand_powersave_bias_init_cpu(int cpu)
41 {
42 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
43 
44 	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
45 	dbs_info->freq_lo = 0;
46 }
47 
48 /*
49  * Not all CPUs want IO time to be accounted as busy; this depends on how
50  * efficient idling at a higher frequency/voltage is.
51  * Pavel Machek says this is not so for various generations of AMD and old
52  * Intel systems.
53  * Mike Chan (android.com) claims this is also not true for ARM.
54  * Because of this, whitelist specific known (series) of CPUs by default, and
55  * leave all others up to the user.
56  */
57 static int should_io_be_busy(void)
58 {
59 #if defined(CONFIG_X86)
60 	/*
61 	 * For Intel, Core 2 (model 15) and later have an efficient idle.
62 	 */
63 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
64 			boot_cpu_data.x86 == 6 &&
65 			boot_cpu_data.x86_model >= 15)
66 		return 1;
67 #endif
68 	return 0;
69 }
70 
71 /*
72  * Find right freq to be set now with powersave_bias on.
73  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
74  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
75  */
76 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
77 		unsigned int freq_next, unsigned int relation)
78 {
79 	unsigned int freq_req, freq_reduc, freq_avg;
80 	unsigned int freq_hi, freq_lo;
81 	unsigned int index = 0;
82 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
83 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
84 						   policy->cpu);
85 	struct dbs_data *dbs_data = policy->governor_data;
86 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
87 
88 	if (!dbs_info->freq_table) {
89 		dbs_info->freq_lo = 0;
90 		dbs_info->freq_lo_jiffies = 0;
91 		return freq_next;
92 	}
93 
94 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
95 			relation, &index);
96 	freq_req = dbs_info->freq_table[index].frequency;
97 	freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
98 	freq_avg = freq_req - freq_reduc;
99 
100 	/* Find freq bounds for freq_avg in freq_table */
101 	index = 0;
102 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
103 			CPUFREQ_RELATION_H, &index);
104 	freq_lo = dbs_info->freq_table[index].frequency;
105 	index = 0;
106 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
107 			CPUFREQ_RELATION_L, &index);
108 	freq_hi = dbs_info->freq_table[index].frequency;
109 
110 	/* Find out how long we have to be in hi and lo freqs */
111 	if (freq_hi == freq_lo) {
112 		dbs_info->freq_lo = 0;
113 		dbs_info->freq_lo_jiffies = 0;
114 		return freq_lo;
115 	}
116 	jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
117 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
118 	jiffies_hi += ((freq_hi - freq_lo) / 2);
119 	jiffies_hi /= (freq_hi - freq_lo);
120 	jiffies_lo = jiffies_total - jiffies_hi;
121 	dbs_info->freq_lo = freq_lo;
122 	dbs_info->freq_lo_jiffies = jiffies_lo;
123 	dbs_info->freq_hi_jiffies = jiffies_hi;
124 	return freq_hi;
125 }
126 
127 static void ondemand_powersave_bias_init(void)
128 {
129 	int i;
130 	for_each_online_cpu(i) {
131 		ondemand_powersave_bias_init_cpu(i);
132 	}
133 }
134 
135 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
136 {
137 	struct dbs_data *dbs_data = policy->governor_data;
138 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
139 
140 	if (od_tuners->powersave_bias)
141 		freq = od_ops.powersave_bias_target(policy, freq,
142 				CPUFREQ_RELATION_H);
143 	else if (policy->cur == policy->max)
144 		return;
145 
146 	__cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
147 			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
148 }
149 
150 /*
151  * Every sampling_rate, we check, if current idle time is less than 20%
152  * (default), then we try to increase frequency. Else, we adjust the frequency
153  * proportional to load.
154  */
155 static void od_check_cpu(int cpu, unsigned int load)
156 {
157 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
158 	struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
159 	struct dbs_data *dbs_data = policy->governor_data;
160 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
161 
162 	dbs_info->freq_lo = 0;
163 
164 	/* Check for frequency increase */
165 	if (load > od_tuners->up_threshold) {
166 		/* If switching to max speed, apply sampling_down_factor */
167 		if (policy->cur < policy->max)
168 			dbs_info->rate_mult =
169 				od_tuners->sampling_down_factor;
170 		dbs_freq_increase(policy, policy->max);
171 	} else {
172 		/* Calculate the next frequency proportional to load */
173 		unsigned int freq_next;
174 		freq_next = load * policy->cpuinfo.max_freq / 100;
175 
176 		/* No longer fully busy, reset rate_mult */
177 		dbs_info->rate_mult = 1;
178 
179 		if (!od_tuners->powersave_bias) {
180 			__cpufreq_driver_target(policy, freq_next,
181 					CPUFREQ_RELATION_L);
182 			return;
183 		}
184 
185 		freq_next = od_ops.powersave_bias_target(policy, freq_next,
186 					CPUFREQ_RELATION_L);
187 		__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
188 	}
189 }
190 
191 static void od_dbs_timer(struct work_struct *work)
192 {
193 	struct od_cpu_dbs_info_s *dbs_info =
194 		container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
195 	unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
196 	struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
197 			cpu);
198 	struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
199 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
200 	int delay = 0, sample_type = core_dbs_info->sample_type;
201 	bool modify_all = true;
202 
203 	mutex_lock(&core_dbs_info->cdbs.timer_mutex);
204 	if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate)) {
205 		modify_all = false;
206 		goto max_delay;
207 	}
208 
209 	/* Common NORMAL_SAMPLE setup */
210 	core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
211 	if (sample_type == OD_SUB_SAMPLE) {
212 		delay = core_dbs_info->freq_lo_jiffies;
213 		__cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
214 				core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
215 	} else {
216 		dbs_check_cpu(dbs_data, cpu);
217 		if (core_dbs_info->freq_lo) {
218 			/* Setup timer for SUB_SAMPLE */
219 			core_dbs_info->sample_type = OD_SUB_SAMPLE;
220 			delay = core_dbs_info->freq_hi_jiffies;
221 		}
222 	}
223 
224 max_delay:
225 	if (!delay)
226 		delay = delay_for_sampling_rate(od_tuners->sampling_rate
227 				* core_dbs_info->rate_mult);
228 
229 	gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
230 	mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
231 }
232 
233 /************************** sysfs interface ************************/
234 static struct common_dbs_data od_dbs_cdata;
235 
236 /**
237  * update_sampling_rate - update sampling rate effective immediately if needed.
238  * @new_rate: new sampling rate
239  *
240  * If new rate is smaller than the old, simply updating
241  * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
242  * original sampling_rate was 1 second and the requested new sampling rate is 10
243  * ms because the user needs immediate reaction from ondemand governor, but not
244  * sure if higher frequency will be required or not, then, the governor may
245  * change the sampling rate too late; up to 1 second later. Thus, if we are
246  * reducing the sampling rate, we need to make the new value effective
247  * immediately.
248  */
249 static void update_sampling_rate(struct dbs_data *dbs_data,
250 		unsigned int new_rate)
251 {
252 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
253 	int cpu;
254 
255 	od_tuners->sampling_rate = new_rate = max(new_rate,
256 			dbs_data->min_sampling_rate);
257 
258 	for_each_online_cpu(cpu) {
259 		struct cpufreq_policy *policy;
260 		struct od_cpu_dbs_info_s *dbs_info;
261 		unsigned long next_sampling, appointed_at;
262 
263 		policy = cpufreq_cpu_get(cpu);
264 		if (!policy)
265 			continue;
266 		if (policy->governor != &cpufreq_gov_ondemand) {
267 			cpufreq_cpu_put(policy);
268 			continue;
269 		}
270 		dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
271 		cpufreq_cpu_put(policy);
272 
273 		mutex_lock(&dbs_info->cdbs.timer_mutex);
274 
275 		if (!delayed_work_pending(&dbs_info->cdbs.work)) {
276 			mutex_unlock(&dbs_info->cdbs.timer_mutex);
277 			continue;
278 		}
279 
280 		next_sampling = jiffies + usecs_to_jiffies(new_rate);
281 		appointed_at = dbs_info->cdbs.work.timer.expires;
282 
283 		if (time_before(next_sampling, appointed_at)) {
284 
285 			mutex_unlock(&dbs_info->cdbs.timer_mutex);
286 			cancel_delayed_work_sync(&dbs_info->cdbs.work);
287 			mutex_lock(&dbs_info->cdbs.timer_mutex);
288 
289 			gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy,
290 					usecs_to_jiffies(new_rate), true);
291 
292 		}
293 		mutex_unlock(&dbs_info->cdbs.timer_mutex);
294 	}
295 }
296 
297 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
298 		size_t count)
299 {
300 	unsigned int input;
301 	int ret;
302 	ret = sscanf(buf, "%u", &input);
303 	if (ret != 1)
304 		return -EINVAL;
305 
306 	update_sampling_rate(dbs_data, input);
307 	return count;
308 }
309 
310 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
311 		size_t count)
312 {
313 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
314 	unsigned int input;
315 	int ret;
316 	unsigned int j;
317 
318 	ret = sscanf(buf, "%u", &input);
319 	if (ret != 1)
320 		return -EINVAL;
321 	od_tuners->io_is_busy = !!input;
322 
323 	/* we need to re-evaluate prev_cpu_idle */
324 	for_each_online_cpu(j) {
325 		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
326 									j);
327 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
328 			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
329 	}
330 	return count;
331 }
332 
333 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
334 		size_t count)
335 {
336 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
337 	unsigned int input;
338 	int ret;
339 	ret = sscanf(buf, "%u", &input);
340 
341 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
342 			input < MIN_FREQUENCY_UP_THRESHOLD) {
343 		return -EINVAL;
344 	}
345 
346 	od_tuners->up_threshold = input;
347 	return count;
348 }
349 
350 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
351 		const char *buf, size_t count)
352 {
353 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
354 	unsigned int input, j;
355 	int ret;
356 	ret = sscanf(buf, "%u", &input);
357 
358 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
359 		return -EINVAL;
360 	od_tuners->sampling_down_factor = input;
361 
362 	/* Reset down sampling multiplier in case it was active */
363 	for_each_online_cpu(j) {
364 		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
365 				j);
366 		dbs_info->rate_mult = 1;
367 	}
368 	return count;
369 }
370 
371 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
372 		const char *buf, size_t count)
373 {
374 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
375 	unsigned int input;
376 	int ret;
377 
378 	unsigned int j;
379 
380 	ret = sscanf(buf, "%u", &input);
381 	if (ret != 1)
382 		return -EINVAL;
383 
384 	if (input > 1)
385 		input = 1;
386 
387 	if (input == od_tuners->ignore_nice_load) { /* nothing to do */
388 		return count;
389 	}
390 	od_tuners->ignore_nice_load = input;
391 
392 	/* we need to re-evaluate prev_cpu_idle */
393 	for_each_online_cpu(j) {
394 		struct od_cpu_dbs_info_s *dbs_info;
395 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
396 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
397 			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
398 		if (od_tuners->ignore_nice_load)
399 			dbs_info->cdbs.prev_cpu_nice =
400 				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
401 
402 	}
403 	return count;
404 }
405 
406 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
407 		size_t count)
408 {
409 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
410 	unsigned int input;
411 	int ret;
412 	ret = sscanf(buf, "%u", &input);
413 
414 	if (ret != 1)
415 		return -EINVAL;
416 
417 	if (input > 1000)
418 		input = 1000;
419 
420 	od_tuners->powersave_bias = input;
421 	ondemand_powersave_bias_init();
422 	return count;
423 }
424 
425 show_store_one(od, sampling_rate);
426 show_store_one(od, io_is_busy);
427 show_store_one(od, up_threshold);
428 show_store_one(od, sampling_down_factor);
429 show_store_one(od, ignore_nice_load);
430 show_store_one(od, powersave_bias);
431 declare_show_sampling_rate_min(od);
432 
433 gov_sys_pol_attr_rw(sampling_rate);
434 gov_sys_pol_attr_rw(io_is_busy);
435 gov_sys_pol_attr_rw(up_threshold);
436 gov_sys_pol_attr_rw(sampling_down_factor);
437 gov_sys_pol_attr_rw(ignore_nice_load);
438 gov_sys_pol_attr_rw(powersave_bias);
439 gov_sys_pol_attr_ro(sampling_rate_min);
440 
441 static struct attribute *dbs_attributes_gov_sys[] = {
442 	&sampling_rate_min_gov_sys.attr,
443 	&sampling_rate_gov_sys.attr,
444 	&up_threshold_gov_sys.attr,
445 	&sampling_down_factor_gov_sys.attr,
446 	&ignore_nice_load_gov_sys.attr,
447 	&powersave_bias_gov_sys.attr,
448 	&io_is_busy_gov_sys.attr,
449 	NULL
450 };
451 
452 static struct attribute_group od_attr_group_gov_sys = {
453 	.attrs = dbs_attributes_gov_sys,
454 	.name = "ondemand",
455 };
456 
457 static struct attribute *dbs_attributes_gov_pol[] = {
458 	&sampling_rate_min_gov_pol.attr,
459 	&sampling_rate_gov_pol.attr,
460 	&up_threshold_gov_pol.attr,
461 	&sampling_down_factor_gov_pol.attr,
462 	&ignore_nice_load_gov_pol.attr,
463 	&powersave_bias_gov_pol.attr,
464 	&io_is_busy_gov_pol.attr,
465 	NULL
466 };
467 
468 static struct attribute_group od_attr_group_gov_pol = {
469 	.attrs = dbs_attributes_gov_pol,
470 	.name = "ondemand",
471 };
472 
473 /************************** sysfs end ************************/
474 
475 static int od_init(struct dbs_data *dbs_data)
476 {
477 	struct od_dbs_tuners *tuners;
478 	u64 idle_time;
479 	int cpu;
480 
481 	tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
482 	if (!tuners) {
483 		pr_err("%s: kzalloc failed\n", __func__);
484 		return -ENOMEM;
485 	}
486 
487 	cpu = get_cpu();
488 	idle_time = get_cpu_idle_time_us(cpu, NULL);
489 	put_cpu();
490 	if (idle_time != -1ULL) {
491 		/* Idle micro accounting is supported. Use finer thresholds */
492 		tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
493 		/*
494 		 * In nohz/micro accounting case we set the minimum frequency
495 		 * not depending on HZ, but fixed (very low). The deferred
496 		 * timer might skip some samples if idle/sleeping as needed.
497 		*/
498 		dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
499 	} else {
500 		tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
501 
502 		/* For correct statistics, we need 10 ticks for each measure */
503 		dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
504 			jiffies_to_usecs(10);
505 	}
506 
507 	tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
508 	tuners->ignore_nice_load = 0;
509 	tuners->powersave_bias = default_powersave_bias;
510 	tuners->io_is_busy = should_io_be_busy();
511 
512 	dbs_data->tuners = tuners;
513 	mutex_init(&dbs_data->mutex);
514 	return 0;
515 }
516 
517 static void od_exit(struct dbs_data *dbs_data)
518 {
519 	kfree(dbs_data->tuners);
520 }
521 
522 define_get_cpu_dbs_routines(od_cpu_dbs_info);
523 
524 static struct od_ops od_ops = {
525 	.powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
526 	.powersave_bias_target = generic_powersave_bias_target,
527 	.freq_increase = dbs_freq_increase,
528 };
529 
530 static struct common_dbs_data od_dbs_cdata = {
531 	.governor = GOV_ONDEMAND,
532 	.attr_group_gov_sys = &od_attr_group_gov_sys,
533 	.attr_group_gov_pol = &od_attr_group_gov_pol,
534 	.get_cpu_cdbs = get_cpu_cdbs,
535 	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
536 	.gov_dbs_timer = od_dbs_timer,
537 	.gov_check_cpu = od_check_cpu,
538 	.gov_ops = &od_ops,
539 	.init = od_init,
540 	.exit = od_exit,
541 };
542 
543 static void od_set_powersave_bias(unsigned int powersave_bias)
544 {
545 	struct cpufreq_policy *policy;
546 	struct dbs_data *dbs_data;
547 	struct od_dbs_tuners *od_tuners;
548 	unsigned int cpu;
549 	cpumask_t done;
550 
551 	default_powersave_bias = powersave_bias;
552 	cpumask_clear(&done);
553 
554 	get_online_cpus();
555 	for_each_online_cpu(cpu) {
556 		if (cpumask_test_cpu(cpu, &done))
557 			continue;
558 
559 		policy = per_cpu(od_cpu_dbs_info, cpu).cdbs.cur_policy;
560 		if (!policy)
561 			continue;
562 
563 		cpumask_or(&done, &done, policy->cpus);
564 
565 		if (policy->governor != &cpufreq_gov_ondemand)
566 			continue;
567 
568 		dbs_data = policy->governor_data;
569 		od_tuners = dbs_data->tuners;
570 		od_tuners->powersave_bias = default_powersave_bias;
571 	}
572 	put_online_cpus();
573 }
574 
575 void od_register_powersave_bias_handler(unsigned int (*f)
576 		(struct cpufreq_policy *, unsigned int, unsigned int),
577 		unsigned int powersave_bias)
578 {
579 	od_ops.powersave_bias_target = f;
580 	od_set_powersave_bias(powersave_bias);
581 }
582 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
583 
584 void od_unregister_powersave_bias_handler(void)
585 {
586 	od_ops.powersave_bias_target = generic_powersave_bias_target;
587 	od_set_powersave_bias(0);
588 }
589 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
590 
591 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
592 		unsigned int event)
593 {
594 	return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
595 }
596 
597 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
598 static
599 #endif
600 struct cpufreq_governor cpufreq_gov_ondemand = {
601 	.name			= "ondemand",
602 	.governor		= od_cpufreq_governor_dbs,
603 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
604 	.owner			= THIS_MODULE,
605 };
606 
607 static int __init cpufreq_gov_dbs_init(void)
608 {
609 	return cpufreq_register_governor(&cpufreq_gov_ondemand);
610 }
611 
612 static void __exit cpufreq_gov_dbs_exit(void)
613 {
614 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
615 }
616 
617 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
618 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
619 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
620 	"Low Latency Frequency Transition capable processors");
621 MODULE_LICENSE("GPL");
622 
623 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
624 fs_initcall(cpufreq_gov_dbs_init);
625 #else
626 module_init(cpufreq_gov_dbs_init);
627 #endif
628 module_exit(cpufreq_gov_dbs_exit);
629