1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
25 
26 /*
27  * dbs is used in this file as a shortform for demandbased switching
28  * It helps to keep variable names smaller, simpler
29  */
30 
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
32 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
35 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
36 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
37 
38 /*
39  * The polling frequency of this governor depends on the capability of
40  * the processor. Default polling frequency is 1000 times the transition
41  * latency of the processor. The governor will work on any processor with
42  * transition latency <= 10mS, using appropriate sampling
43  * rate.
44  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
45  * this governor will not work.
46  * All times here are in uS.
47  */
48 static unsigned int def_sampling_rate;
49 #define MIN_SAMPLING_RATE_RATIO			(2)
50 /* for correct statistics, we need at least 10 ticks between each measure */
51 #define MIN_STAT_SAMPLING_RATE 			\
52 			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
53 #define MIN_SAMPLING_RATE			\
54 			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
55 /* Above MIN_SAMPLING_RATE will vanish with its sysfs file soon
56  * Define the minimal settable sampling rate to the greater of:
57  *   - "HW transition latency" * 100 (same as default sampling / 10)
58  *   - MIN_STAT_SAMPLING_RATE
59  * To avoid that userspace shoots itself.
60 */
61 static unsigned int minimum_sampling_rate(void)
62 {
63 	return max(def_sampling_rate / 10, MIN_STAT_SAMPLING_RATE);
64 }
65 
66 /* This will also vanish soon with removing sampling_rate_max */
67 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
68 #define LATENCY_MULTIPLIER			(1000)
69 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
70 
71 static void do_dbs_timer(struct work_struct *work);
72 
73 /* Sampling types */
74 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
75 
76 struct cpu_dbs_info_s {
77 	cputime64_t prev_cpu_idle;
78 	cputime64_t prev_cpu_wall;
79 	cputime64_t prev_cpu_nice;
80 	struct cpufreq_policy *cur_policy;
81 	struct delayed_work work;
82 	struct cpufreq_frequency_table *freq_table;
83 	unsigned int freq_lo;
84 	unsigned int freq_lo_jiffies;
85 	unsigned int freq_hi_jiffies;
86 	int cpu;
87 	unsigned int enable:1,
88 		sample_type:1;
89 };
90 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
91 
92 static unsigned int dbs_enable;	/* number of CPUs using this policy */
93 
94 /*
95  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
96  * lock and dbs_mutex. cpu_hotplug lock should always be held before
97  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
98  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
99  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
100  * is recursive for the same process. -Venki
101  * DEADLOCK ALERT! (2) : do_dbs_timer() must not take the dbs_mutex, because it
102  * would deadlock with cancel_delayed_work_sync(), which is needed for proper
103  * raceless workqueue teardown.
104  */
105 static DEFINE_MUTEX(dbs_mutex);
106 
107 static struct workqueue_struct	*kondemand_wq;
108 
109 static struct dbs_tuners {
110 	unsigned int sampling_rate;
111 	unsigned int up_threshold;
112 	unsigned int down_differential;
113 	unsigned int ignore_nice;
114 	unsigned int powersave_bias;
115 } dbs_tuners_ins = {
116 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
117 	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
118 	.ignore_nice = 0,
119 	.powersave_bias = 0,
120 };
121 
122 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
123 							cputime64_t *wall)
124 {
125 	cputime64_t idle_time;
126 	cputime64_t cur_wall_time;
127 	cputime64_t busy_time;
128 
129 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
130 	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
131 			kstat_cpu(cpu).cpustat.system);
132 
133 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
134 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
135 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
136 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
137 
138 	idle_time = cputime64_sub(cur_wall_time, busy_time);
139 	if (wall)
140 		*wall = cur_wall_time;
141 
142 	return idle_time;
143 }
144 
145 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
146 {
147 	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
148 
149 	if (idle_time == -1ULL)
150 		return get_cpu_idle_time_jiffy(cpu, wall);
151 
152 	return idle_time;
153 }
154 
155 /*
156  * Find right freq to be set now with powersave_bias on.
157  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
158  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
159  */
160 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
161 					  unsigned int freq_next,
162 					  unsigned int relation)
163 {
164 	unsigned int freq_req, freq_reduc, freq_avg;
165 	unsigned int freq_hi, freq_lo;
166 	unsigned int index = 0;
167 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
168 	struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
169 
170 	if (!dbs_info->freq_table) {
171 		dbs_info->freq_lo = 0;
172 		dbs_info->freq_lo_jiffies = 0;
173 		return freq_next;
174 	}
175 
176 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
177 			relation, &index);
178 	freq_req = dbs_info->freq_table[index].frequency;
179 	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
180 	freq_avg = freq_req - freq_reduc;
181 
182 	/* Find freq bounds for freq_avg in freq_table */
183 	index = 0;
184 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
185 			CPUFREQ_RELATION_H, &index);
186 	freq_lo = dbs_info->freq_table[index].frequency;
187 	index = 0;
188 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
189 			CPUFREQ_RELATION_L, &index);
190 	freq_hi = dbs_info->freq_table[index].frequency;
191 
192 	/* Find out how long we have to be in hi and lo freqs */
193 	if (freq_hi == freq_lo) {
194 		dbs_info->freq_lo = 0;
195 		dbs_info->freq_lo_jiffies = 0;
196 		return freq_lo;
197 	}
198 	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
199 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
200 	jiffies_hi += ((freq_hi - freq_lo) / 2);
201 	jiffies_hi /= (freq_hi - freq_lo);
202 	jiffies_lo = jiffies_total - jiffies_hi;
203 	dbs_info->freq_lo = freq_lo;
204 	dbs_info->freq_lo_jiffies = jiffies_lo;
205 	dbs_info->freq_hi_jiffies = jiffies_hi;
206 	return freq_hi;
207 }
208 
209 static void ondemand_powersave_bias_init(void)
210 {
211 	int i;
212 	for_each_online_cpu(i) {
213 		struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
214 		dbs_info->freq_table = cpufreq_frequency_get_table(i);
215 		dbs_info->freq_lo = 0;
216 	}
217 }
218 
219 /************************** sysfs interface ************************/
220 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
221 {
222 	static int print_once;
223 
224 	if (!print_once) {
225 		printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
226 		       "sysfs file is deprecated - used by: %s\n",
227 		       current->comm);
228 		print_once = 1;
229 	}
230 	return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
231 }
232 
233 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
234 {
235 	static int print_once;
236 
237 	if (!print_once) {
238 		printk(KERN_INFO "CPUFREQ: ondemand sampling_rate_min "
239 		       "sysfs file is deprecated - used by: %s\n",
240 		       current->comm);
241 		print_once = 1;
242 	}
243 	return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
244 }
245 
246 #define define_one_ro(_name)		\
247 static struct freq_attr _name =		\
248 __ATTR(_name, 0444, show_##_name, NULL)
249 
250 define_one_ro(sampling_rate_max);
251 define_one_ro(sampling_rate_min);
252 
253 /* cpufreq_ondemand Governor Tunables */
254 #define show_one(file_name, object)					\
255 static ssize_t show_##file_name						\
256 (struct cpufreq_policy *unused, char *buf)				\
257 {									\
258 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
259 }
260 show_one(sampling_rate, sampling_rate);
261 show_one(up_threshold, up_threshold);
262 show_one(ignore_nice_load, ignore_nice);
263 show_one(powersave_bias, powersave_bias);
264 
265 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
266 		const char *buf, size_t count)
267 {
268 	unsigned int input;
269 	int ret;
270 	ret = sscanf(buf, "%u", &input);
271 
272 	mutex_lock(&dbs_mutex);
273 	if (ret != 1) {
274 		mutex_unlock(&dbs_mutex);
275 		return -EINVAL;
276 	}
277 	dbs_tuners_ins.sampling_rate = max(input, minimum_sampling_rate());
278 	mutex_unlock(&dbs_mutex);
279 
280 	return count;
281 }
282 
283 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
284 		const char *buf, size_t count)
285 {
286 	unsigned int input;
287 	int ret;
288 	ret = sscanf(buf, "%u", &input);
289 
290 	mutex_lock(&dbs_mutex);
291 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
292 			input < MIN_FREQUENCY_UP_THRESHOLD) {
293 		mutex_unlock(&dbs_mutex);
294 		return -EINVAL;
295 	}
296 
297 	dbs_tuners_ins.up_threshold = input;
298 	mutex_unlock(&dbs_mutex);
299 
300 	return count;
301 }
302 
303 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
304 		const char *buf, size_t count)
305 {
306 	unsigned int input;
307 	int ret;
308 
309 	unsigned int j;
310 
311 	ret = sscanf(buf, "%u", &input);
312 	if (ret != 1)
313 		return -EINVAL;
314 
315 	if (input > 1)
316 		input = 1;
317 
318 	mutex_lock(&dbs_mutex);
319 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
320 		mutex_unlock(&dbs_mutex);
321 		return count;
322 	}
323 	dbs_tuners_ins.ignore_nice = input;
324 
325 	/* we need to re-evaluate prev_cpu_idle */
326 	for_each_online_cpu(j) {
327 		struct cpu_dbs_info_s *dbs_info;
328 		dbs_info = &per_cpu(cpu_dbs_info, j);
329 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
330 						&dbs_info->prev_cpu_wall);
331 		if (dbs_tuners_ins.ignore_nice)
332 			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
333 
334 	}
335 	mutex_unlock(&dbs_mutex);
336 
337 	return count;
338 }
339 
340 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
341 		const char *buf, size_t count)
342 {
343 	unsigned int input;
344 	int ret;
345 	ret = sscanf(buf, "%u", &input);
346 
347 	if (ret != 1)
348 		return -EINVAL;
349 
350 	if (input > 1000)
351 		input = 1000;
352 
353 	mutex_lock(&dbs_mutex);
354 	dbs_tuners_ins.powersave_bias = input;
355 	ondemand_powersave_bias_init();
356 	mutex_unlock(&dbs_mutex);
357 
358 	return count;
359 }
360 
361 #define define_one_rw(_name) \
362 static struct freq_attr _name = \
363 __ATTR(_name, 0644, show_##_name, store_##_name)
364 
365 define_one_rw(sampling_rate);
366 define_one_rw(up_threshold);
367 define_one_rw(ignore_nice_load);
368 define_one_rw(powersave_bias);
369 
370 static struct attribute *dbs_attributes[] = {
371 	&sampling_rate_max.attr,
372 	&sampling_rate_min.attr,
373 	&sampling_rate.attr,
374 	&up_threshold.attr,
375 	&ignore_nice_load.attr,
376 	&powersave_bias.attr,
377 	NULL
378 };
379 
380 static struct attribute_group dbs_attr_group = {
381 	.attrs = dbs_attributes,
382 	.name = "ondemand",
383 };
384 
385 /************************** sysfs end ************************/
386 
387 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
388 {
389 	unsigned int max_load_freq;
390 
391 	struct cpufreq_policy *policy;
392 	unsigned int j;
393 
394 	if (!this_dbs_info->enable)
395 		return;
396 
397 	this_dbs_info->freq_lo = 0;
398 	policy = this_dbs_info->cur_policy;
399 
400 	/*
401 	 * Every sampling_rate, we check, if current idle time is less
402 	 * than 20% (default), then we try to increase frequency
403 	 * Every sampling_rate, we look for a the lowest
404 	 * frequency which can sustain the load while keeping idle time over
405 	 * 30%. If such a frequency exist, we try to decrease to this frequency.
406 	 *
407 	 * Any frequency increase takes it to the maximum frequency.
408 	 * Frequency reduction happens at minimum steps of
409 	 * 5% (default) of current frequency
410 	 */
411 
412 	/* Get Absolute Load - in terms of freq */
413 	max_load_freq = 0;
414 
415 	for_each_cpu(j, policy->cpus) {
416 		struct cpu_dbs_info_s *j_dbs_info;
417 		cputime64_t cur_wall_time, cur_idle_time;
418 		unsigned int idle_time, wall_time;
419 		unsigned int load, load_freq;
420 		int freq_avg;
421 
422 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
423 
424 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
425 
426 		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
427 				j_dbs_info->prev_cpu_wall);
428 		j_dbs_info->prev_cpu_wall = cur_wall_time;
429 
430 		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
431 				j_dbs_info->prev_cpu_idle);
432 		j_dbs_info->prev_cpu_idle = cur_idle_time;
433 
434 		if (dbs_tuners_ins.ignore_nice) {
435 			cputime64_t cur_nice;
436 			unsigned long cur_nice_jiffies;
437 
438 			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
439 					 j_dbs_info->prev_cpu_nice);
440 			/*
441 			 * Assumption: nice time between sampling periods will
442 			 * be less than 2^32 jiffies for 32 bit sys
443 			 */
444 			cur_nice_jiffies = (unsigned long)
445 					cputime64_to_jiffies64(cur_nice);
446 
447 			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
448 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
449 		}
450 
451 		if (unlikely(!wall_time || wall_time < idle_time))
452 			continue;
453 
454 		load = 100 * (wall_time - idle_time) / wall_time;
455 
456 		freq_avg = __cpufreq_driver_getavg(policy, j);
457 		if (freq_avg <= 0)
458 			freq_avg = policy->cur;
459 
460 		load_freq = load * freq_avg;
461 		if (load_freq > max_load_freq)
462 			max_load_freq = load_freq;
463 	}
464 
465 	/* Check for frequency increase */
466 	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
467 		/* if we are already at full speed then break out early */
468 		if (!dbs_tuners_ins.powersave_bias) {
469 			if (policy->cur == policy->max)
470 				return;
471 
472 			__cpufreq_driver_target(policy, policy->max,
473 				CPUFREQ_RELATION_H);
474 		} else {
475 			int freq = powersave_bias_target(policy, policy->max,
476 					CPUFREQ_RELATION_H);
477 			__cpufreq_driver_target(policy, freq,
478 				CPUFREQ_RELATION_L);
479 		}
480 		return;
481 	}
482 
483 	/* Check for frequency decrease */
484 	/* if we cannot reduce the frequency anymore, break out early */
485 	if (policy->cur == policy->min)
486 		return;
487 
488 	/*
489 	 * The optimal frequency is the frequency that is the lowest that
490 	 * can support the current CPU usage without triggering the up
491 	 * policy. To be safe, we focus 10 points under the threshold.
492 	 */
493 	if (max_load_freq <
494 	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
495 	     policy->cur) {
496 		unsigned int freq_next;
497 		freq_next = max_load_freq /
498 				(dbs_tuners_ins.up_threshold -
499 				 dbs_tuners_ins.down_differential);
500 
501 		if (!dbs_tuners_ins.powersave_bias) {
502 			__cpufreq_driver_target(policy, freq_next,
503 					CPUFREQ_RELATION_L);
504 		} else {
505 			int freq = powersave_bias_target(policy, freq_next,
506 					CPUFREQ_RELATION_L);
507 			__cpufreq_driver_target(policy, freq,
508 				CPUFREQ_RELATION_L);
509 		}
510 	}
511 }
512 
513 static void do_dbs_timer(struct work_struct *work)
514 {
515 	struct cpu_dbs_info_s *dbs_info =
516 		container_of(work, struct cpu_dbs_info_s, work.work);
517 	unsigned int cpu = dbs_info->cpu;
518 	int sample_type = dbs_info->sample_type;
519 
520 	/* We want all CPUs to do sampling nearly on same jiffy */
521 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
522 
523 	delay -= jiffies % delay;
524 
525 	if (lock_policy_rwsem_write(cpu) < 0)
526 		return;
527 
528 	if (!dbs_info->enable) {
529 		unlock_policy_rwsem_write(cpu);
530 		return;
531 	}
532 
533 	/* Common NORMAL_SAMPLE setup */
534 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
535 	if (!dbs_tuners_ins.powersave_bias ||
536 	    sample_type == DBS_NORMAL_SAMPLE) {
537 		dbs_check_cpu(dbs_info);
538 		if (dbs_info->freq_lo) {
539 			/* Setup timer for SUB_SAMPLE */
540 			dbs_info->sample_type = DBS_SUB_SAMPLE;
541 			delay = dbs_info->freq_hi_jiffies;
542 		}
543 	} else {
544 		__cpufreq_driver_target(dbs_info->cur_policy,
545 			dbs_info->freq_lo, CPUFREQ_RELATION_H);
546 	}
547 	queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
548 	unlock_policy_rwsem_write(cpu);
549 }
550 
551 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
552 {
553 	/* We want all CPUs to do sampling nearly on same jiffy */
554 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
555 	delay -= jiffies % delay;
556 
557 	dbs_info->enable = 1;
558 	ondemand_powersave_bias_init();
559 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
560 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
561 	queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
562 		delay);
563 }
564 
565 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
566 {
567 	dbs_info->enable = 0;
568 	cancel_delayed_work_sync(&dbs_info->work);
569 }
570 
571 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
572 				   unsigned int event)
573 {
574 	unsigned int cpu = policy->cpu;
575 	struct cpu_dbs_info_s *this_dbs_info;
576 	unsigned int j;
577 	int rc;
578 
579 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
580 
581 	switch (event) {
582 	case CPUFREQ_GOV_START:
583 		if ((!cpu_online(cpu)) || (!policy->cur))
584 			return -EINVAL;
585 
586 		if (this_dbs_info->enable) /* Already enabled */
587 			break;
588 
589 		mutex_lock(&dbs_mutex);
590 		dbs_enable++;
591 
592 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
593 		if (rc) {
594 			dbs_enable--;
595 			mutex_unlock(&dbs_mutex);
596 			return rc;
597 		}
598 
599 		for_each_cpu(j, policy->cpus) {
600 			struct cpu_dbs_info_s *j_dbs_info;
601 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
602 			j_dbs_info->cur_policy = policy;
603 
604 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
605 						&j_dbs_info->prev_cpu_wall);
606 			if (dbs_tuners_ins.ignore_nice) {
607 				j_dbs_info->prev_cpu_nice =
608 						kstat_cpu(j).cpustat.nice;
609 			}
610 		}
611 		this_dbs_info->cpu = cpu;
612 		/*
613 		 * Start the timerschedule work, when this governor
614 		 * is used for first time
615 		 */
616 		if (dbs_enable == 1) {
617 			unsigned int latency;
618 			/* policy latency is in nS. Convert it to uS first */
619 			latency = policy->cpuinfo.transition_latency / 1000;
620 			if (latency == 0)
621 				latency = 1;
622 
623 			def_sampling_rate =
624 				max(latency * LATENCY_MULTIPLIER,
625 				    MIN_STAT_SAMPLING_RATE);
626 
627 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
628 		}
629 		dbs_timer_init(this_dbs_info);
630 
631 		mutex_unlock(&dbs_mutex);
632 		break;
633 
634 	case CPUFREQ_GOV_STOP:
635 		mutex_lock(&dbs_mutex);
636 		dbs_timer_exit(this_dbs_info);
637 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
638 		dbs_enable--;
639 		mutex_unlock(&dbs_mutex);
640 
641 		break;
642 
643 	case CPUFREQ_GOV_LIMITS:
644 		mutex_lock(&dbs_mutex);
645 		if (policy->max < this_dbs_info->cur_policy->cur)
646 			__cpufreq_driver_target(this_dbs_info->cur_policy,
647 				policy->max, CPUFREQ_RELATION_H);
648 		else if (policy->min > this_dbs_info->cur_policy->cur)
649 			__cpufreq_driver_target(this_dbs_info->cur_policy,
650 				policy->min, CPUFREQ_RELATION_L);
651 		mutex_unlock(&dbs_mutex);
652 		break;
653 	}
654 	return 0;
655 }
656 
657 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
658 static
659 #endif
660 struct cpufreq_governor cpufreq_gov_ondemand = {
661 	.name			= "ondemand",
662 	.governor		= cpufreq_governor_dbs,
663 	.max_transition_latency = TRANSITION_LATENCY_LIMIT,
664 	.owner			= THIS_MODULE,
665 };
666 
667 static int __init cpufreq_gov_dbs_init(void)
668 {
669 	int err;
670 	cputime64_t wall;
671 	u64 idle_time;
672 	int cpu = get_cpu();
673 
674 	idle_time = get_cpu_idle_time_us(cpu, &wall);
675 	put_cpu();
676 	if (idle_time != -1ULL) {
677 		/* Idle micro accounting is supported. Use finer thresholds */
678 		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
679 		dbs_tuners_ins.down_differential =
680 					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
681 	}
682 
683 	kondemand_wq = create_workqueue("kondemand");
684 	if (!kondemand_wq) {
685 		printk(KERN_ERR "Creation of kondemand failed\n");
686 		return -EFAULT;
687 	}
688 	err = cpufreq_register_governor(&cpufreq_gov_ondemand);
689 	if (err)
690 		destroy_workqueue(kondemand_wq);
691 
692 	return err;
693 }
694 
695 static void __exit cpufreq_gov_dbs_exit(void)
696 {
697 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
698 	destroy_workqueue(kondemand_wq);
699 }
700 
701 
702 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
703 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
704 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
705 	"Low Latency Frequency Transition capable processors");
706 MODULE_LICENSE("GPL");
707 
708 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
709 fs_initcall(cpufreq_gov_dbs_init);
710 #else
711 module_init(cpufreq_gov_dbs_init);
712 #endif
713 module_exit(cpufreq_gov_dbs_exit);
714