1 /* 2 * drivers/cpufreq/cpufreq_ondemand.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. 6 * Jun Nakajima <jun.nakajima@intel.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cpu.h> 16 #include <linux/percpu-defs.h> 17 #include <linux/slab.h> 18 #include <linux/tick.h> 19 #include "cpufreq_governor.h" 20 21 /* On-demand governor macros */ 22 #define DEF_FREQUENCY_UP_THRESHOLD (80) 23 #define DEF_SAMPLING_DOWN_FACTOR (1) 24 #define MAX_SAMPLING_DOWN_FACTOR (100000) 25 #define MICRO_FREQUENCY_UP_THRESHOLD (95) 26 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000) 27 #define MIN_FREQUENCY_UP_THRESHOLD (11) 28 #define MAX_FREQUENCY_UP_THRESHOLD (100) 29 30 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info); 31 32 static struct od_ops od_ops; 33 34 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND 35 static struct cpufreq_governor cpufreq_gov_ondemand; 36 #endif 37 38 static unsigned int default_powersave_bias; 39 40 static void ondemand_powersave_bias_init_cpu(int cpu) 41 { 42 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu); 43 44 dbs_info->freq_table = cpufreq_frequency_get_table(cpu); 45 dbs_info->freq_lo = 0; 46 } 47 48 /* 49 * Not all CPUs want IO time to be accounted as busy; this depends on how 50 * efficient idling at a higher frequency/voltage is. 51 * Pavel Machek says this is not so for various generations of AMD and old 52 * Intel systems. 53 * Mike Chan (android.com) claims this is also not true for ARM. 54 * Because of this, whitelist specific known (series) of CPUs by default, and 55 * leave all others up to the user. 56 */ 57 static int should_io_be_busy(void) 58 { 59 #if defined(CONFIG_X86) 60 /* 61 * For Intel, Core 2 (model 15) and later have an efficient idle. 62 */ 63 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && 64 boot_cpu_data.x86 == 6 && 65 boot_cpu_data.x86_model >= 15) 66 return 1; 67 #endif 68 return 0; 69 } 70 71 /* 72 * Find right freq to be set now with powersave_bias on. 73 * Returns the freq_hi to be used right now and will set freq_hi_jiffies, 74 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs. 75 */ 76 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy, 77 unsigned int freq_next, unsigned int relation) 78 { 79 unsigned int freq_req, freq_reduc, freq_avg; 80 unsigned int freq_hi, freq_lo; 81 unsigned int index = 0; 82 unsigned int jiffies_total, jiffies_hi, jiffies_lo; 83 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, 84 policy->cpu); 85 struct dbs_data *dbs_data = policy->governor_data; 86 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 87 88 if (!dbs_info->freq_table) { 89 dbs_info->freq_lo = 0; 90 dbs_info->freq_lo_jiffies = 0; 91 return freq_next; 92 } 93 94 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next, 95 relation, &index); 96 freq_req = dbs_info->freq_table[index].frequency; 97 freq_reduc = freq_req * od_tuners->powersave_bias / 1000; 98 freq_avg = freq_req - freq_reduc; 99 100 /* Find freq bounds for freq_avg in freq_table */ 101 index = 0; 102 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, 103 CPUFREQ_RELATION_H, &index); 104 freq_lo = dbs_info->freq_table[index].frequency; 105 index = 0; 106 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, 107 CPUFREQ_RELATION_L, &index); 108 freq_hi = dbs_info->freq_table[index].frequency; 109 110 /* Find out how long we have to be in hi and lo freqs */ 111 if (freq_hi == freq_lo) { 112 dbs_info->freq_lo = 0; 113 dbs_info->freq_lo_jiffies = 0; 114 return freq_lo; 115 } 116 jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate); 117 jiffies_hi = (freq_avg - freq_lo) * jiffies_total; 118 jiffies_hi += ((freq_hi - freq_lo) / 2); 119 jiffies_hi /= (freq_hi - freq_lo); 120 jiffies_lo = jiffies_total - jiffies_hi; 121 dbs_info->freq_lo = freq_lo; 122 dbs_info->freq_lo_jiffies = jiffies_lo; 123 dbs_info->freq_hi_jiffies = jiffies_hi; 124 return freq_hi; 125 } 126 127 static void ondemand_powersave_bias_init(void) 128 { 129 int i; 130 for_each_online_cpu(i) { 131 ondemand_powersave_bias_init_cpu(i); 132 } 133 } 134 135 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq) 136 { 137 struct dbs_data *dbs_data = policy->governor_data; 138 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 139 140 if (od_tuners->powersave_bias) 141 freq = od_ops.powersave_bias_target(policy, freq, 142 CPUFREQ_RELATION_H); 143 else if (policy->cur == policy->max) 144 return; 145 146 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ? 147 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H); 148 } 149 150 /* 151 * Every sampling_rate, we check, if current idle time is less than 20% 152 * (default), then we try to increase frequency. Else, we adjust the frequency 153 * proportional to load. 154 */ 155 static void od_check_cpu(int cpu, unsigned int load) 156 { 157 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu); 158 struct cpufreq_policy *policy = dbs_info->cdbs.shared->policy; 159 struct dbs_data *dbs_data = policy->governor_data; 160 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 161 162 dbs_info->freq_lo = 0; 163 164 /* Check for frequency increase */ 165 if (load > od_tuners->up_threshold) { 166 /* If switching to max speed, apply sampling_down_factor */ 167 if (policy->cur < policy->max) 168 dbs_info->rate_mult = 169 od_tuners->sampling_down_factor; 170 dbs_freq_increase(policy, policy->max); 171 } else { 172 /* Calculate the next frequency proportional to load */ 173 unsigned int freq_next, min_f, max_f; 174 175 min_f = policy->cpuinfo.min_freq; 176 max_f = policy->cpuinfo.max_freq; 177 freq_next = min_f + load * (max_f - min_f) / 100; 178 179 /* No longer fully busy, reset rate_mult */ 180 dbs_info->rate_mult = 1; 181 182 if (!od_tuners->powersave_bias) { 183 __cpufreq_driver_target(policy, freq_next, 184 CPUFREQ_RELATION_C); 185 return; 186 } 187 188 freq_next = od_ops.powersave_bias_target(policy, freq_next, 189 CPUFREQ_RELATION_L); 190 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C); 191 } 192 } 193 194 static unsigned int od_dbs_timer(struct cpufreq_policy *policy, bool modify_all) 195 { 196 struct dbs_data *dbs_data = policy->governor_data; 197 unsigned int cpu = policy->cpu; 198 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, 199 cpu); 200 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 201 int delay = 0, sample_type = dbs_info->sample_type; 202 203 if (!modify_all) 204 goto max_delay; 205 206 /* Common NORMAL_SAMPLE setup */ 207 dbs_info->sample_type = OD_NORMAL_SAMPLE; 208 if (sample_type == OD_SUB_SAMPLE) { 209 delay = dbs_info->freq_lo_jiffies; 210 __cpufreq_driver_target(policy, dbs_info->freq_lo, 211 CPUFREQ_RELATION_H); 212 } else { 213 dbs_check_cpu(dbs_data, cpu); 214 if (dbs_info->freq_lo) { 215 /* Setup timer for SUB_SAMPLE */ 216 dbs_info->sample_type = OD_SUB_SAMPLE; 217 delay = dbs_info->freq_hi_jiffies; 218 } 219 } 220 221 max_delay: 222 if (!delay) 223 delay = delay_for_sampling_rate(od_tuners->sampling_rate 224 * dbs_info->rate_mult); 225 226 return delay; 227 } 228 229 /************************** sysfs interface ************************/ 230 static struct common_dbs_data od_dbs_cdata; 231 232 /** 233 * update_sampling_rate - update sampling rate effective immediately if needed. 234 * @new_rate: new sampling rate 235 * 236 * If new rate is smaller than the old, simply updating 237 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the 238 * original sampling_rate was 1 second and the requested new sampling rate is 10 239 * ms because the user needs immediate reaction from ondemand governor, but not 240 * sure if higher frequency will be required or not, then, the governor may 241 * change the sampling rate too late; up to 1 second later. Thus, if we are 242 * reducing the sampling rate, we need to make the new value effective 243 * immediately. 244 */ 245 static void update_sampling_rate(struct dbs_data *dbs_data, 246 unsigned int new_rate) 247 { 248 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 249 struct cpumask cpumask; 250 int cpu; 251 252 od_tuners->sampling_rate = new_rate = max(new_rate, 253 dbs_data->min_sampling_rate); 254 255 /* 256 * Lock governor so that governor start/stop can't execute in parallel. 257 */ 258 mutex_lock(&od_dbs_cdata.mutex); 259 260 cpumask_copy(&cpumask, cpu_online_mask); 261 262 for_each_cpu(cpu, &cpumask) { 263 struct cpufreq_policy *policy; 264 struct od_cpu_dbs_info_s *dbs_info; 265 struct cpu_dbs_info *cdbs; 266 struct cpu_common_dbs_info *shared; 267 unsigned long next_sampling, appointed_at; 268 269 dbs_info = &per_cpu(od_cpu_dbs_info, cpu); 270 cdbs = &dbs_info->cdbs; 271 shared = cdbs->shared; 272 273 /* 274 * A valid shared and shared->policy means governor hasn't 275 * stopped or exited yet. 276 */ 277 if (!shared || !shared->policy) 278 continue; 279 280 policy = shared->policy; 281 282 /* clear all CPUs of this policy */ 283 cpumask_andnot(&cpumask, &cpumask, policy->cpus); 284 285 /* 286 * Update sampling rate for CPUs whose policy is governed by 287 * dbs_data. In case of governor_per_policy, only a single 288 * policy will be governed by dbs_data, otherwise there can be 289 * multiple policies that are governed by the same dbs_data. 290 */ 291 if (dbs_data != policy->governor_data) 292 continue; 293 294 /* 295 * Checking this for any CPU should be fine, timers for all of 296 * them are scheduled together. 297 */ 298 next_sampling = jiffies + usecs_to_jiffies(new_rate); 299 appointed_at = dbs_info->cdbs.timer.expires; 300 301 if (time_before(next_sampling, appointed_at)) { 302 gov_cancel_work(shared); 303 gov_add_timers(policy, usecs_to_jiffies(new_rate)); 304 305 } 306 } 307 308 mutex_unlock(&od_dbs_cdata.mutex); 309 } 310 311 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf, 312 size_t count) 313 { 314 unsigned int input; 315 int ret; 316 ret = sscanf(buf, "%u", &input); 317 if (ret != 1) 318 return -EINVAL; 319 320 update_sampling_rate(dbs_data, input); 321 return count; 322 } 323 324 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf, 325 size_t count) 326 { 327 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 328 unsigned int input; 329 int ret; 330 unsigned int j; 331 332 ret = sscanf(buf, "%u", &input); 333 if (ret != 1) 334 return -EINVAL; 335 od_tuners->io_is_busy = !!input; 336 337 /* we need to re-evaluate prev_cpu_idle */ 338 for_each_online_cpu(j) { 339 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, 340 j); 341 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j, 342 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy); 343 } 344 return count; 345 } 346 347 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf, 348 size_t count) 349 { 350 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 351 unsigned int input; 352 int ret; 353 ret = sscanf(buf, "%u", &input); 354 355 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || 356 input < MIN_FREQUENCY_UP_THRESHOLD) { 357 return -EINVAL; 358 } 359 360 od_tuners->up_threshold = input; 361 return count; 362 } 363 364 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data, 365 const char *buf, size_t count) 366 { 367 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 368 unsigned int input, j; 369 int ret; 370 ret = sscanf(buf, "%u", &input); 371 372 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1) 373 return -EINVAL; 374 od_tuners->sampling_down_factor = input; 375 376 /* Reset down sampling multiplier in case it was active */ 377 for_each_online_cpu(j) { 378 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, 379 j); 380 dbs_info->rate_mult = 1; 381 } 382 return count; 383 } 384 385 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data, 386 const char *buf, size_t count) 387 { 388 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 389 unsigned int input; 390 int ret; 391 392 unsigned int j; 393 394 ret = sscanf(buf, "%u", &input); 395 if (ret != 1) 396 return -EINVAL; 397 398 if (input > 1) 399 input = 1; 400 401 if (input == od_tuners->ignore_nice_load) { /* nothing to do */ 402 return count; 403 } 404 od_tuners->ignore_nice_load = input; 405 406 /* we need to re-evaluate prev_cpu_idle */ 407 for_each_online_cpu(j) { 408 struct od_cpu_dbs_info_s *dbs_info; 409 dbs_info = &per_cpu(od_cpu_dbs_info, j); 410 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j, 411 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy); 412 if (od_tuners->ignore_nice_load) 413 dbs_info->cdbs.prev_cpu_nice = 414 kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 415 416 } 417 return count; 418 } 419 420 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf, 421 size_t count) 422 { 423 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 424 unsigned int input; 425 int ret; 426 ret = sscanf(buf, "%u", &input); 427 428 if (ret != 1) 429 return -EINVAL; 430 431 if (input > 1000) 432 input = 1000; 433 434 od_tuners->powersave_bias = input; 435 ondemand_powersave_bias_init(); 436 return count; 437 } 438 439 show_store_one(od, sampling_rate); 440 show_store_one(od, io_is_busy); 441 show_store_one(od, up_threshold); 442 show_store_one(od, sampling_down_factor); 443 show_store_one(od, ignore_nice_load); 444 show_store_one(od, powersave_bias); 445 declare_show_sampling_rate_min(od); 446 447 gov_sys_pol_attr_rw(sampling_rate); 448 gov_sys_pol_attr_rw(io_is_busy); 449 gov_sys_pol_attr_rw(up_threshold); 450 gov_sys_pol_attr_rw(sampling_down_factor); 451 gov_sys_pol_attr_rw(ignore_nice_load); 452 gov_sys_pol_attr_rw(powersave_bias); 453 gov_sys_pol_attr_ro(sampling_rate_min); 454 455 static struct attribute *dbs_attributes_gov_sys[] = { 456 &sampling_rate_min_gov_sys.attr, 457 &sampling_rate_gov_sys.attr, 458 &up_threshold_gov_sys.attr, 459 &sampling_down_factor_gov_sys.attr, 460 &ignore_nice_load_gov_sys.attr, 461 &powersave_bias_gov_sys.attr, 462 &io_is_busy_gov_sys.attr, 463 NULL 464 }; 465 466 static struct attribute_group od_attr_group_gov_sys = { 467 .attrs = dbs_attributes_gov_sys, 468 .name = "ondemand", 469 }; 470 471 static struct attribute *dbs_attributes_gov_pol[] = { 472 &sampling_rate_min_gov_pol.attr, 473 &sampling_rate_gov_pol.attr, 474 &up_threshold_gov_pol.attr, 475 &sampling_down_factor_gov_pol.attr, 476 &ignore_nice_load_gov_pol.attr, 477 &powersave_bias_gov_pol.attr, 478 &io_is_busy_gov_pol.attr, 479 NULL 480 }; 481 482 static struct attribute_group od_attr_group_gov_pol = { 483 .attrs = dbs_attributes_gov_pol, 484 .name = "ondemand", 485 }; 486 487 /************************** sysfs end ************************/ 488 489 static int od_init(struct dbs_data *dbs_data, bool notify) 490 { 491 struct od_dbs_tuners *tuners; 492 u64 idle_time; 493 int cpu; 494 495 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL); 496 if (!tuners) { 497 pr_err("%s: kzalloc failed\n", __func__); 498 return -ENOMEM; 499 } 500 501 cpu = get_cpu(); 502 idle_time = get_cpu_idle_time_us(cpu, NULL); 503 put_cpu(); 504 if (idle_time != -1ULL) { 505 /* Idle micro accounting is supported. Use finer thresholds */ 506 tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD; 507 /* 508 * In nohz/micro accounting case we set the minimum frequency 509 * not depending on HZ, but fixed (very low). The deferred 510 * timer might skip some samples if idle/sleeping as needed. 511 */ 512 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE; 513 } else { 514 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD; 515 516 /* For correct statistics, we need 10 ticks for each measure */ 517 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO * 518 jiffies_to_usecs(10); 519 } 520 521 tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR; 522 tuners->ignore_nice_load = 0; 523 tuners->powersave_bias = default_powersave_bias; 524 tuners->io_is_busy = should_io_be_busy(); 525 526 dbs_data->tuners = tuners; 527 return 0; 528 } 529 530 static void od_exit(struct dbs_data *dbs_data, bool notify) 531 { 532 kfree(dbs_data->tuners); 533 } 534 535 define_get_cpu_dbs_routines(od_cpu_dbs_info); 536 537 static struct od_ops od_ops = { 538 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu, 539 .powersave_bias_target = generic_powersave_bias_target, 540 .freq_increase = dbs_freq_increase, 541 }; 542 543 static struct common_dbs_data od_dbs_cdata = { 544 .governor = GOV_ONDEMAND, 545 .attr_group_gov_sys = &od_attr_group_gov_sys, 546 .attr_group_gov_pol = &od_attr_group_gov_pol, 547 .get_cpu_cdbs = get_cpu_cdbs, 548 .get_cpu_dbs_info_s = get_cpu_dbs_info_s, 549 .gov_dbs_timer = od_dbs_timer, 550 .gov_check_cpu = od_check_cpu, 551 .gov_ops = &od_ops, 552 .init = od_init, 553 .exit = od_exit, 554 .mutex = __MUTEX_INITIALIZER(od_dbs_cdata.mutex), 555 }; 556 557 static void od_set_powersave_bias(unsigned int powersave_bias) 558 { 559 struct cpufreq_policy *policy; 560 struct dbs_data *dbs_data; 561 struct od_dbs_tuners *od_tuners; 562 unsigned int cpu; 563 cpumask_t done; 564 565 default_powersave_bias = powersave_bias; 566 cpumask_clear(&done); 567 568 get_online_cpus(); 569 for_each_online_cpu(cpu) { 570 struct cpu_common_dbs_info *shared; 571 572 if (cpumask_test_cpu(cpu, &done)) 573 continue; 574 575 shared = per_cpu(od_cpu_dbs_info, cpu).cdbs.shared; 576 if (!shared) 577 continue; 578 579 policy = shared->policy; 580 cpumask_or(&done, &done, policy->cpus); 581 582 if (policy->governor != &cpufreq_gov_ondemand) 583 continue; 584 585 dbs_data = policy->governor_data; 586 od_tuners = dbs_data->tuners; 587 od_tuners->powersave_bias = default_powersave_bias; 588 } 589 put_online_cpus(); 590 } 591 592 void od_register_powersave_bias_handler(unsigned int (*f) 593 (struct cpufreq_policy *, unsigned int, unsigned int), 594 unsigned int powersave_bias) 595 { 596 od_ops.powersave_bias_target = f; 597 od_set_powersave_bias(powersave_bias); 598 } 599 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler); 600 601 void od_unregister_powersave_bias_handler(void) 602 { 603 od_ops.powersave_bias_target = generic_powersave_bias_target; 604 od_set_powersave_bias(0); 605 } 606 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler); 607 608 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy, 609 unsigned int event) 610 { 611 return cpufreq_governor_dbs(policy, &od_dbs_cdata, event); 612 } 613 614 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND 615 static 616 #endif 617 struct cpufreq_governor cpufreq_gov_ondemand = { 618 .name = "ondemand", 619 .governor = od_cpufreq_governor_dbs, 620 .max_transition_latency = TRANSITION_LATENCY_LIMIT, 621 .owner = THIS_MODULE, 622 }; 623 624 static int __init cpufreq_gov_dbs_init(void) 625 { 626 return cpufreq_register_governor(&cpufreq_gov_ondemand); 627 } 628 629 static void __exit cpufreq_gov_dbs_exit(void) 630 { 631 cpufreq_unregister_governor(&cpufreq_gov_ondemand); 632 } 633 634 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>"); 635 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>"); 636 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for " 637 "Low Latency Frequency Transition capable processors"); 638 MODULE_LICENSE("GPL"); 639 640 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND 641 fs_initcall(cpufreq_gov_dbs_init); 642 #else 643 module_init(cpufreq_gov_dbs_init); 644 #endif 645 module_exit(cpufreq_gov_dbs_exit); 646