1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 
22 /*
23  * dbs is used in this file as a shortform for demandbased switching
24  * It helps to keep variable names smaller, simpler
25  */
26 
27 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
28 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
29 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
30 
31 /*
32  * The polling frequency of this governor depends on the capability of
33  * the processor. Default polling frequency is 1000 times the transition
34  * latency of the processor. The governor will work on any processor with
35  * transition latency <= 10mS, using appropriate sampling
36  * rate.
37  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38  * this governor will not work.
39  * All times here are in uS.
40  */
41 static unsigned int def_sampling_rate;
42 #define MIN_SAMPLING_RATE_RATIO			(2)
43 /* for correct statistics, we need at least 10 ticks between each measure */
44 #define MIN_STAT_SAMPLING_RATE 			\
45 			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
46 #define MIN_SAMPLING_RATE			\
47 			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
48 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
49 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
50 #define TRANSITION_LATENCY_LIMIT		(10 * 1000)
51 
52 static void do_dbs_timer(struct work_struct *work);
53 
54 /* Sampling types */
55 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
56 
57 struct cpu_dbs_info_s {
58 	cputime64_t prev_cpu_idle;
59 	cputime64_t prev_cpu_wall;
60 	struct cpufreq_policy *cur_policy;
61  	struct delayed_work work;
62 	struct cpufreq_frequency_table *freq_table;
63 	unsigned int freq_lo;
64 	unsigned int freq_lo_jiffies;
65 	unsigned int freq_hi_jiffies;
66 	int cpu;
67 	unsigned int enable:1,
68 	             sample_type:1;
69 };
70 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
71 
72 static unsigned int dbs_enable;	/* number of CPUs using this policy */
73 
74 /*
75  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
76  * lock and dbs_mutex. cpu_hotplug lock should always be held before
77  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
78  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
79  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
80  * is recursive for the same process. -Venki
81  */
82 static DEFINE_MUTEX(dbs_mutex);
83 
84 static struct workqueue_struct	*kondemand_wq;
85 
86 static struct dbs_tuners {
87 	unsigned int sampling_rate;
88 	unsigned int up_threshold;
89 	unsigned int ignore_nice;
90 	unsigned int powersave_bias;
91 } dbs_tuners_ins = {
92 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
93 	.ignore_nice = 0,
94 	.powersave_bias = 0,
95 };
96 
97 static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
98 {
99 	cputime64_t retval;
100 
101 	retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
102 			kstat_cpu(cpu).cpustat.iowait);
103 
104 	if (dbs_tuners_ins.ignore_nice)
105 		retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
106 
107 	return retval;
108 }
109 
110 /*
111  * Find right freq to be set now with powersave_bias on.
112  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
113  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
114  */
115 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
116 					  unsigned int freq_next,
117 					  unsigned int relation)
118 {
119 	unsigned int freq_req, freq_reduc, freq_avg;
120 	unsigned int freq_hi, freq_lo;
121 	unsigned int index = 0;
122 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
123 	struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
124 
125 	if (!dbs_info->freq_table) {
126 		dbs_info->freq_lo = 0;
127 		dbs_info->freq_lo_jiffies = 0;
128 		return freq_next;
129 	}
130 
131 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
132 			relation, &index);
133 	freq_req = dbs_info->freq_table[index].frequency;
134 	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
135 	freq_avg = freq_req - freq_reduc;
136 
137 	/* Find freq bounds for freq_avg in freq_table */
138 	index = 0;
139 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
140 			CPUFREQ_RELATION_H, &index);
141 	freq_lo = dbs_info->freq_table[index].frequency;
142 	index = 0;
143 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
144 			CPUFREQ_RELATION_L, &index);
145 	freq_hi = dbs_info->freq_table[index].frequency;
146 
147 	/* Find out how long we have to be in hi and lo freqs */
148 	if (freq_hi == freq_lo) {
149 		dbs_info->freq_lo = 0;
150 		dbs_info->freq_lo_jiffies = 0;
151 		return freq_lo;
152 	}
153 	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
154 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
155 	jiffies_hi += ((freq_hi - freq_lo) / 2);
156 	jiffies_hi /= (freq_hi - freq_lo);
157 	jiffies_lo = jiffies_total - jiffies_hi;
158 	dbs_info->freq_lo = freq_lo;
159 	dbs_info->freq_lo_jiffies = jiffies_lo;
160 	dbs_info->freq_hi_jiffies = jiffies_hi;
161 	return freq_hi;
162 }
163 
164 static void ondemand_powersave_bias_init(void)
165 {
166 	int i;
167 	for_each_online_cpu(i) {
168 		struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
169 		dbs_info->freq_table = cpufreq_frequency_get_table(i);
170 		dbs_info->freq_lo = 0;
171 	}
172 }
173 
174 /************************** sysfs interface ************************/
175 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
176 {
177 	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
178 }
179 
180 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
181 {
182 	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
183 }
184 
185 #define define_one_ro(_name)		\
186 static struct freq_attr _name =		\
187 __ATTR(_name, 0444, show_##_name, NULL)
188 
189 define_one_ro(sampling_rate_max);
190 define_one_ro(sampling_rate_min);
191 
192 /* cpufreq_ondemand Governor Tunables */
193 #define show_one(file_name, object)					\
194 static ssize_t show_##file_name						\
195 (struct cpufreq_policy *unused, char *buf)				\
196 {									\
197 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
198 }
199 show_one(sampling_rate, sampling_rate);
200 show_one(up_threshold, up_threshold);
201 show_one(ignore_nice_load, ignore_nice);
202 show_one(powersave_bias, powersave_bias);
203 
204 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
205 		const char *buf, size_t count)
206 {
207 	unsigned int input;
208 	int ret;
209 	ret = sscanf(buf, "%u", &input);
210 
211 	mutex_lock(&dbs_mutex);
212 	if (ret != 1 || input > MAX_SAMPLING_RATE
213 		     || input < MIN_SAMPLING_RATE) {
214 		mutex_unlock(&dbs_mutex);
215 		return -EINVAL;
216 	}
217 
218 	dbs_tuners_ins.sampling_rate = input;
219 	mutex_unlock(&dbs_mutex);
220 
221 	return count;
222 }
223 
224 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
225 		const char *buf, size_t count)
226 {
227 	unsigned int input;
228 	int ret;
229 	ret = sscanf(buf, "%u", &input);
230 
231 	mutex_lock(&dbs_mutex);
232 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
233 			input < MIN_FREQUENCY_UP_THRESHOLD) {
234 		mutex_unlock(&dbs_mutex);
235 		return -EINVAL;
236 	}
237 
238 	dbs_tuners_ins.up_threshold = input;
239 	mutex_unlock(&dbs_mutex);
240 
241 	return count;
242 }
243 
244 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
245 		const char *buf, size_t count)
246 {
247 	unsigned int input;
248 	int ret;
249 
250 	unsigned int j;
251 
252 	ret = sscanf(buf, "%u", &input);
253 	if ( ret != 1 )
254 		return -EINVAL;
255 
256 	if ( input > 1 )
257 		input = 1;
258 
259 	mutex_lock(&dbs_mutex);
260 	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
261 		mutex_unlock(&dbs_mutex);
262 		return count;
263 	}
264 	dbs_tuners_ins.ignore_nice = input;
265 
266 	/* we need to re-evaluate prev_cpu_idle */
267 	for_each_online_cpu(j) {
268 		struct cpu_dbs_info_s *dbs_info;
269 		dbs_info = &per_cpu(cpu_dbs_info, j);
270 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
271 		dbs_info->prev_cpu_wall = get_jiffies_64();
272 	}
273 	mutex_unlock(&dbs_mutex);
274 
275 	return count;
276 }
277 
278 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
279 		const char *buf, size_t count)
280 {
281 	unsigned int input;
282 	int ret;
283 	ret = sscanf(buf, "%u", &input);
284 
285 	if (ret != 1)
286 		return -EINVAL;
287 
288 	if (input > 1000)
289 		input = 1000;
290 
291 	mutex_lock(&dbs_mutex);
292 	dbs_tuners_ins.powersave_bias = input;
293 	ondemand_powersave_bias_init();
294 	mutex_unlock(&dbs_mutex);
295 
296 	return count;
297 }
298 
299 #define define_one_rw(_name) \
300 static struct freq_attr _name = \
301 __ATTR(_name, 0644, show_##_name, store_##_name)
302 
303 define_one_rw(sampling_rate);
304 define_one_rw(up_threshold);
305 define_one_rw(ignore_nice_load);
306 define_one_rw(powersave_bias);
307 
308 static struct attribute * dbs_attributes[] = {
309 	&sampling_rate_max.attr,
310 	&sampling_rate_min.attr,
311 	&sampling_rate.attr,
312 	&up_threshold.attr,
313 	&ignore_nice_load.attr,
314 	&powersave_bias.attr,
315 	NULL
316 };
317 
318 static struct attribute_group dbs_attr_group = {
319 	.attrs = dbs_attributes,
320 	.name = "ondemand",
321 };
322 
323 /************************** sysfs end ************************/
324 
325 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
326 {
327 	unsigned int idle_ticks, total_ticks;
328 	unsigned int load;
329 	cputime64_t cur_jiffies;
330 
331 	struct cpufreq_policy *policy;
332 	unsigned int j;
333 
334 	if (!this_dbs_info->enable)
335 		return;
336 
337 	this_dbs_info->freq_lo = 0;
338 	policy = this_dbs_info->cur_policy;
339 	cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
340 	total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
341 			this_dbs_info->prev_cpu_wall);
342 	this_dbs_info->prev_cpu_wall = cur_jiffies;
343 	if (!total_ticks)
344 		return;
345 	/*
346 	 * Every sampling_rate, we check, if current idle time is less
347 	 * than 20% (default), then we try to increase frequency
348 	 * Every sampling_rate, we look for a the lowest
349 	 * frequency which can sustain the load while keeping idle time over
350 	 * 30%. If such a frequency exist, we try to decrease to this frequency.
351 	 *
352 	 * Any frequency increase takes it to the maximum frequency.
353 	 * Frequency reduction happens at minimum steps of
354 	 * 5% (default) of current frequency
355 	 */
356 
357 	/* Get Idle Time */
358 	idle_ticks = UINT_MAX;
359 	for_each_cpu_mask(j, policy->cpus) {
360 		cputime64_t total_idle_ticks;
361 		unsigned int tmp_idle_ticks;
362 		struct cpu_dbs_info_s *j_dbs_info;
363 
364 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
365 		total_idle_ticks = get_cpu_idle_time(j);
366 		tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
367 				j_dbs_info->prev_cpu_idle);
368 		j_dbs_info->prev_cpu_idle = total_idle_ticks;
369 
370 		if (tmp_idle_ticks < idle_ticks)
371 			idle_ticks = tmp_idle_ticks;
372 	}
373 	load = (100 * (total_ticks - idle_ticks)) / total_ticks;
374 
375 	/* Check for frequency increase */
376 	if (load > dbs_tuners_ins.up_threshold) {
377 		/* if we are already at full speed then break out early */
378 		if (!dbs_tuners_ins.powersave_bias) {
379 			if (policy->cur == policy->max)
380 				return;
381 
382 			__cpufreq_driver_target(policy, policy->max,
383 				CPUFREQ_RELATION_H);
384 		} else {
385 			int freq = powersave_bias_target(policy, policy->max,
386 					CPUFREQ_RELATION_H);
387 			__cpufreq_driver_target(policy, freq,
388 				CPUFREQ_RELATION_L);
389 		}
390 		return;
391 	}
392 
393 	/* Check for frequency decrease */
394 	/* if we cannot reduce the frequency anymore, break out early */
395 	if (policy->cur == policy->min)
396 		return;
397 
398 	/*
399 	 * The optimal frequency is the frequency that is the lowest that
400 	 * can support the current CPU usage without triggering the up
401 	 * policy. To be safe, we focus 10 points under the threshold.
402 	 */
403 	if (load < (dbs_tuners_ins.up_threshold - 10)) {
404 		unsigned int freq_next, freq_cur;
405 
406 		freq_cur = __cpufreq_driver_getavg(policy);
407 		if (!freq_cur)
408 			freq_cur = policy->cur;
409 
410 		freq_next = (freq_cur * load) /
411 			(dbs_tuners_ins.up_threshold - 10);
412 
413 		if (!dbs_tuners_ins.powersave_bias) {
414 			__cpufreq_driver_target(policy, freq_next,
415 					CPUFREQ_RELATION_L);
416 		} else {
417 			int freq = powersave_bias_target(policy, freq_next,
418 					CPUFREQ_RELATION_L);
419 			__cpufreq_driver_target(policy, freq,
420 				CPUFREQ_RELATION_L);
421 		}
422 	}
423 }
424 
425 static void do_dbs_timer(struct work_struct *work)
426 {
427 	struct cpu_dbs_info_s *dbs_info =
428 		container_of(work, struct cpu_dbs_info_s, work.work);
429 	unsigned int cpu = dbs_info->cpu;
430 	int sample_type = dbs_info->sample_type;
431 
432 	/* We want all CPUs to do sampling nearly on same jiffy */
433 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
434 
435 	delay -= jiffies % delay;
436 
437 	if (lock_policy_rwsem_write(cpu) < 0)
438 		return;
439 
440 	if (!dbs_info->enable) {
441 		unlock_policy_rwsem_write(cpu);
442 		return;
443 	}
444 
445 	/* Common NORMAL_SAMPLE setup */
446 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
447 	if (!dbs_tuners_ins.powersave_bias ||
448 	    sample_type == DBS_NORMAL_SAMPLE) {
449 		dbs_check_cpu(dbs_info);
450 		if (dbs_info->freq_lo) {
451 			/* Setup timer for SUB_SAMPLE */
452 			dbs_info->sample_type = DBS_SUB_SAMPLE;
453 			delay = dbs_info->freq_hi_jiffies;
454 		}
455 	} else {
456 		__cpufreq_driver_target(dbs_info->cur_policy,
457 	                        	dbs_info->freq_lo,
458 	                        	CPUFREQ_RELATION_H);
459 	}
460 	queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
461 	unlock_policy_rwsem_write(cpu);
462 }
463 
464 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
465 {
466 	/* We want all CPUs to do sampling nearly on same jiffy */
467 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
468 	delay -= jiffies % delay;
469 
470 	dbs_info->enable = 1;
471 	ondemand_powersave_bias_init();
472 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
473 	INIT_DELAYED_WORK(&dbs_info->work, do_dbs_timer);
474 	queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
475 	                      delay);
476 }
477 
478 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
479 {
480 	dbs_info->enable = 0;
481 	cancel_delayed_work(&dbs_info->work);
482 }
483 
484 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
485 				   unsigned int event)
486 {
487 	unsigned int cpu = policy->cpu;
488 	struct cpu_dbs_info_s *this_dbs_info;
489 	unsigned int j;
490 	int rc;
491 
492 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
493 
494 	switch (event) {
495 	case CPUFREQ_GOV_START:
496 		if ((!cpu_online(cpu)) || (!policy->cur))
497 			return -EINVAL;
498 
499 		if (policy->cpuinfo.transition_latency >
500 				(TRANSITION_LATENCY_LIMIT * 1000)) {
501 			printk(KERN_WARNING "ondemand governor failed to load "
502 			       "due to too long transition latency\n");
503 			return -EINVAL;
504 		}
505 		if (this_dbs_info->enable) /* Already enabled */
506 			break;
507 
508 		mutex_lock(&dbs_mutex);
509 		dbs_enable++;
510 
511 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
512 		if (rc) {
513 			dbs_enable--;
514 			mutex_unlock(&dbs_mutex);
515 			return rc;
516 		}
517 
518 		for_each_cpu_mask(j, policy->cpus) {
519 			struct cpu_dbs_info_s *j_dbs_info;
520 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
521 			j_dbs_info->cur_policy = policy;
522 
523 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
524 			j_dbs_info->prev_cpu_wall = get_jiffies_64();
525 		}
526 		this_dbs_info->cpu = cpu;
527 		/*
528 		 * Start the timerschedule work, when this governor
529 		 * is used for first time
530 		 */
531 		if (dbs_enable == 1) {
532 			unsigned int latency;
533 			/* policy latency is in nS. Convert it to uS first */
534 			latency = policy->cpuinfo.transition_latency / 1000;
535 			if (latency == 0)
536 				latency = 1;
537 
538 			def_sampling_rate = latency *
539 					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
540 
541 			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
542 				def_sampling_rate = MIN_STAT_SAMPLING_RATE;
543 
544 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
545 		}
546 		dbs_timer_init(this_dbs_info);
547 
548 		mutex_unlock(&dbs_mutex);
549 		break;
550 
551 	case CPUFREQ_GOV_STOP:
552 		mutex_lock(&dbs_mutex);
553 		dbs_timer_exit(this_dbs_info);
554 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
555 		dbs_enable--;
556 		mutex_unlock(&dbs_mutex);
557 
558 		break;
559 
560 	case CPUFREQ_GOV_LIMITS:
561 		mutex_lock(&dbs_mutex);
562 		if (policy->max < this_dbs_info->cur_policy->cur)
563 			__cpufreq_driver_target(this_dbs_info->cur_policy,
564 			                        policy->max,
565 			                        CPUFREQ_RELATION_H);
566 		else if (policy->min > this_dbs_info->cur_policy->cur)
567 			__cpufreq_driver_target(this_dbs_info->cur_policy,
568 			                        policy->min,
569 			                        CPUFREQ_RELATION_L);
570 		mutex_unlock(&dbs_mutex);
571 		break;
572 	}
573 	return 0;
574 }
575 
576 static struct cpufreq_governor cpufreq_gov_dbs = {
577 	.name = "ondemand",
578 	.governor = cpufreq_governor_dbs,
579 	.owner = THIS_MODULE,
580 };
581 
582 static int __init cpufreq_gov_dbs_init(void)
583 {
584 	kondemand_wq = create_workqueue("kondemand");
585 	if (!kondemand_wq) {
586 		printk(KERN_ERR "Creation of kondemand failed\n");
587 		return -EFAULT;
588 	}
589 	return cpufreq_register_governor(&cpufreq_gov_dbs);
590 }
591 
592 static void __exit cpufreq_gov_dbs_exit(void)
593 {
594 	cpufreq_unregister_governor(&cpufreq_gov_dbs);
595 	destroy_workqueue(kondemand_wq);
596 }
597 
598 
599 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
600 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
601 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
602                    "Low Latency Frequency Transition capable processors");
603 MODULE_LICENSE("GPL");
604 
605 module_init(cpufreq_gov_dbs_init);
606 module_exit(cpufreq_gov_dbs_exit);
607 
608