1 /* 2 * drivers/cpufreq/cpufreq_ondemand.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. 6 * Jun Nakajima <jun.nakajima@intel.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 14 15 #include <linux/cpu.h> 16 #include <linux/percpu-defs.h> 17 #include <linux/slab.h> 18 #include <linux/tick.h> 19 20 #include "cpufreq_ondemand.h" 21 22 /* On-demand governor macros */ 23 #define DEF_FREQUENCY_UP_THRESHOLD (80) 24 #define DEF_SAMPLING_DOWN_FACTOR (1) 25 #define MAX_SAMPLING_DOWN_FACTOR (100000) 26 #define MICRO_FREQUENCY_UP_THRESHOLD (95) 27 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000) 28 #define MIN_FREQUENCY_UP_THRESHOLD (11) 29 #define MAX_FREQUENCY_UP_THRESHOLD (100) 30 31 static struct od_ops od_ops; 32 33 static unsigned int default_powersave_bias; 34 35 /* 36 * Not all CPUs want IO time to be accounted as busy; this depends on how 37 * efficient idling at a higher frequency/voltage is. 38 * Pavel Machek says this is not so for various generations of AMD and old 39 * Intel systems. 40 * Mike Chan (android.com) claims this is also not true for ARM. 41 * Because of this, whitelist specific known (series) of CPUs by default, and 42 * leave all others up to the user. 43 */ 44 static int should_io_be_busy(void) 45 { 46 #if defined(CONFIG_X86) 47 /* 48 * For Intel, Core 2 (model 15) and later have an efficient idle. 49 */ 50 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && 51 boot_cpu_data.x86 == 6 && 52 boot_cpu_data.x86_model >= 15) 53 return 1; 54 #endif 55 return 0; 56 } 57 58 /* 59 * Find right freq to be set now with powersave_bias on. 60 * Returns the freq_hi to be used right now and will set freq_hi_delay_us, 61 * freq_lo, and freq_lo_delay_us in percpu area for averaging freqs. 62 */ 63 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy, 64 unsigned int freq_next, unsigned int relation) 65 { 66 unsigned int freq_req, freq_reduc, freq_avg; 67 unsigned int freq_hi, freq_lo; 68 unsigned int index = 0; 69 unsigned int delay_hi_us; 70 struct policy_dbs_info *policy_dbs = policy->governor_data; 71 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs); 72 struct dbs_data *dbs_data = policy_dbs->dbs_data; 73 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 74 75 if (!dbs_info->freq_table) { 76 dbs_info->freq_lo = 0; 77 dbs_info->freq_lo_delay_us = 0; 78 return freq_next; 79 } 80 81 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next, 82 relation, &index); 83 freq_req = dbs_info->freq_table[index].frequency; 84 freq_reduc = freq_req * od_tuners->powersave_bias / 1000; 85 freq_avg = freq_req - freq_reduc; 86 87 /* Find freq bounds for freq_avg in freq_table */ 88 index = 0; 89 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, 90 CPUFREQ_RELATION_H, &index); 91 freq_lo = dbs_info->freq_table[index].frequency; 92 index = 0; 93 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, 94 CPUFREQ_RELATION_L, &index); 95 freq_hi = dbs_info->freq_table[index].frequency; 96 97 /* Find out how long we have to be in hi and lo freqs */ 98 if (freq_hi == freq_lo) { 99 dbs_info->freq_lo = 0; 100 dbs_info->freq_lo_delay_us = 0; 101 return freq_lo; 102 } 103 delay_hi_us = (freq_avg - freq_lo) * dbs_data->sampling_rate; 104 delay_hi_us += (freq_hi - freq_lo) / 2; 105 delay_hi_us /= freq_hi - freq_lo; 106 dbs_info->freq_hi_delay_us = delay_hi_us; 107 dbs_info->freq_lo = freq_lo; 108 dbs_info->freq_lo_delay_us = dbs_data->sampling_rate - delay_hi_us; 109 return freq_hi; 110 } 111 112 static void ondemand_powersave_bias_init(struct cpufreq_policy *policy) 113 { 114 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data); 115 116 dbs_info->freq_table = cpufreq_frequency_get_table(policy->cpu); 117 dbs_info->freq_lo = 0; 118 } 119 120 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq) 121 { 122 struct policy_dbs_info *policy_dbs = policy->governor_data; 123 struct dbs_data *dbs_data = policy_dbs->dbs_data; 124 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 125 126 if (od_tuners->powersave_bias) 127 freq = od_ops.powersave_bias_target(policy, freq, 128 CPUFREQ_RELATION_H); 129 else if (policy->cur == policy->max) 130 return; 131 132 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ? 133 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H); 134 } 135 136 /* 137 * Every sampling_rate, we check, if current idle time is less than 20% 138 * (default), then we try to increase frequency. Else, we adjust the frequency 139 * proportional to load. 140 */ 141 static void od_update(struct cpufreq_policy *policy) 142 { 143 struct policy_dbs_info *policy_dbs = policy->governor_data; 144 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs); 145 struct dbs_data *dbs_data = policy_dbs->dbs_data; 146 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 147 unsigned int load = dbs_update(policy); 148 149 dbs_info->freq_lo = 0; 150 151 /* Check for frequency increase */ 152 if (load > dbs_data->up_threshold) { 153 /* If switching to max speed, apply sampling_down_factor */ 154 if (policy->cur < policy->max) 155 policy_dbs->rate_mult = dbs_data->sampling_down_factor; 156 dbs_freq_increase(policy, policy->max); 157 } else { 158 /* Calculate the next frequency proportional to load */ 159 unsigned int freq_next, min_f, max_f; 160 161 min_f = policy->cpuinfo.min_freq; 162 max_f = policy->cpuinfo.max_freq; 163 freq_next = min_f + load * (max_f - min_f) / 100; 164 165 /* No longer fully busy, reset rate_mult */ 166 policy_dbs->rate_mult = 1; 167 168 if (od_tuners->powersave_bias) 169 freq_next = od_ops.powersave_bias_target(policy, 170 freq_next, 171 CPUFREQ_RELATION_L); 172 173 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C); 174 } 175 } 176 177 static unsigned int od_dbs_timer(struct cpufreq_policy *policy) 178 { 179 struct policy_dbs_info *policy_dbs = policy->governor_data; 180 struct dbs_data *dbs_data = policy_dbs->dbs_data; 181 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs); 182 int sample_type = dbs_info->sample_type; 183 184 /* Common NORMAL_SAMPLE setup */ 185 dbs_info->sample_type = OD_NORMAL_SAMPLE; 186 /* 187 * OD_SUB_SAMPLE doesn't make sense if sample_delay_ns is 0, so ignore 188 * it then. 189 */ 190 if (sample_type == OD_SUB_SAMPLE && policy_dbs->sample_delay_ns > 0) { 191 __cpufreq_driver_target(policy, dbs_info->freq_lo, 192 CPUFREQ_RELATION_H); 193 return dbs_info->freq_lo_delay_us; 194 } 195 196 od_update(policy); 197 198 if (dbs_info->freq_lo) { 199 /* Setup timer for SUB_SAMPLE */ 200 dbs_info->sample_type = OD_SUB_SAMPLE; 201 return dbs_info->freq_hi_delay_us; 202 } 203 204 return dbs_data->sampling_rate * policy_dbs->rate_mult; 205 } 206 207 /************************** sysfs interface ************************/ 208 static struct dbs_governor od_dbs_gov; 209 210 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf, 211 size_t count) 212 { 213 unsigned int input; 214 int ret; 215 216 ret = sscanf(buf, "%u", &input); 217 if (ret != 1) 218 return -EINVAL; 219 dbs_data->io_is_busy = !!input; 220 221 /* we need to re-evaluate prev_cpu_idle */ 222 gov_update_cpu_data(dbs_data); 223 224 return count; 225 } 226 227 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf, 228 size_t count) 229 { 230 unsigned int input; 231 int ret; 232 ret = sscanf(buf, "%u", &input); 233 234 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || 235 input < MIN_FREQUENCY_UP_THRESHOLD) { 236 return -EINVAL; 237 } 238 239 dbs_data->up_threshold = input; 240 return count; 241 } 242 243 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data, 244 const char *buf, size_t count) 245 { 246 struct policy_dbs_info *policy_dbs; 247 unsigned int input; 248 int ret; 249 ret = sscanf(buf, "%u", &input); 250 251 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1) 252 return -EINVAL; 253 254 dbs_data->sampling_down_factor = input; 255 256 /* Reset down sampling multiplier in case it was active */ 257 list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) { 258 /* 259 * Doing this without locking might lead to using different 260 * rate_mult values in od_update() and od_dbs_timer(). 261 */ 262 mutex_lock(&policy_dbs->timer_mutex); 263 policy_dbs->rate_mult = 1; 264 mutex_unlock(&policy_dbs->timer_mutex); 265 } 266 267 return count; 268 } 269 270 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data, 271 const char *buf, size_t count) 272 { 273 unsigned int input; 274 int ret; 275 276 ret = sscanf(buf, "%u", &input); 277 if (ret != 1) 278 return -EINVAL; 279 280 if (input > 1) 281 input = 1; 282 283 if (input == dbs_data->ignore_nice_load) { /* nothing to do */ 284 return count; 285 } 286 dbs_data->ignore_nice_load = input; 287 288 /* we need to re-evaluate prev_cpu_idle */ 289 gov_update_cpu_data(dbs_data); 290 291 return count; 292 } 293 294 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf, 295 size_t count) 296 { 297 struct od_dbs_tuners *od_tuners = dbs_data->tuners; 298 struct policy_dbs_info *policy_dbs; 299 unsigned int input; 300 int ret; 301 ret = sscanf(buf, "%u", &input); 302 303 if (ret != 1) 304 return -EINVAL; 305 306 if (input > 1000) 307 input = 1000; 308 309 od_tuners->powersave_bias = input; 310 311 list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) 312 ondemand_powersave_bias_init(policy_dbs->policy); 313 314 return count; 315 } 316 317 gov_show_one_common(sampling_rate); 318 gov_show_one_common(up_threshold); 319 gov_show_one_common(sampling_down_factor); 320 gov_show_one_common(ignore_nice_load); 321 gov_show_one_common(min_sampling_rate); 322 gov_show_one_common(io_is_busy); 323 gov_show_one(od, powersave_bias); 324 325 gov_attr_rw(sampling_rate); 326 gov_attr_rw(io_is_busy); 327 gov_attr_rw(up_threshold); 328 gov_attr_rw(sampling_down_factor); 329 gov_attr_rw(ignore_nice_load); 330 gov_attr_rw(powersave_bias); 331 gov_attr_ro(min_sampling_rate); 332 333 static struct attribute *od_attributes[] = { 334 &min_sampling_rate.attr, 335 &sampling_rate.attr, 336 &up_threshold.attr, 337 &sampling_down_factor.attr, 338 &ignore_nice_load.attr, 339 &powersave_bias.attr, 340 &io_is_busy.attr, 341 NULL 342 }; 343 344 /************************** sysfs end ************************/ 345 346 static struct policy_dbs_info *od_alloc(void) 347 { 348 struct od_policy_dbs_info *dbs_info; 349 350 dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL); 351 return dbs_info ? &dbs_info->policy_dbs : NULL; 352 } 353 354 static void od_free(struct policy_dbs_info *policy_dbs) 355 { 356 kfree(to_dbs_info(policy_dbs)); 357 } 358 359 static int od_init(struct dbs_data *dbs_data, bool notify) 360 { 361 struct od_dbs_tuners *tuners; 362 u64 idle_time; 363 int cpu; 364 365 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL); 366 if (!tuners) { 367 pr_err("%s: kzalloc failed\n", __func__); 368 return -ENOMEM; 369 } 370 371 cpu = get_cpu(); 372 idle_time = get_cpu_idle_time_us(cpu, NULL); 373 put_cpu(); 374 if (idle_time != -1ULL) { 375 /* Idle micro accounting is supported. Use finer thresholds */ 376 dbs_data->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD; 377 /* 378 * In nohz/micro accounting case we set the minimum frequency 379 * not depending on HZ, but fixed (very low). The deferred 380 * timer might skip some samples if idle/sleeping as needed. 381 */ 382 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE; 383 } else { 384 dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD; 385 386 /* For correct statistics, we need 10 ticks for each measure */ 387 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO * 388 jiffies_to_usecs(10); 389 } 390 391 dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR; 392 dbs_data->ignore_nice_load = 0; 393 tuners->powersave_bias = default_powersave_bias; 394 dbs_data->io_is_busy = should_io_be_busy(); 395 396 dbs_data->tuners = tuners; 397 return 0; 398 } 399 400 static void od_exit(struct dbs_data *dbs_data, bool notify) 401 { 402 kfree(dbs_data->tuners); 403 } 404 405 static void od_start(struct cpufreq_policy *policy) 406 { 407 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data); 408 409 dbs_info->sample_type = OD_NORMAL_SAMPLE; 410 ondemand_powersave_bias_init(policy); 411 } 412 413 static struct od_ops od_ops = { 414 .powersave_bias_target = generic_powersave_bias_target, 415 }; 416 417 static struct dbs_governor od_dbs_gov = { 418 .gov = { 419 .name = "ondemand", 420 .governor = cpufreq_governor_dbs, 421 .max_transition_latency = TRANSITION_LATENCY_LIMIT, 422 .owner = THIS_MODULE, 423 }, 424 .kobj_type = { .default_attrs = od_attributes }, 425 .gov_dbs_timer = od_dbs_timer, 426 .alloc = od_alloc, 427 .free = od_free, 428 .init = od_init, 429 .exit = od_exit, 430 .start = od_start, 431 }; 432 433 #define CPU_FREQ_GOV_ONDEMAND (&od_dbs_gov.gov) 434 435 static void od_set_powersave_bias(unsigned int powersave_bias) 436 { 437 unsigned int cpu; 438 cpumask_t done; 439 440 default_powersave_bias = powersave_bias; 441 cpumask_clear(&done); 442 443 get_online_cpus(); 444 for_each_online_cpu(cpu) { 445 struct cpufreq_policy *policy; 446 struct policy_dbs_info *policy_dbs; 447 struct dbs_data *dbs_data; 448 struct od_dbs_tuners *od_tuners; 449 450 if (cpumask_test_cpu(cpu, &done)) 451 continue; 452 453 policy = cpufreq_cpu_get_raw(cpu); 454 if (!policy || policy->governor != CPU_FREQ_GOV_ONDEMAND) 455 continue; 456 457 policy_dbs = policy->governor_data; 458 if (!policy_dbs) 459 continue; 460 461 cpumask_or(&done, &done, policy->cpus); 462 463 dbs_data = policy_dbs->dbs_data; 464 od_tuners = dbs_data->tuners; 465 od_tuners->powersave_bias = default_powersave_bias; 466 } 467 put_online_cpus(); 468 } 469 470 void od_register_powersave_bias_handler(unsigned int (*f) 471 (struct cpufreq_policy *, unsigned int, unsigned int), 472 unsigned int powersave_bias) 473 { 474 od_ops.powersave_bias_target = f; 475 od_set_powersave_bias(powersave_bias); 476 } 477 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler); 478 479 void od_unregister_powersave_bias_handler(void) 480 { 481 od_ops.powersave_bias_target = generic_powersave_bias_target; 482 od_set_powersave_bias(0); 483 } 484 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler); 485 486 static int __init cpufreq_gov_dbs_init(void) 487 { 488 return cpufreq_register_governor(CPU_FREQ_GOV_ONDEMAND); 489 } 490 491 static void __exit cpufreq_gov_dbs_exit(void) 492 { 493 cpufreq_unregister_governor(CPU_FREQ_GOV_ONDEMAND); 494 } 495 496 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>"); 497 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>"); 498 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for " 499 "Low Latency Frequency Transition capable processors"); 500 MODULE_LICENSE("GPL"); 501 502 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND 503 struct cpufreq_governor *cpufreq_default_governor(void) 504 { 505 return CPU_FREQ_GOV_ONDEMAND; 506 } 507 508 fs_initcall(cpufreq_gov_dbs_init); 509 #else 510 module_init(cpufreq_gov_dbs_init); 511 #endif 512 module_exit(cpufreq_gov_dbs_exit); 513