1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
25 
26 /*
27  * dbs is used in this file as a shortform for demandbased switching
28  * It helps to keep variable names smaller, simpler
29  */
30 
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL		(10)
32 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 #define DEF_SAMPLING_DOWN_FACTOR		(1)
34 #define MAX_SAMPLING_DOWN_FACTOR		(100000)
35 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL	(3)
36 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
37 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
38 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
39 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
40 
41 /*
42  * The polling frequency of this governor depends on the capability of
43  * the processor. Default polling frequency is 1000 times the transition
44  * latency of the processor. The governor will work on any processor with
45  * transition latency <= 10mS, using appropriate sampling
46  * rate.
47  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48  * this governor will not work.
49  * All times here are in uS.
50  */
51 #define MIN_SAMPLING_RATE_RATIO			(2)
52 
53 static unsigned int min_sampling_rate;
54 
55 #define LATENCY_MULTIPLIER			(1000)
56 #define MIN_LATENCY_MULTIPLIER			(100)
57 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
58 
59 static void do_dbs_timer(struct work_struct *work);
60 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
61 				unsigned int event);
62 
63 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64 static
65 #endif
66 struct cpufreq_governor cpufreq_gov_ondemand = {
67        .name                   = "ondemand",
68        .governor               = cpufreq_governor_dbs,
69        .max_transition_latency = TRANSITION_LATENCY_LIMIT,
70        .owner                  = THIS_MODULE,
71 };
72 
73 /* Sampling types */
74 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
75 
76 struct cpu_dbs_info_s {
77 	cputime64_t prev_cpu_idle;
78 	cputime64_t prev_cpu_iowait;
79 	cputime64_t prev_cpu_wall;
80 	cputime64_t prev_cpu_nice;
81 	struct cpufreq_policy *cur_policy;
82 	struct delayed_work work;
83 	struct cpufreq_frequency_table *freq_table;
84 	unsigned int freq_lo;
85 	unsigned int freq_lo_jiffies;
86 	unsigned int freq_hi_jiffies;
87 	unsigned int rate_mult;
88 	int cpu;
89 	unsigned int sample_type:1;
90 	/*
91 	 * percpu mutex that serializes governor limit change with
92 	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
93 	 * when user is changing the governor or limits.
94 	 */
95 	struct mutex timer_mutex;
96 };
97 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
98 
99 static unsigned int dbs_enable;	/* number of CPUs using this policy */
100 
101 /*
102  * dbs_mutex protects dbs_enable in governor start/stop.
103  */
104 static DEFINE_MUTEX(dbs_mutex);
105 
106 static struct dbs_tuners {
107 	unsigned int sampling_rate;
108 	unsigned int up_threshold;
109 	unsigned int down_differential;
110 	unsigned int ignore_nice;
111 	unsigned int sampling_down_factor;
112 	unsigned int powersave_bias;
113 	unsigned int io_is_busy;
114 } dbs_tuners_ins = {
115 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
116 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
117 	.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
118 	.ignore_nice = 0,
119 	.powersave_bias = 0,
120 };
121 
122 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
123 							cputime64_t *wall)
124 {
125 	cputime64_t idle_time;
126 	cputime64_t cur_wall_time;
127 	cputime64_t busy_time;
128 
129 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
130 	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
131 			kstat_cpu(cpu).cpustat.system);
132 
133 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
134 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
135 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
136 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
137 
138 	idle_time = cputime64_sub(cur_wall_time, busy_time);
139 	if (wall)
140 		*wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
141 
142 	return (cputime64_t)jiffies_to_usecs(idle_time);
143 }
144 
145 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
146 {
147 	u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
148 
149 	if (idle_time == -1ULL)
150 		return get_cpu_idle_time_jiffy(cpu, wall);
151 	else
152 		idle_time += get_cpu_iowait_time_us(cpu, wall);
153 
154 	return idle_time;
155 }
156 
157 static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
158 {
159 	u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
160 
161 	if (iowait_time == -1ULL)
162 		return 0;
163 
164 	return iowait_time;
165 }
166 
167 /*
168  * Find right freq to be set now with powersave_bias on.
169  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
170  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
171  */
172 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
173 					  unsigned int freq_next,
174 					  unsigned int relation)
175 {
176 	unsigned int freq_req, freq_reduc, freq_avg;
177 	unsigned int freq_hi, freq_lo;
178 	unsigned int index = 0;
179 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
180 	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
181 						   policy->cpu);
182 
183 	if (!dbs_info->freq_table) {
184 		dbs_info->freq_lo = 0;
185 		dbs_info->freq_lo_jiffies = 0;
186 		return freq_next;
187 	}
188 
189 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
190 			relation, &index);
191 	freq_req = dbs_info->freq_table[index].frequency;
192 	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
193 	freq_avg = freq_req - freq_reduc;
194 
195 	/* Find freq bounds for freq_avg in freq_table */
196 	index = 0;
197 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
198 			CPUFREQ_RELATION_H, &index);
199 	freq_lo = dbs_info->freq_table[index].frequency;
200 	index = 0;
201 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
202 			CPUFREQ_RELATION_L, &index);
203 	freq_hi = dbs_info->freq_table[index].frequency;
204 
205 	/* Find out how long we have to be in hi and lo freqs */
206 	if (freq_hi == freq_lo) {
207 		dbs_info->freq_lo = 0;
208 		dbs_info->freq_lo_jiffies = 0;
209 		return freq_lo;
210 	}
211 	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
212 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
213 	jiffies_hi += ((freq_hi - freq_lo) / 2);
214 	jiffies_hi /= (freq_hi - freq_lo);
215 	jiffies_lo = jiffies_total - jiffies_hi;
216 	dbs_info->freq_lo = freq_lo;
217 	dbs_info->freq_lo_jiffies = jiffies_lo;
218 	dbs_info->freq_hi_jiffies = jiffies_hi;
219 	return freq_hi;
220 }
221 
222 static void ondemand_powersave_bias_init_cpu(int cpu)
223 {
224 	struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
225 	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
226 	dbs_info->freq_lo = 0;
227 }
228 
229 static void ondemand_powersave_bias_init(void)
230 {
231 	int i;
232 	for_each_online_cpu(i) {
233 		ondemand_powersave_bias_init_cpu(i);
234 	}
235 }
236 
237 /************************** sysfs interface ************************/
238 
239 static ssize_t show_sampling_rate_min(struct kobject *kobj,
240 				      struct attribute *attr, char *buf)
241 {
242 	return sprintf(buf, "%u\n", min_sampling_rate);
243 }
244 
245 define_one_global_ro(sampling_rate_min);
246 
247 /* cpufreq_ondemand Governor Tunables */
248 #define show_one(file_name, object)					\
249 static ssize_t show_##file_name						\
250 (struct kobject *kobj, struct attribute *attr, char *buf)              \
251 {									\
252 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
253 }
254 show_one(sampling_rate, sampling_rate);
255 show_one(io_is_busy, io_is_busy);
256 show_one(up_threshold, up_threshold);
257 show_one(sampling_down_factor, sampling_down_factor);
258 show_one(ignore_nice_load, ignore_nice);
259 show_one(powersave_bias, powersave_bias);
260 
261 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
262 				   const char *buf, size_t count)
263 {
264 	unsigned int input;
265 	int ret;
266 	ret = sscanf(buf, "%u", &input);
267 	if (ret != 1)
268 		return -EINVAL;
269 	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
270 	return count;
271 }
272 
273 static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
274 				   const char *buf, size_t count)
275 {
276 	unsigned int input;
277 	int ret;
278 
279 	ret = sscanf(buf, "%u", &input);
280 	if (ret != 1)
281 		return -EINVAL;
282 	dbs_tuners_ins.io_is_busy = !!input;
283 	return count;
284 }
285 
286 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
287 				  const char *buf, size_t count)
288 {
289 	unsigned int input;
290 	int ret;
291 	ret = sscanf(buf, "%u", &input);
292 
293 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
294 			input < MIN_FREQUENCY_UP_THRESHOLD) {
295 		return -EINVAL;
296 	}
297 	dbs_tuners_ins.up_threshold = input;
298 	return count;
299 }
300 
301 static ssize_t store_sampling_down_factor(struct kobject *a,
302 			struct attribute *b, const char *buf, size_t count)
303 {
304 	unsigned int input, j;
305 	int ret;
306 	ret = sscanf(buf, "%u", &input);
307 
308 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
309 		return -EINVAL;
310 	dbs_tuners_ins.sampling_down_factor = input;
311 
312 	/* Reset down sampling multiplier in case it was active */
313 	for_each_online_cpu(j) {
314 		struct cpu_dbs_info_s *dbs_info;
315 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
316 		dbs_info->rate_mult = 1;
317 	}
318 	return count;
319 }
320 
321 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
322 				      const char *buf, size_t count)
323 {
324 	unsigned int input;
325 	int ret;
326 
327 	unsigned int j;
328 
329 	ret = sscanf(buf, "%u", &input);
330 	if (ret != 1)
331 		return -EINVAL;
332 
333 	if (input > 1)
334 		input = 1;
335 
336 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
337 		return count;
338 	}
339 	dbs_tuners_ins.ignore_nice = input;
340 
341 	/* we need to re-evaluate prev_cpu_idle */
342 	for_each_online_cpu(j) {
343 		struct cpu_dbs_info_s *dbs_info;
344 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
345 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
346 						&dbs_info->prev_cpu_wall);
347 		if (dbs_tuners_ins.ignore_nice)
348 			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
349 
350 	}
351 	return count;
352 }
353 
354 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
355 				    const char *buf, size_t count)
356 {
357 	unsigned int input;
358 	int ret;
359 	ret = sscanf(buf, "%u", &input);
360 
361 	if (ret != 1)
362 		return -EINVAL;
363 
364 	if (input > 1000)
365 		input = 1000;
366 
367 	dbs_tuners_ins.powersave_bias = input;
368 	ondemand_powersave_bias_init();
369 	return count;
370 }
371 
372 define_one_global_rw(sampling_rate);
373 define_one_global_rw(io_is_busy);
374 define_one_global_rw(up_threshold);
375 define_one_global_rw(sampling_down_factor);
376 define_one_global_rw(ignore_nice_load);
377 define_one_global_rw(powersave_bias);
378 
379 static struct attribute *dbs_attributes[] = {
380 	&sampling_rate_min.attr,
381 	&sampling_rate.attr,
382 	&up_threshold.attr,
383 	&sampling_down_factor.attr,
384 	&ignore_nice_load.attr,
385 	&powersave_bias.attr,
386 	&io_is_busy.attr,
387 	NULL
388 };
389 
390 static struct attribute_group dbs_attr_group = {
391 	.attrs = dbs_attributes,
392 	.name = "ondemand",
393 };
394 
395 /************************** sysfs end ************************/
396 
397 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
398 {
399 	if (dbs_tuners_ins.powersave_bias)
400 		freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
401 	else if (p->cur == p->max)
402 		return;
403 
404 	__cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
405 			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
406 }
407 
408 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
409 {
410 	unsigned int max_load_freq;
411 
412 	struct cpufreq_policy *policy;
413 	unsigned int j;
414 
415 	this_dbs_info->freq_lo = 0;
416 	policy = this_dbs_info->cur_policy;
417 
418 	/*
419 	 * Every sampling_rate, we check, if current idle time is less
420 	 * than 20% (default), then we try to increase frequency
421 	 * Every sampling_rate, we look for a the lowest
422 	 * frequency which can sustain the load while keeping idle time over
423 	 * 30%. If such a frequency exist, we try to decrease to this frequency.
424 	 *
425 	 * Any frequency increase takes it to the maximum frequency.
426 	 * Frequency reduction happens at minimum steps of
427 	 * 5% (default) of current frequency
428 	 */
429 
430 	/* Get Absolute Load - in terms of freq */
431 	max_load_freq = 0;
432 
433 	for_each_cpu(j, policy->cpus) {
434 		struct cpu_dbs_info_s *j_dbs_info;
435 		cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
436 		unsigned int idle_time, wall_time, iowait_time;
437 		unsigned int load, load_freq;
438 		int freq_avg;
439 
440 		j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
441 
442 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
443 		cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
444 
445 		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
446 				j_dbs_info->prev_cpu_wall);
447 		j_dbs_info->prev_cpu_wall = cur_wall_time;
448 
449 		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
450 				j_dbs_info->prev_cpu_idle);
451 		j_dbs_info->prev_cpu_idle = cur_idle_time;
452 
453 		iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
454 				j_dbs_info->prev_cpu_iowait);
455 		j_dbs_info->prev_cpu_iowait = cur_iowait_time;
456 
457 		if (dbs_tuners_ins.ignore_nice) {
458 			cputime64_t cur_nice;
459 			unsigned long cur_nice_jiffies;
460 
461 			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
462 					 j_dbs_info->prev_cpu_nice);
463 			/*
464 			 * Assumption: nice time between sampling periods will
465 			 * be less than 2^32 jiffies for 32 bit sys
466 			 */
467 			cur_nice_jiffies = (unsigned long)
468 					cputime64_to_jiffies64(cur_nice);
469 
470 			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
471 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
472 		}
473 
474 		/*
475 		 * For the purpose of ondemand, waiting for disk IO is an
476 		 * indication that you're performance critical, and not that
477 		 * the system is actually idle. So subtract the iowait time
478 		 * from the cpu idle time.
479 		 */
480 
481 		if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
482 			idle_time -= iowait_time;
483 
484 		if (unlikely(!wall_time || wall_time < idle_time))
485 			continue;
486 
487 		load = 100 * (wall_time - idle_time) / wall_time;
488 
489 		freq_avg = __cpufreq_driver_getavg(policy, j);
490 		if (freq_avg <= 0)
491 			freq_avg = policy->cur;
492 
493 		load_freq = load * freq_avg;
494 		if (load_freq > max_load_freq)
495 			max_load_freq = load_freq;
496 	}
497 
498 	/* Check for frequency increase */
499 	if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
500 		/* If switching to max speed, apply sampling_down_factor */
501 		if (policy->cur < policy->max)
502 			this_dbs_info->rate_mult =
503 				dbs_tuners_ins.sampling_down_factor;
504 		dbs_freq_increase(policy, policy->max);
505 		return;
506 	}
507 
508 	/* Check for frequency decrease */
509 	/* if we cannot reduce the frequency anymore, break out early */
510 	if (policy->cur == policy->min)
511 		return;
512 
513 	/*
514 	 * The optimal frequency is the frequency that is the lowest that
515 	 * can support the current CPU usage without triggering the up
516 	 * policy. To be safe, we focus 10 points under the threshold.
517 	 */
518 	if (max_load_freq <
519 	    (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
520 	     policy->cur) {
521 		unsigned int freq_next;
522 		freq_next = max_load_freq /
523 				(dbs_tuners_ins.up_threshold -
524 				 dbs_tuners_ins.down_differential);
525 
526 		/* No longer fully busy, reset rate_mult */
527 		this_dbs_info->rate_mult = 1;
528 
529 		if (freq_next < policy->min)
530 			freq_next = policy->min;
531 
532 		if (!dbs_tuners_ins.powersave_bias) {
533 			__cpufreq_driver_target(policy, freq_next,
534 					CPUFREQ_RELATION_L);
535 		} else {
536 			int freq = powersave_bias_target(policy, freq_next,
537 					CPUFREQ_RELATION_L);
538 			__cpufreq_driver_target(policy, freq,
539 				CPUFREQ_RELATION_L);
540 		}
541 	}
542 }
543 
544 static void do_dbs_timer(struct work_struct *work)
545 {
546 	struct cpu_dbs_info_s *dbs_info =
547 		container_of(work, struct cpu_dbs_info_s, work.work);
548 	unsigned int cpu = dbs_info->cpu;
549 	int sample_type = dbs_info->sample_type;
550 
551 	int delay;
552 
553 	mutex_lock(&dbs_info->timer_mutex);
554 
555 	/* Common NORMAL_SAMPLE setup */
556 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
557 	if (!dbs_tuners_ins.powersave_bias ||
558 	    sample_type == DBS_NORMAL_SAMPLE) {
559 		dbs_check_cpu(dbs_info);
560 		if (dbs_info->freq_lo) {
561 			/* Setup timer for SUB_SAMPLE */
562 			dbs_info->sample_type = DBS_SUB_SAMPLE;
563 			delay = dbs_info->freq_hi_jiffies;
564 		} else {
565 			/* We want all CPUs to do sampling nearly on
566 			 * same jiffy
567 			 */
568 			delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
569 				* dbs_info->rate_mult);
570 
571 			if (num_online_cpus() > 1)
572 				delay -= jiffies % delay;
573 		}
574 	} else {
575 		__cpufreq_driver_target(dbs_info->cur_policy,
576 			dbs_info->freq_lo, CPUFREQ_RELATION_H);
577 		delay = dbs_info->freq_lo_jiffies;
578 	}
579 	schedule_delayed_work_on(cpu, &dbs_info->work, delay);
580 	mutex_unlock(&dbs_info->timer_mutex);
581 }
582 
583 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
584 {
585 	/* We want all CPUs to do sampling nearly on same jiffy */
586 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
587 
588 	if (num_online_cpus() > 1)
589 		delay -= jiffies % delay;
590 
591 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
592 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
593 	schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
594 }
595 
596 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
597 {
598 	cancel_delayed_work_sync(&dbs_info->work);
599 }
600 
601 /*
602  * Not all CPUs want IO time to be accounted as busy; this dependson how
603  * efficient idling at a higher frequency/voltage is.
604  * Pavel Machek says this is not so for various generations of AMD and old
605  * Intel systems.
606  * Mike Chan (androidlcom) calis this is also not true for ARM.
607  * Because of this, whitelist specific known (series) of CPUs by default, and
608  * leave all others up to the user.
609  */
610 static int should_io_be_busy(void)
611 {
612 #if defined(CONFIG_X86)
613 	/*
614 	 * For Intel, Core 2 (model 15) andl later have an efficient idle.
615 	 */
616 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
617 	    boot_cpu_data.x86 == 6 &&
618 	    boot_cpu_data.x86_model >= 15)
619 		return 1;
620 #endif
621 	return 0;
622 }
623 
624 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
625 				   unsigned int event)
626 {
627 	unsigned int cpu = policy->cpu;
628 	struct cpu_dbs_info_s *this_dbs_info;
629 	unsigned int j;
630 	int rc;
631 
632 	this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
633 
634 	switch (event) {
635 	case CPUFREQ_GOV_START:
636 		if ((!cpu_online(cpu)) || (!policy->cur))
637 			return -EINVAL;
638 
639 		mutex_lock(&dbs_mutex);
640 
641 		dbs_enable++;
642 		for_each_cpu(j, policy->cpus) {
643 			struct cpu_dbs_info_s *j_dbs_info;
644 			j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
645 			j_dbs_info->cur_policy = policy;
646 
647 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
648 						&j_dbs_info->prev_cpu_wall);
649 			if (dbs_tuners_ins.ignore_nice) {
650 				j_dbs_info->prev_cpu_nice =
651 						kstat_cpu(j).cpustat.nice;
652 			}
653 		}
654 		this_dbs_info->cpu = cpu;
655 		this_dbs_info->rate_mult = 1;
656 		ondemand_powersave_bias_init_cpu(cpu);
657 		/*
658 		 * Start the timerschedule work, when this governor
659 		 * is used for first time
660 		 */
661 		if (dbs_enable == 1) {
662 			unsigned int latency;
663 
664 			rc = sysfs_create_group(cpufreq_global_kobject,
665 						&dbs_attr_group);
666 			if (rc) {
667 				mutex_unlock(&dbs_mutex);
668 				return rc;
669 			}
670 
671 			/* policy latency is in nS. Convert it to uS first */
672 			latency = policy->cpuinfo.transition_latency / 1000;
673 			if (latency == 0)
674 				latency = 1;
675 			/* Bring kernel and HW constraints together */
676 			min_sampling_rate = max(min_sampling_rate,
677 					MIN_LATENCY_MULTIPLIER * latency);
678 			dbs_tuners_ins.sampling_rate =
679 				max(min_sampling_rate,
680 				    latency * LATENCY_MULTIPLIER);
681 			dbs_tuners_ins.io_is_busy = should_io_be_busy();
682 		}
683 		mutex_unlock(&dbs_mutex);
684 
685 		mutex_init(&this_dbs_info->timer_mutex);
686 		dbs_timer_init(this_dbs_info);
687 		break;
688 
689 	case CPUFREQ_GOV_STOP:
690 		dbs_timer_exit(this_dbs_info);
691 
692 		mutex_lock(&dbs_mutex);
693 		mutex_destroy(&this_dbs_info->timer_mutex);
694 		dbs_enable--;
695 		mutex_unlock(&dbs_mutex);
696 		if (!dbs_enable)
697 			sysfs_remove_group(cpufreq_global_kobject,
698 					   &dbs_attr_group);
699 
700 		break;
701 
702 	case CPUFREQ_GOV_LIMITS:
703 		mutex_lock(&this_dbs_info->timer_mutex);
704 		if (policy->max < this_dbs_info->cur_policy->cur)
705 			__cpufreq_driver_target(this_dbs_info->cur_policy,
706 				policy->max, CPUFREQ_RELATION_H);
707 		else if (policy->min > this_dbs_info->cur_policy->cur)
708 			__cpufreq_driver_target(this_dbs_info->cur_policy,
709 				policy->min, CPUFREQ_RELATION_L);
710 		mutex_unlock(&this_dbs_info->timer_mutex);
711 		break;
712 	}
713 	return 0;
714 }
715 
716 static int __init cpufreq_gov_dbs_init(void)
717 {
718 	cputime64_t wall;
719 	u64 idle_time;
720 	int cpu = get_cpu();
721 
722 	idle_time = get_cpu_idle_time_us(cpu, &wall);
723 	put_cpu();
724 	if (idle_time != -1ULL) {
725 		/* Idle micro accounting is supported. Use finer thresholds */
726 		dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
727 		dbs_tuners_ins.down_differential =
728 					MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
729 		/*
730 		 * In nohz/micro accounting case we set the minimum frequency
731 		 * not depending on HZ, but fixed (very low). The deferred
732 		 * timer might skip some samples if idle/sleeping as needed.
733 		*/
734 		min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
735 	} else {
736 		/* For correct statistics, we need 10 ticks for each measure */
737 		min_sampling_rate =
738 			MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
739 	}
740 
741 	return cpufreq_register_governor(&cpufreq_gov_ondemand);
742 }
743 
744 static void __exit cpufreq_gov_dbs_exit(void)
745 {
746 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
747 }
748 
749 
750 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
751 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
752 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
753 	"Low Latency Frequency Transition capable processors");
754 MODULE_LICENSE("GPL");
755 
756 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
757 fs_initcall(cpufreq_gov_dbs_init);
758 #else
759 module_init(cpufreq_gov_dbs_init);
760 #endif
761 module_exit(cpufreq_gov_dbs_exit);
762