1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 
20 #include "cpufreq_ondemand.h"
21 
22 /* On-demand governor macros */
23 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
24 #define DEF_SAMPLING_DOWN_FACTOR		(1)
25 #define MAX_SAMPLING_DOWN_FACTOR		(100000)
26 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
27 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
28 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
29 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
30 
31 static struct od_ops od_ops;
32 
33 static unsigned int default_powersave_bias;
34 
35 /*
36  * Not all CPUs want IO time to be accounted as busy; this depends on how
37  * efficient idling at a higher frequency/voltage is.
38  * Pavel Machek says this is not so for various generations of AMD and old
39  * Intel systems.
40  * Mike Chan (android.com) claims this is also not true for ARM.
41  * Because of this, whitelist specific known (series) of CPUs by default, and
42  * leave all others up to the user.
43  */
44 static int should_io_be_busy(void)
45 {
46 #if defined(CONFIG_X86)
47 	/*
48 	 * For Intel, Core 2 (model 15) and later have an efficient idle.
49 	 */
50 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
51 			boot_cpu_data.x86 == 6 &&
52 			boot_cpu_data.x86_model >= 15)
53 		return 1;
54 #endif
55 	return 0;
56 }
57 
58 /*
59  * Find right freq to be set now with powersave_bias on.
60  * Returns the freq_hi to be used right now and will set freq_hi_delay_us,
61  * freq_lo, and freq_lo_delay_us in percpu area for averaging freqs.
62  */
63 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
64 		unsigned int freq_next, unsigned int relation)
65 {
66 	unsigned int freq_req, freq_reduc, freq_avg;
67 	unsigned int freq_hi, freq_lo;
68 	unsigned int index;
69 	unsigned int delay_hi_us;
70 	struct policy_dbs_info *policy_dbs = policy->governor_data;
71 	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
72 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
73 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
74 	struct cpufreq_frequency_table *freq_table = policy->freq_table;
75 
76 	if (!freq_table) {
77 		dbs_info->freq_lo = 0;
78 		dbs_info->freq_lo_delay_us = 0;
79 		return freq_next;
80 	}
81 
82 	index = cpufreq_frequency_table_target(policy, freq_next, relation);
83 	freq_req = freq_table[index].frequency;
84 	freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
85 	freq_avg = freq_req - freq_reduc;
86 
87 	/* Find freq bounds for freq_avg in freq_table */
88 	index = cpufreq_table_find_index_h(policy, freq_avg);
89 	freq_lo = freq_table[index].frequency;
90 	index = cpufreq_table_find_index_l(policy, freq_avg);
91 	freq_hi = freq_table[index].frequency;
92 
93 	/* Find out how long we have to be in hi and lo freqs */
94 	if (freq_hi == freq_lo) {
95 		dbs_info->freq_lo = 0;
96 		dbs_info->freq_lo_delay_us = 0;
97 		return freq_lo;
98 	}
99 	delay_hi_us = (freq_avg - freq_lo) * dbs_data->sampling_rate;
100 	delay_hi_us += (freq_hi - freq_lo) / 2;
101 	delay_hi_us /= freq_hi - freq_lo;
102 	dbs_info->freq_hi_delay_us = delay_hi_us;
103 	dbs_info->freq_lo = freq_lo;
104 	dbs_info->freq_lo_delay_us = dbs_data->sampling_rate - delay_hi_us;
105 	return freq_hi;
106 }
107 
108 static void ondemand_powersave_bias_init(struct cpufreq_policy *policy)
109 {
110 	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
111 
112 	dbs_info->freq_lo = 0;
113 }
114 
115 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
116 {
117 	struct policy_dbs_info *policy_dbs = policy->governor_data;
118 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
119 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
120 
121 	if (od_tuners->powersave_bias)
122 		freq = od_ops.powersave_bias_target(policy, freq,
123 				CPUFREQ_RELATION_H);
124 	else if (policy->cur == policy->max)
125 		return;
126 
127 	__cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
128 			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
129 }
130 
131 /*
132  * Every sampling_rate, we check, if current idle time is less than 20%
133  * (default), then we try to increase frequency. Else, we adjust the frequency
134  * proportional to load.
135  */
136 static void od_update(struct cpufreq_policy *policy)
137 {
138 	struct policy_dbs_info *policy_dbs = policy->governor_data;
139 	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
140 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
141 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
142 	unsigned int load = dbs_update(policy);
143 
144 	dbs_info->freq_lo = 0;
145 
146 	/* Check for frequency increase */
147 	if (load > dbs_data->up_threshold) {
148 		/* If switching to max speed, apply sampling_down_factor */
149 		if (policy->cur < policy->max)
150 			policy_dbs->rate_mult = dbs_data->sampling_down_factor;
151 		dbs_freq_increase(policy, policy->max);
152 	} else {
153 		/* Calculate the next frequency proportional to load */
154 		unsigned int freq_next, min_f, max_f;
155 
156 		min_f = policy->cpuinfo.min_freq;
157 		max_f = policy->cpuinfo.max_freq;
158 		freq_next = min_f + load * (max_f - min_f) / 100;
159 
160 		/* No longer fully busy, reset rate_mult */
161 		policy_dbs->rate_mult = 1;
162 
163 		if (od_tuners->powersave_bias)
164 			freq_next = od_ops.powersave_bias_target(policy,
165 								 freq_next,
166 								 CPUFREQ_RELATION_L);
167 
168 		__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
169 	}
170 }
171 
172 static unsigned int od_dbs_update(struct cpufreq_policy *policy)
173 {
174 	struct policy_dbs_info *policy_dbs = policy->governor_data;
175 	struct dbs_data *dbs_data = policy_dbs->dbs_data;
176 	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
177 	int sample_type = dbs_info->sample_type;
178 
179 	/* Common NORMAL_SAMPLE setup */
180 	dbs_info->sample_type = OD_NORMAL_SAMPLE;
181 	/*
182 	 * OD_SUB_SAMPLE doesn't make sense if sample_delay_ns is 0, so ignore
183 	 * it then.
184 	 */
185 	if (sample_type == OD_SUB_SAMPLE && policy_dbs->sample_delay_ns > 0) {
186 		__cpufreq_driver_target(policy, dbs_info->freq_lo,
187 					CPUFREQ_RELATION_H);
188 		return dbs_info->freq_lo_delay_us;
189 	}
190 
191 	od_update(policy);
192 
193 	if (dbs_info->freq_lo) {
194 		/* Setup SUB_SAMPLE */
195 		dbs_info->sample_type = OD_SUB_SAMPLE;
196 		return dbs_info->freq_hi_delay_us;
197 	}
198 
199 	return dbs_data->sampling_rate * policy_dbs->rate_mult;
200 }
201 
202 /************************** sysfs interface ************************/
203 static struct dbs_governor od_dbs_gov;
204 
205 static ssize_t store_io_is_busy(struct gov_attr_set *attr_set, const char *buf,
206 				size_t count)
207 {
208 	struct dbs_data *dbs_data = to_dbs_data(attr_set);
209 	unsigned int input;
210 	int ret;
211 
212 	ret = sscanf(buf, "%u", &input);
213 	if (ret != 1)
214 		return -EINVAL;
215 	dbs_data->io_is_busy = !!input;
216 
217 	/* we need to re-evaluate prev_cpu_idle */
218 	gov_update_cpu_data(dbs_data);
219 
220 	return count;
221 }
222 
223 static ssize_t store_up_threshold(struct gov_attr_set *attr_set,
224 				  const char *buf, size_t count)
225 {
226 	struct dbs_data *dbs_data = to_dbs_data(attr_set);
227 	unsigned int input;
228 	int ret;
229 	ret = sscanf(buf, "%u", &input);
230 
231 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
232 			input < MIN_FREQUENCY_UP_THRESHOLD) {
233 		return -EINVAL;
234 	}
235 
236 	dbs_data->up_threshold = input;
237 	return count;
238 }
239 
240 static ssize_t store_sampling_down_factor(struct gov_attr_set *attr_set,
241 					  const char *buf, size_t count)
242 {
243 	struct dbs_data *dbs_data = to_dbs_data(attr_set);
244 	struct policy_dbs_info *policy_dbs;
245 	unsigned int input;
246 	int ret;
247 	ret = sscanf(buf, "%u", &input);
248 
249 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
250 		return -EINVAL;
251 
252 	dbs_data->sampling_down_factor = input;
253 
254 	/* Reset down sampling multiplier in case it was active */
255 	list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
256 		/*
257 		 * Doing this without locking might lead to using different
258 		 * rate_mult values in od_update() and od_dbs_update().
259 		 */
260 		mutex_lock(&policy_dbs->update_mutex);
261 		policy_dbs->rate_mult = 1;
262 		mutex_unlock(&policy_dbs->update_mutex);
263 	}
264 
265 	return count;
266 }
267 
268 static ssize_t store_ignore_nice_load(struct gov_attr_set *attr_set,
269 				      const char *buf, size_t count)
270 {
271 	struct dbs_data *dbs_data = to_dbs_data(attr_set);
272 	unsigned int input;
273 	int ret;
274 
275 	ret = sscanf(buf, "%u", &input);
276 	if (ret != 1)
277 		return -EINVAL;
278 
279 	if (input > 1)
280 		input = 1;
281 
282 	if (input == dbs_data->ignore_nice_load) { /* nothing to do */
283 		return count;
284 	}
285 	dbs_data->ignore_nice_load = input;
286 
287 	/* we need to re-evaluate prev_cpu_idle */
288 	gov_update_cpu_data(dbs_data);
289 
290 	return count;
291 }
292 
293 static ssize_t store_powersave_bias(struct gov_attr_set *attr_set,
294 				    const char *buf, size_t count)
295 {
296 	struct dbs_data *dbs_data = to_dbs_data(attr_set);
297 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
298 	struct policy_dbs_info *policy_dbs;
299 	unsigned int input;
300 	int ret;
301 	ret = sscanf(buf, "%u", &input);
302 
303 	if (ret != 1)
304 		return -EINVAL;
305 
306 	if (input > 1000)
307 		input = 1000;
308 
309 	od_tuners->powersave_bias = input;
310 
311 	list_for_each_entry(policy_dbs, &attr_set->policy_list, list)
312 		ondemand_powersave_bias_init(policy_dbs->policy);
313 
314 	return count;
315 }
316 
317 gov_show_one_common(sampling_rate);
318 gov_show_one_common(up_threshold);
319 gov_show_one_common(sampling_down_factor);
320 gov_show_one_common(ignore_nice_load);
321 gov_show_one_common(min_sampling_rate);
322 gov_show_one_common(io_is_busy);
323 gov_show_one(od, powersave_bias);
324 
325 gov_attr_rw(sampling_rate);
326 gov_attr_rw(io_is_busy);
327 gov_attr_rw(up_threshold);
328 gov_attr_rw(sampling_down_factor);
329 gov_attr_rw(ignore_nice_load);
330 gov_attr_rw(powersave_bias);
331 gov_attr_ro(min_sampling_rate);
332 
333 static struct attribute *od_attributes[] = {
334 	&min_sampling_rate.attr,
335 	&sampling_rate.attr,
336 	&up_threshold.attr,
337 	&sampling_down_factor.attr,
338 	&ignore_nice_load.attr,
339 	&powersave_bias.attr,
340 	&io_is_busy.attr,
341 	NULL
342 };
343 
344 /************************** sysfs end ************************/
345 
346 static struct policy_dbs_info *od_alloc(void)
347 {
348 	struct od_policy_dbs_info *dbs_info;
349 
350 	dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
351 	return dbs_info ? &dbs_info->policy_dbs : NULL;
352 }
353 
354 static void od_free(struct policy_dbs_info *policy_dbs)
355 {
356 	kfree(to_dbs_info(policy_dbs));
357 }
358 
359 static int od_init(struct dbs_data *dbs_data)
360 {
361 	struct od_dbs_tuners *tuners;
362 	u64 idle_time;
363 	int cpu;
364 
365 	tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
366 	if (!tuners)
367 		return -ENOMEM;
368 
369 	cpu = get_cpu();
370 	idle_time = get_cpu_idle_time_us(cpu, NULL);
371 	put_cpu();
372 	if (idle_time != -1ULL) {
373 		/* Idle micro accounting is supported. Use finer thresholds */
374 		dbs_data->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
375 		/*
376 		 * In nohz/micro accounting case we set the minimum frequency
377 		 * not depending on HZ, but fixed (very low).
378 		*/
379 		dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
380 	} else {
381 		dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
382 
383 		/* For correct statistics, we need 10 ticks for each measure */
384 		dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
385 			jiffies_to_usecs(10);
386 	}
387 
388 	dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
389 	dbs_data->ignore_nice_load = 0;
390 	tuners->powersave_bias = default_powersave_bias;
391 	dbs_data->io_is_busy = should_io_be_busy();
392 
393 	dbs_data->tuners = tuners;
394 	return 0;
395 }
396 
397 static void od_exit(struct dbs_data *dbs_data)
398 {
399 	kfree(dbs_data->tuners);
400 }
401 
402 static void od_start(struct cpufreq_policy *policy)
403 {
404 	struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
405 
406 	dbs_info->sample_type = OD_NORMAL_SAMPLE;
407 	ondemand_powersave_bias_init(policy);
408 }
409 
410 static struct od_ops od_ops = {
411 	.powersave_bias_target = generic_powersave_bias_target,
412 };
413 
414 static struct dbs_governor od_dbs_gov = {
415 	.gov = CPUFREQ_DBS_GOVERNOR_INITIALIZER("ondemand"),
416 	.kobj_type = { .default_attrs = od_attributes },
417 	.gov_dbs_update = od_dbs_update,
418 	.alloc = od_alloc,
419 	.free = od_free,
420 	.init = od_init,
421 	.exit = od_exit,
422 	.start = od_start,
423 };
424 
425 #define CPU_FREQ_GOV_ONDEMAND	(&od_dbs_gov.gov)
426 
427 static void od_set_powersave_bias(unsigned int powersave_bias)
428 {
429 	unsigned int cpu;
430 	cpumask_t done;
431 
432 	default_powersave_bias = powersave_bias;
433 	cpumask_clear(&done);
434 
435 	get_online_cpus();
436 	for_each_online_cpu(cpu) {
437 		struct cpufreq_policy *policy;
438 		struct policy_dbs_info *policy_dbs;
439 		struct dbs_data *dbs_data;
440 		struct od_dbs_tuners *od_tuners;
441 
442 		if (cpumask_test_cpu(cpu, &done))
443 			continue;
444 
445 		policy = cpufreq_cpu_get_raw(cpu);
446 		if (!policy || policy->governor != CPU_FREQ_GOV_ONDEMAND)
447 			continue;
448 
449 		policy_dbs = policy->governor_data;
450 		if (!policy_dbs)
451 			continue;
452 
453 		cpumask_or(&done, &done, policy->cpus);
454 
455 		dbs_data = policy_dbs->dbs_data;
456 		od_tuners = dbs_data->tuners;
457 		od_tuners->powersave_bias = default_powersave_bias;
458 	}
459 	put_online_cpus();
460 }
461 
462 void od_register_powersave_bias_handler(unsigned int (*f)
463 		(struct cpufreq_policy *, unsigned int, unsigned int),
464 		unsigned int powersave_bias)
465 {
466 	od_ops.powersave_bias_target = f;
467 	od_set_powersave_bias(powersave_bias);
468 }
469 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
470 
471 void od_unregister_powersave_bias_handler(void)
472 {
473 	od_ops.powersave_bias_target = generic_powersave_bias_target;
474 	od_set_powersave_bias(0);
475 }
476 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
477 
478 static int __init cpufreq_gov_dbs_init(void)
479 {
480 	return cpufreq_register_governor(CPU_FREQ_GOV_ONDEMAND);
481 }
482 
483 static void __exit cpufreq_gov_dbs_exit(void)
484 {
485 	cpufreq_unregister_governor(CPU_FREQ_GOV_ONDEMAND);
486 }
487 
488 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
489 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
490 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
491 	"Low Latency Frequency Transition capable processors");
492 MODULE_LICENSE("GPL");
493 
494 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
495 struct cpufreq_governor *cpufreq_default_governor(void)
496 {
497 	return CPU_FREQ_GOV_ONDEMAND;
498 }
499 
500 fs_initcall(cpufreq_gov_dbs_init);
501 #else
502 module_init(cpufreq_gov_dbs_init);
503 #endif
504 module_exit(cpufreq_gov_dbs_exit);
505