1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 
22 /*
23  * dbs is used in this file as a shortform for demandbased switching
24  * It helps to keep variable names smaller, simpler
25  */
26 
27 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
28 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
29 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
30 
31 /*
32  * The polling frequency of this governor depends on the capability of
33  * the processor. Default polling frequency is 1000 times the transition
34  * latency of the processor. The governor will work on any processor with
35  * transition latency <= 10mS, using appropriate sampling
36  * rate.
37  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38  * this governor will not work.
39  * All times here are in uS.
40  */
41 static unsigned int def_sampling_rate;
42 #define MIN_SAMPLING_RATE_RATIO			(2)
43 /* for correct statistics, we need at least 10 ticks between each measure */
44 #define MIN_STAT_SAMPLING_RATE 			\
45 			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
46 #define MIN_SAMPLING_RATE			\
47 			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
48 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
49 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
50 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
51 
52 static void do_dbs_timer(struct work_struct *work);
53 
54 /* Sampling types */
55 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
56 
57 struct cpu_dbs_info_s {
58 	cputime64_t prev_cpu_idle;
59 	cputime64_t prev_cpu_wall;
60 	struct cpufreq_policy *cur_policy;
61  	struct delayed_work work;
62 	struct cpufreq_frequency_table *freq_table;
63 	unsigned int freq_lo;
64 	unsigned int freq_lo_jiffies;
65 	unsigned int freq_hi_jiffies;
66 	int cpu;
67 	unsigned int enable:1,
68 	             sample_type:1;
69 };
70 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
71 
72 static unsigned int dbs_enable;	/* number of CPUs using this policy */
73 
74 /*
75  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
76  * lock and dbs_mutex. cpu_hotplug lock should always be held before
77  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
78  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
79  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
80  * is recursive for the same process. -Venki
81  */
82 static DEFINE_MUTEX(dbs_mutex);
83 
84 static struct workqueue_struct	*kondemand_wq;
85 
86 static struct dbs_tuners {
87 	unsigned int sampling_rate;
88 	unsigned int up_threshold;
89 	unsigned int ignore_nice;
90 	unsigned int powersave_bias;
91 } dbs_tuners_ins = {
92 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
93 	.ignore_nice = 0,
94 	.powersave_bias = 0,
95 };
96 
97 static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
98 {
99 	cputime64_t idle_time;
100 	cputime64_t cur_jiffies;
101 	cputime64_t busy_time;
102 
103 	cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
104 	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
105 			kstat_cpu(cpu).cpustat.system);
106 
107 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
108 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
109 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
110 
111 	if (!dbs_tuners_ins.ignore_nice) {
112 		busy_time = cputime64_add(busy_time,
113 				kstat_cpu(cpu).cpustat.nice);
114 	}
115 
116 	idle_time = cputime64_sub(cur_jiffies, busy_time);
117 	return idle_time;
118 }
119 
120 /*
121  * Find right freq to be set now with powersave_bias on.
122  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
123  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
124  */
125 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
126 					  unsigned int freq_next,
127 					  unsigned int relation)
128 {
129 	unsigned int freq_req, freq_reduc, freq_avg;
130 	unsigned int freq_hi, freq_lo;
131 	unsigned int index = 0;
132 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
133 	struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
134 
135 	if (!dbs_info->freq_table) {
136 		dbs_info->freq_lo = 0;
137 		dbs_info->freq_lo_jiffies = 0;
138 		return freq_next;
139 	}
140 
141 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
142 			relation, &index);
143 	freq_req = dbs_info->freq_table[index].frequency;
144 	freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
145 	freq_avg = freq_req - freq_reduc;
146 
147 	/* Find freq bounds for freq_avg in freq_table */
148 	index = 0;
149 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
150 			CPUFREQ_RELATION_H, &index);
151 	freq_lo = dbs_info->freq_table[index].frequency;
152 	index = 0;
153 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
154 			CPUFREQ_RELATION_L, &index);
155 	freq_hi = dbs_info->freq_table[index].frequency;
156 
157 	/* Find out how long we have to be in hi and lo freqs */
158 	if (freq_hi == freq_lo) {
159 		dbs_info->freq_lo = 0;
160 		dbs_info->freq_lo_jiffies = 0;
161 		return freq_lo;
162 	}
163 	jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
164 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
165 	jiffies_hi += ((freq_hi - freq_lo) / 2);
166 	jiffies_hi /= (freq_hi - freq_lo);
167 	jiffies_lo = jiffies_total - jiffies_hi;
168 	dbs_info->freq_lo = freq_lo;
169 	dbs_info->freq_lo_jiffies = jiffies_lo;
170 	dbs_info->freq_hi_jiffies = jiffies_hi;
171 	return freq_hi;
172 }
173 
174 static void ondemand_powersave_bias_init(void)
175 {
176 	int i;
177 	for_each_online_cpu(i) {
178 		struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
179 		dbs_info->freq_table = cpufreq_frequency_get_table(i);
180 		dbs_info->freq_lo = 0;
181 	}
182 }
183 
184 /************************** sysfs interface ************************/
185 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
186 {
187 	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
188 }
189 
190 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
191 {
192 	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
193 }
194 
195 #define define_one_ro(_name)		\
196 static struct freq_attr _name =		\
197 __ATTR(_name, 0444, show_##_name, NULL)
198 
199 define_one_ro(sampling_rate_max);
200 define_one_ro(sampling_rate_min);
201 
202 /* cpufreq_ondemand Governor Tunables */
203 #define show_one(file_name, object)					\
204 static ssize_t show_##file_name						\
205 (struct cpufreq_policy *unused, char *buf)				\
206 {									\
207 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
208 }
209 show_one(sampling_rate, sampling_rate);
210 show_one(up_threshold, up_threshold);
211 show_one(ignore_nice_load, ignore_nice);
212 show_one(powersave_bias, powersave_bias);
213 
214 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
215 		const char *buf, size_t count)
216 {
217 	unsigned int input;
218 	int ret;
219 	ret = sscanf(buf, "%u", &input);
220 
221 	mutex_lock(&dbs_mutex);
222 	if (ret != 1 || input > MAX_SAMPLING_RATE
223 		     || input < MIN_SAMPLING_RATE) {
224 		mutex_unlock(&dbs_mutex);
225 		return -EINVAL;
226 	}
227 
228 	dbs_tuners_ins.sampling_rate = input;
229 	mutex_unlock(&dbs_mutex);
230 
231 	return count;
232 }
233 
234 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
235 		const char *buf, size_t count)
236 {
237 	unsigned int input;
238 	int ret;
239 	ret = sscanf(buf, "%u", &input);
240 
241 	mutex_lock(&dbs_mutex);
242 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
243 			input < MIN_FREQUENCY_UP_THRESHOLD) {
244 		mutex_unlock(&dbs_mutex);
245 		return -EINVAL;
246 	}
247 
248 	dbs_tuners_ins.up_threshold = input;
249 	mutex_unlock(&dbs_mutex);
250 
251 	return count;
252 }
253 
254 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
255 		const char *buf, size_t count)
256 {
257 	unsigned int input;
258 	int ret;
259 
260 	unsigned int j;
261 
262 	ret = sscanf(buf, "%u", &input);
263 	if ( ret != 1 )
264 		return -EINVAL;
265 
266 	if ( input > 1 )
267 		input = 1;
268 
269 	mutex_lock(&dbs_mutex);
270 	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
271 		mutex_unlock(&dbs_mutex);
272 		return count;
273 	}
274 	dbs_tuners_ins.ignore_nice = input;
275 
276 	/* we need to re-evaluate prev_cpu_idle */
277 	for_each_online_cpu(j) {
278 		struct cpu_dbs_info_s *dbs_info;
279 		dbs_info = &per_cpu(cpu_dbs_info, j);
280 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
281 		dbs_info->prev_cpu_wall = get_jiffies_64();
282 	}
283 	mutex_unlock(&dbs_mutex);
284 
285 	return count;
286 }
287 
288 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
289 		const char *buf, size_t count)
290 {
291 	unsigned int input;
292 	int ret;
293 	ret = sscanf(buf, "%u", &input);
294 
295 	if (ret != 1)
296 		return -EINVAL;
297 
298 	if (input > 1000)
299 		input = 1000;
300 
301 	mutex_lock(&dbs_mutex);
302 	dbs_tuners_ins.powersave_bias = input;
303 	ondemand_powersave_bias_init();
304 	mutex_unlock(&dbs_mutex);
305 
306 	return count;
307 }
308 
309 #define define_one_rw(_name) \
310 static struct freq_attr _name = \
311 __ATTR(_name, 0644, show_##_name, store_##_name)
312 
313 define_one_rw(sampling_rate);
314 define_one_rw(up_threshold);
315 define_one_rw(ignore_nice_load);
316 define_one_rw(powersave_bias);
317 
318 static struct attribute * dbs_attributes[] = {
319 	&sampling_rate_max.attr,
320 	&sampling_rate_min.attr,
321 	&sampling_rate.attr,
322 	&up_threshold.attr,
323 	&ignore_nice_load.attr,
324 	&powersave_bias.attr,
325 	NULL
326 };
327 
328 static struct attribute_group dbs_attr_group = {
329 	.attrs = dbs_attributes,
330 	.name = "ondemand",
331 };
332 
333 /************************** sysfs end ************************/
334 
335 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
336 {
337 	unsigned int idle_ticks, total_ticks;
338 	unsigned int load = 0;
339 	cputime64_t cur_jiffies;
340 
341 	struct cpufreq_policy *policy;
342 	unsigned int j;
343 
344 	if (!this_dbs_info->enable)
345 		return;
346 
347 	this_dbs_info->freq_lo = 0;
348 	policy = this_dbs_info->cur_policy;
349 	cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
350 	total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
351 			this_dbs_info->prev_cpu_wall);
352 	this_dbs_info->prev_cpu_wall = get_jiffies_64();
353 
354 	if (!total_ticks)
355 		return;
356 	/*
357 	 * Every sampling_rate, we check, if current idle time is less
358 	 * than 20% (default), then we try to increase frequency
359 	 * Every sampling_rate, we look for a the lowest
360 	 * frequency which can sustain the load while keeping idle time over
361 	 * 30%. If such a frequency exist, we try to decrease to this frequency.
362 	 *
363 	 * Any frequency increase takes it to the maximum frequency.
364 	 * Frequency reduction happens at minimum steps of
365 	 * 5% (default) of current frequency
366 	 */
367 
368 	/* Get Idle Time */
369 	idle_ticks = UINT_MAX;
370 	for_each_cpu_mask(j, policy->cpus) {
371 		cputime64_t total_idle_ticks;
372 		unsigned int tmp_idle_ticks;
373 		struct cpu_dbs_info_s *j_dbs_info;
374 
375 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
376 		total_idle_ticks = get_cpu_idle_time(j);
377 		tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
378 				j_dbs_info->prev_cpu_idle);
379 		j_dbs_info->prev_cpu_idle = total_idle_ticks;
380 
381 		if (tmp_idle_ticks < idle_ticks)
382 			idle_ticks = tmp_idle_ticks;
383 	}
384 	if (likely(total_ticks > idle_ticks))
385 		load = (100 * (total_ticks - idle_ticks)) / total_ticks;
386 
387 	/* Check for frequency increase */
388 	if (load > dbs_tuners_ins.up_threshold) {
389 		/* if we are already at full speed then break out early */
390 		if (!dbs_tuners_ins.powersave_bias) {
391 			if (policy->cur == policy->max)
392 				return;
393 
394 			__cpufreq_driver_target(policy, policy->max,
395 				CPUFREQ_RELATION_H);
396 		} else {
397 			int freq = powersave_bias_target(policy, policy->max,
398 					CPUFREQ_RELATION_H);
399 			__cpufreq_driver_target(policy, freq,
400 				CPUFREQ_RELATION_L);
401 		}
402 		return;
403 	}
404 
405 	/* Check for frequency decrease */
406 	/* if we cannot reduce the frequency anymore, break out early */
407 	if (policy->cur == policy->min)
408 		return;
409 
410 	/*
411 	 * The optimal frequency is the frequency that is the lowest that
412 	 * can support the current CPU usage without triggering the up
413 	 * policy. To be safe, we focus 10 points under the threshold.
414 	 */
415 	if (load < (dbs_tuners_ins.up_threshold - 10)) {
416 		unsigned int freq_next, freq_cur;
417 
418 		freq_cur = __cpufreq_driver_getavg(policy);
419 		if (!freq_cur)
420 			freq_cur = policy->cur;
421 
422 		freq_next = (freq_cur * load) /
423 			(dbs_tuners_ins.up_threshold - 10);
424 
425 		if (!dbs_tuners_ins.powersave_bias) {
426 			__cpufreq_driver_target(policy, freq_next,
427 					CPUFREQ_RELATION_L);
428 		} else {
429 			int freq = powersave_bias_target(policy, freq_next,
430 					CPUFREQ_RELATION_L);
431 			__cpufreq_driver_target(policy, freq,
432 				CPUFREQ_RELATION_L);
433 		}
434 	}
435 }
436 
437 static void do_dbs_timer(struct work_struct *work)
438 {
439 	struct cpu_dbs_info_s *dbs_info =
440 		container_of(work, struct cpu_dbs_info_s, work.work);
441 	unsigned int cpu = dbs_info->cpu;
442 	int sample_type = dbs_info->sample_type;
443 
444 	/* We want all CPUs to do sampling nearly on same jiffy */
445 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
446 
447 	delay -= jiffies % delay;
448 
449 	if (lock_policy_rwsem_write(cpu) < 0)
450 		return;
451 
452 	if (!dbs_info->enable) {
453 		unlock_policy_rwsem_write(cpu);
454 		return;
455 	}
456 
457 	/* Common NORMAL_SAMPLE setup */
458 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
459 	if (!dbs_tuners_ins.powersave_bias ||
460 	    sample_type == DBS_NORMAL_SAMPLE) {
461 		dbs_check_cpu(dbs_info);
462 		if (dbs_info->freq_lo) {
463 			/* Setup timer for SUB_SAMPLE */
464 			dbs_info->sample_type = DBS_SUB_SAMPLE;
465 			delay = dbs_info->freq_hi_jiffies;
466 		}
467 	} else {
468 		__cpufreq_driver_target(dbs_info->cur_policy,
469 	                        	dbs_info->freq_lo,
470 	                        	CPUFREQ_RELATION_H);
471 	}
472 	queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
473 	unlock_policy_rwsem_write(cpu);
474 }
475 
476 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
477 {
478 	/* We want all CPUs to do sampling nearly on same jiffy */
479 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
480 	delay -= jiffies % delay;
481 
482 	dbs_info->enable = 1;
483 	ondemand_powersave_bias_init();
484 	dbs_info->sample_type = DBS_NORMAL_SAMPLE;
485 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
486 	queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
487 	                      delay);
488 }
489 
490 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
491 {
492 	dbs_info->enable = 0;
493 	cancel_delayed_work(&dbs_info->work);
494 }
495 
496 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
497 				   unsigned int event)
498 {
499 	unsigned int cpu = policy->cpu;
500 	struct cpu_dbs_info_s *this_dbs_info;
501 	unsigned int j;
502 	int rc;
503 
504 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
505 
506 	switch (event) {
507 	case CPUFREQ_GOV_START:
508 		if ((!cpu_online(cpu)) || (!policy->cur))
509 			return -EINVAL;
510 
511 		if (this_dbs_info->enable) /* Already enabled */
512 			break;
513 
514 		mutex_lock(&dbs_mutex);
515 		dbs_enable++;
516 
517 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
518 		if (rc) {
519 			dbs_enable--;
520 			mutex_unlock(&dbs_mutex);
521 			return rc;
522 		}
523 
524 		for_each_cpu_mask(j, policy->cpus) {
525 			struct cpu_dbs_info_s *j_dbs_info;
526 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
527 			j_dbs_info->cur_policy = policy;
528 
529 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
530 			j_dbs_info->prev_cpu_wall = get_jiffies_64();
531 		}
532 		this_dbs_info->cpu = cpu;
533 		/*
534 		 * Start the timerschedule work, when this governor
535 		 * is used for first time
536 		 */
537 		if (dbs_enable == 1) {
538 			unsigned int latency;
539 			/* policy latency is in nS. Convert it to uS first */
540 			latency = policy->cpuinfo.transition_latency / 1000;
541 			if (latency == 0)
542 				latency = 1;
543 
544 			def_sampling_rate = latency *
545 					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
546 
547 			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
548 				def_sampling_rate = MIN_STAT_SAMPLING_RATE;
549 
550 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
551 		}
552 		dbs_timer_init(this_dbs_info);
553 
554 		mutex_unlock(&dbs_mutex);
555 		break;
556 
557 	case CPUFREQ_GOV_STOP:
558 		mutex_lock(&dbs_mutex);
559 		dbs_timer_exit(this_dbs_info);
560 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
561 		dbs_enable--;
562 		mutex_unlock(&dbs_mutex);
563 
564 		break;
565 
566 	case CPUFREQ_GOV_LIMITS:
567 		mutex_lock(&dbs_mutex);
568 		if (policy->max < this_dbs_info->cur_policy->cur)
569 			__cpufreq_driver_target(this_dbs_info->cur_policy,
570 			                        policy->max,
571 			                        CPUFREQ_RELATION_H);
572 		else if (policy->min > this_dbs_info->cur_policy->cur)
573 			__cpufreq_driver_target(this_dbs_info->cur_policy,
574 			                        policy->min,
575 			                        CPUFREQ_RELATION_L);
576 		mutex_unlock(&dbs_mutex);
577 		break;
578 	}
579 	return 0;
580 }
581 
582 struct cpufreq_governor cpufreq_gov_ondemand = {
583 	.name			= "ondemand",
584 	.governor		= cpufreq_governor_dbs,
585 	.max_transition_latency = TRANSITION_LATENCY_LIMIT,
586 	.owner			= THIS_MODULE,
587 };
588 EXPORT_SYMBOL(cpufreq_gov_ondemand);
589 
590 static int __init cpufreq_gov_dbs_init(void)
591 {
592 	kondemand_wq = create_workqueue("kondemand");
593 	if (!kondemand_wq) {
594 		printk(KERN_ERR "Creation of kondemand failed\n");
595 		return -EFAULT;
596 	}
597 	return cpufreq_register_governor(&cpufreq_gov_ondemand);
598 }
599 
600 static void __exit cpufreq_gov_dbs_exit(void)
601 {
602 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
603 	destroy_workqueue(kondemand_wq);
604 }
605 
606 
607 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
608 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
609 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
610                    "Low Latency Frequency Transition capable processors");
611 MODULE_LICENSE("GPL");
612 
613 module_init(cpufreq_gov_dbs_init);
614 module_exit(cpufreq_gov_dbs_exit);
615 
616