1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 #include "cpufreq_governor.h"
20 
21 /* On-demand governor macros */
22 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
23 #define DEF_SAMPLING_DOWN_FACTOR		(1)
24 #define MAX_SAMPLING_DOWN_FACTOR		(100000)
25 #define MICRO_FREQUENCY_UP_THRESHOLD		(95)
26 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE		(10000)
27 #define MIN_FREQUENCY_UP_THRESHOLD		(11)
28 #define MAX_FREQUENCY_UP_THRESHOLD		(100)
29 
30 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
31 
32 static struct od_ops od_ops;
33 
34 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
35 static struct cpufreq_governor cpufreq_gov_ondemand;
36 #endif
37 
38 static unsigned int default_powersave_bias;
39 
40 static void ondemand_powersave_bias_init_cpu(int cpu)
41 {
42 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
43 
44 	dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
45 	dbs_info->freq_lo = 0;
46 }
47 
48 /*
49  * Not all CPUs want IO time to be accounted as busy; this depends on how
50  * efficient idling at a higher frequency/voltage is.
51  * Pavel Machek says this is not so for various generations of AMD and old
52  * Intel systems.
53  * Mike Chan (android.com) claims this is also not true for ARM.
54  * Because of this, whitelist specific known (series) of CPUs by default, and
55  * leave all others up to the user.
56  */
57 static int should_io_be_busy(void)
58 {
59 #if defined(CONFIG_X86)
60 	/*
61 	 * For Intel, Core 2 (model 15) and later have an efficient idle.
62 	 */
63 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
64 			boot_cpu_data.x86 == 6 &&
65 			boot_cpu_data.x86_model >= 15)
66 		return 1;
67 #endif
68 	return 0;
69 }
70 
71 /*
72  * Find right freq to be set now with powersave_bias on.
73  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
74  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
75  */
76 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
77 		unsigned int freq_next, unsigned int relation)
78 {
79 	unsigned int freq_req, freq_reduc, freq_avg;
80 	unsigned int freq_hi, freq_lo;
81 	unsigned int index = 0;
82 	unsigned int jiffies_total, jiffies_hi, jiffies_lo;
83 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
84 						   policy->cpu);
85 	struct dbs_data *dbs_data = policy->governor_data;
86 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
87 
88 	if (!dbs_info->freq_table) {
89 		dbs_info->freq_lo = 0;
90 		dbs_info->freq_lo_jiffies = 0;
91 		return freq_next;
92 	}
93 
94 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
95 			relation, &index);
96 	freq_req = dbs_info->freq_table[index].frequency;
97 	freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
98 	freq_avg = freq_req - freq_reduc;
99 
100 	/* Find freq bounds for freq_avg in freq_table */
101 	index = 0;
102 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
103 			CPUFREQ_RELATION_H, &index);
104 	freq_lo = dbs_info->freq_table[index].frequency;
105 	index = 0;
106 	cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
107 			CPUFREQ_RELATION_L, &index);
108 	freq_hi = dbs_info->freq_table[index].frequency;
109 
110 	/* Find out how long we have to be in hi and lo freqs */
111 	if (freq_hi == freq_lo) {
112 		dbs_info->freq_lo = 0;
113 		dbs_info->freq_lo_jiffies = 0;
114 		return freq_lo;
115 	}
116 	jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
117 	jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
118 	jiffies_hi += ((freq_hi - freq_lo) / 2);
119 	jiffies_hi /= (freq_hi - freq_lo);
120 	jiffies_lo = jiffies_total - jiffies_hi;
121 	dbs_info->freq_lo = freq_lo;
122 	dbs_info->freq_lo_jiffies = jiffies_lo;
123 	dbs_info->freq_hi_jiffies = jiffies_hi;
124 	return freq_hi;
125 }
126 
127 static void ondemand_powersave_bias_init(void)
128 {
129 	int i;
130 	for_each_online_cpu(i) {
131 		ondemand_powersave_bias_init_cpu(i);
132 	}
133 }
134 
135 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
136 {
137 	struct dbs_data *dbs_data = policy->governor_data;
138 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
139 
140 	if (od_tuners->powersave_bias)
141 		freq = od_ops.powersave_bias_target(policy, freq,
142 				CPUFREQ_RELATION_H);
143 	else if (policy->cur == policy->max)
144 		return;
145 
146 	__cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
147 			CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
148 }
149 
150 /*
151  * Every sampling_rate, we check, if current idle time is less than 20%
152  * (default), then we try to increase frequency. Else, we adjust the frequency
153  * proportional to load.
154  */
155 static void od_check_cpu(int cpu, unsigned int load)
156 {
157 	struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
158 	struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
159 	struct dbs_data *dbs_data = policy->governor_data;
160 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
161 
162 	dbs_info->freq_lo = 0;
163 
164 	/* Check for frequency increase */
165 	if (load > od_tuners->up_threshold) {
166 		/* If switching to max speed, apply sampling_down_factor */
167 		if (policy->cur < policy->max)
168 			dbs_info->rate_mult =
169 				od_tuners->sampling_down_factor;
170 		dbs_freq_increase(policy, policy->max);
171 		return;
172 	} else {
173 		/* Calculate the next frequency proportional to load */
174 		unsigned int freq_next;
175 		freq_next = load * policy->cpuinfo.max_freq / 100;
176 
177 		/* No longer fully busy, reset rate_mult */
178 		dbs_info->rate_mult = 1;
179 
180 		if (!od_tuners->powersave_bias) {
181 			__cpufreq_driver_target(policy, freq_next,
182 					CPUFREQ_RELATION_L);
183 			return;
184 		}
185 
186 		freq_next = od_ops.powersave_bias_target(policy, freq_next,
187 					CPUFREQ_RELATION_L);
188 		__cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
189 	}
190 }
191 
192 static void od_dbs_timer(struct work_struct *work)
193 {
194 	struct od_cpu_dbs_info_s *dbs_info =
195 		container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
196 	unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
197 	struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
198 			cpu);
199 	struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
200 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
201 	int delay = 0, sample_type = core_dbs_info->sample_type;
202 	bool modify_all = true;
203 
204 	mutex_lock(&core_dbs_info->cdbs.timer_mutex);
205 	if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate)) {
206 		modify_all = false;
207 		goto max_delay;
208 	}
209 
210 	/* Common NORMAL_SAMPLE setup */
211 	core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
212 	if (sample_type == OD_SUB_SAMPLE) {
213 		delay = core_dbs_info->freq_lo_jiffies;
214 		__cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
215 				core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
216 	} else {
217 		dbs_check_cpu(dbs_data, cpu);
218 		if (core_dbs_info->freq_lo) {
219 			/* Setup timer for SUB_SAMPLE */
220 			core_dbs_info->sample_type = OD_SUB_SAMPLE;
221 			delay = core_dbs_info->freq_hi_jiffies;
222 		}
223 	}
224 
225 max_delay:
226 	if (!delay)
227 		delay = delay_for_sampling_rate(od_tuners->sampling_rate
228 				* core_dbs_info->rate_mult);
229 
230 	gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
231 	mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
232 }
233 
234 /************************** sysfs interface ************************/
235 static struct common_dbs_data od_dbs_cdata;
236 
237 /**
238  * update_sampling_rate - update sampling rate effective immediately if needed.
239  * @new_rate: new sampling rate
240  *
241  * If new rate is smaller than the old, simply updating
242  * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
243  * original sampling_rate was 1 second and the requested new sampling rate is 10
244  * ms because the user needs immediate reaction from ondemand governor, but not
245  * sure if higher frequency will be required or not, then, the governor may
246  * change the sampling rate too late; up to 1 second later. Thus, if we are
247  * reducing the sampling rate, we need to make the new value effective
248  * immediately.
249  */
250 static void update_sampling_rate(struct dbs_data *dbs_data,
251 		unsigned int new_rate)
252 {
253 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
254 	int cpu;
255 
256 	od_tuners->sampling_rate = new_rate = max(new_rate,
257 			dbs_data->min_sampling_rate);
258 
259 	for_each_online_cpu(cpu) {
260 		struct cpufreq_policy *policy;
261 		struct od_cpu_dbs_info_s *dbs_info;
262 		unsigned long next_sampling, appointed_at;
263 
264 		policy = cpufreq_cpu_get(cpu);
265 		if (!policy)
266 			continue;
267 		if (policy->governor != &cpufreq_gov_ondemand) {
268 			cpufreq_cpu_put(policy);
269 			continue;
270 		}
271 		dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
272 		cpufreq_cpu_put(policy);
273 
274 		mutex_lock(&dbs_info->cdbs.timer_mutex);
275 
276 		if (!delayed_work_pending(&dbs_info->cdbs.work)) {
277 			mutex_unlock(&dbs_info->cdbs.timer_mutex);
278 			continue;
279 		}
280 
281 		next_sampling = jiffies + usecs_to_jiffies(new_rate);
282 		appointed_at = dbs_info->cdbs.work.timer.expires;
283 
284 		if (time_before(next_sampling, appointed_at)) {
285 
286 			mutex_unlock(&dbs_info->cdbs.timer_mutex);
287 			cancel_delayed_work_sync(&dbs_info->cdbs.work);
288 			mutex_lock(&dbs_info->cdbs.timer_mutex);
289 
290 			gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy,
291 					usecs_to_jiffies(new_rate), true);
292 
293 		}
294 		mutex_unlock(&dbs_info->cdbs.timer_mutex);
295 	}
296 }
297 
298 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
299 		size_t count)
300 {
301 	unsigned int input;
302 	int ret;
303 	ret = sscanf(buf, "%u", &input);
304 	if (ret != 1)
305 		return -EINVAL;
306 
307 	update_sampling_rate(dbs_data, input);
308 	return count;
309 }
310 
311 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
312 		size_t count)
313 {
314 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
315 	unsigned int input;
316 	int ret;
317 	unsigned int j;
318 
319 	ret = sscanf(buf, "%u", &input);
320 	if (ret != 1)
321 		return -EINVAL;
322 	od_tuners->io_is_busy = !!input;
323 
324 	/* we need to re-evaluate prev_cpu_idle */
325 	for_each_online_cpu(j) {
326 		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
327 									j);
328 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
329 			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
330 	}
331 	return count;
332 }
333 
334 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
335 		size_t count)
336 {
337 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
338 	unsigned int input;
339 	int ret;
340 	ret = sscanf(buf, "%u", &input);
341 
342 	if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
343 			input < MIN_FREQUENCY_UP_THRESHOLD) {
344 		return -EINVAL;
345 	}
346 
347 	od_tuners->up_threshold = input;
348 	return count;
349 }
350 
351 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
352 		const char *buf, size_t count)
353 {
354 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
355 	unsigned int input, j;
356 	int ret;
357 	ret = sscanf(buf, "%u", &input);
358 
359 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
360 		return -EINVAL;
361 	od_tuners->sampling_down_factor = input;
362 
363 	/* Reset down sampling multiplier in case it was active */
364 	for_each_online_cpu(j) {
365 		struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
366 				j);
367 		dbs_info->rate_mult = 1;
368 	}
369 	return count;
370 }
371 
372 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
373 		const char *buf, size_t count)
374 {
375 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
376 	unsigned int input;
377 	int ret;
378 
379 	unsigned int j;
380 
381 	ret = sscanf(buf, "%u", &input);
382 	if (ret != 1)
383 		return -EINVAL;
384 
385 	if (input > 1)
386 		input = 1;
387 
388 	if (input == od_tuners->ignore_nice_load) { /* nothing to do */
389 		return count;
390 	}
391 	od_tuners->ignore_nice_load = input;
392 
393 	/* we need to re-evaluate prev_cpu_idle */
394 	for_each_online_cpu(j) {
395 		struct od_cpu_dbs_info_s *dbs_info;
396 		dbs_info = &per_cpu(od_cpu_dbs_info, j);
397 		dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
398 			&dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
399 		if (od_tuners->ignore_nice_load)
400 			dbs_info->cdbs.prev_cpu_nice =
401 				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
402 
403 	}
404 	return count;
405 }
406 
407 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
408 		size_t count)
409 {
410 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
411 	unsigned int input;
412 	int ret;
413 	ret = sscanf(buf, "%u", &input);
414 
415 	if (ret != 1)
416 		return -EINVAL;
417 
418 	if (input > 1000)
419 		input = 1000;
420 
421 	od_tuners->powersave_bias = input;
422 	ondemand_powersave_bias_init();
423 	return count;
424 }
425 
426 show_store_one(od, sampling_rate);
427 show_store_one(od, io_is_busy);
428 show_store_one(od, up_threshold);
429 show_store_one(od, sampling_down_factor);
430 show_store_one(od, ignore_nice_load);
431 show_store_one(od, powersave_bias);
432 declare_show_sampling_rate_min(od);
433 
434 gov_sys_pol_attr_rw(sampling_rate);
435 gov_sys_pol_attr_rw(io_is_busy);
436 gov_sys_pol_attr_rw(up_threshold);
437 gov_sys_pol_attr_rw(sampling_down_factor);
438 gov_sys_pol_attr_rw(ignore_nice_load);
439 gov_sys_pol_attr_rw(powersave_bias);
440 gov_sys_pol_attr_ro(sampling_rate_min);
441 
442 static struct attribute *dbs_attributes_gov_sys[] = {
443 	&sampling_rate_min_gov_sys.attr,
444 	&sampling_rate_gov_sys.attr,
445 	&up_threshold_gov_sys.attr,
446 	&sampling_down_factor_gov_sys.attr,
447 	&ignore_nice_load_gov_sys.attr,
448 	&powersave_bias_gov_sys.attr,
449 	&io_is_busy_gov_sys.attr,
450 	NULL
451 };
452 
453 static struct attribute_group od_attr_group_gov_sys = {
454 	.attrs = dbs_attributes_gov_sys,
455 	.name = "ondemand",
456 };
457 
458 static struct attribute *dbs_attributes_gov_pol[] = {
459 	&sampling_rate_min_gov_pol.attr,
460 	&sampling_rate_gov_pol.attr,
461 	&up_threshold_gov_pol.attr,
462 	&sampling_down_factor_gov_pol.attr,
463 	&ignore_nice_load_gov_pol.attr,
464 	&powersave_bias_gov_pol.attr,
465 	&io_is_busy_gov_pol.attr,
466 	NULL
467 };
468 
469 static struct attribute_group od_attr_group_gov_pol = {
470 	.attrs = dbs_attributes_gov_pol,
471 	.name = "ondemand",
472 };
473 
474 /************************** sysfs end ************************/
475 
476 static int od_init(struct dbs_data *dbs_data)
477 {
478 	struct od_dbs_tuners *tuners;
479 	u64 idle_time;
480 	int cpu;
481 
482 	tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
483 	if (!tuners) {
484 		pr_err("%s: kzalloc failed\n", __func__);
485 		return -ENOMEM;
486 	}
487 
488 	cpu = get_cpu();
489 	idle_time = get_cpu_idle_time_us(cpu, NULL);
490 	put_cpu();
491 	if (idle_time != -1ULL) {
492 		/* Idle micro accounting is supported. Use finer thresholds */
493 		tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
494 		/*
495 		 * In nohz/micro accounting case we set the minimum frequency
496 		 * not depending on HZ, but fixed (very low). The deferred
497 		 * timer might skip some samples if idle/sleeping as needed.
498 		*/
499 		dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
500 	} else {
501 		tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
502 
503 		/* For correct statistics, we need 10 ticks for each measure */
504 		dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
505 			jiffies_to_usecs(10);
506 	}
507 
508 	tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
509 	tuners->ignore_nice_load = 0;
510 	tuners->powersave_bias = default_powersave_bias;
511 	tuners->io_is_busy = should_io_be_busy();
512 
513 	dbs_data->tuners = tuners;
514 	mutex_init(&dbs_data->mutex);
515 	return 0;
516 }
517 
518 static void od_exit(struct dbs_data *dbs_data)
519 {
520 	kfree(dbs_data->tuners);
521 }
522 
523 define_get_cpu_dbs_routines(od_cpu_dbs_info);
524 
525 static struct od_ops od_ops = {
526 	.powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
527 	.powersave_bias_target = generic_powersave_bias_target,
528 	.freq_increase = dbs_freq_increase,
529 };
530 
531 static struct common_dbs_data od_dbs_cdata = {
532 	.governor = GOV_ONDEMAND,
533 	.attr_group_gov_sys = &od_attr_group_gov_sys,
534 	.attr_group_gov_pol = &od_attr_group_gov_pol,
535 	.get_cpu_cdbs = get_cpu_cdbs,
536 	.get_cpu_dbs_info_s = get_cpu_dbs_info_s,
537 	.gov_dbs_timer = od_dbs_timer,
538 	.gov_check_cpu = od_check_cpu,
539 	.gov_ops = &od_ops,
540 	.init = od_init,
541 	.exit = od_exit,
542 };
543 
544 static void od_set_powersave_bias(unsigned int powersave_bias)
545 {
546 	struct cpufreq_policy *policy;
547 	struct dbs_data *dbs_data;
548 	struct od_dbs_tuners *od_tuners;
549 	unsigned int cpu;
550 	cpumask_t done;
551 
552 	default_powersave_bias = powersave_bias;
553 	cpumask_clear(&done);
554 
555 	get_online_cpus();
556 	for_each_online_cpu(cpu) {
557 		if (cpumask_test_cpu(cpu, &done))
558 			continue;
559 
560 		policy = per_cpu(od_cpu_dbs_info, cpu).cdbs.cur_policy;
561 		if (!policy)
562 			continue;
563 
564 		cpumask_or(&done, &done, policy->cpus);
565 
566 		if (policy->governor != &cpufreq_gov_ondemand)
567 			continue;
568 
569 		dbs_data = policy->governor_data;
570 		od_tuners = dbs_data->tuners;
571 		od_tuners->powersave_bias = default_powersave_bias;
572 	}
573 	put_online_cpus();
574 }
575 
576 void od_register_powersave_bias_handler(unsigned int (*f)
577 		(struct cpufreq_policy *, unsigned int, unsigned int),
578 		unsigned int powersave_bias)
579 {
580 	od_ops.powersave_bias_target = f;
581 	od_set_powersave_bias(powersave_bias);
582 }
583 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
584 
585 void od_unregister_powersave_bias_handler(void)
586 {
587 	od_ops.powersave_bias_target = generic_powersave_bias_target;
588 	od_set_powersave_bias(0);
589 }
590 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
591 
592 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
593 		unsigned int event)
594 {
595 	return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
596 }
597 
598 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
599 static
600 #endif
601 struct cpufreq_governor cpufreq_gov_ondemand = {
602 	.name			= "ondemand",
603 	.governor		= od_cpufreq_governor_dbs,
604 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
605 	.owner			= THIS_MODULE,
606 };
607 
608 static int __init cpufreq_gov_dbs_init(void)
609 {
610 	return cpufreq_register_governor(&cpufreq_gov_ondemand);
611 }
612 
613 static void __exit cpufreq_gov_dbs_exit(void)
614 {
615 	cpufreq_unregister_governor(&cpufreq_gov_ondemand);
616 }
617 
618 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
619 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
620 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
621 	"Low Latency Frequency Transition capable processors");
622 MODULE_LICENSE("GPL");
623 
624 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
625 fs_initcall(cpufreq_gov_dbs_init);
626 #else
627 module_init(cpufreq_gov_dbs_init);
628 #endif
629 module_exit(cpufreq_gov_dbs_exit);
630