1 /*
2  * drivers/cpufreq/cpufreq_governor.c
3  *
4  * CPUFREQ governors common code
5  *
6  * Copyright	(C) 2001 Russell King
7  *		(C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8  *		(C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9  *		(C) 2009 Alexander Clouter <alex@digriz.org.uk>
10  *		(c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22 
23 #include "cpufreq_governor.h"
24 
25 static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
26 {
27 	if (have_governor_per_policy())
28 		return dbs_data->cdata->attr_group_gov_pol;
29 	else
30 		return dbs_data->cdata->attr_group_gov_sys;
31 }
32 
33 void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
34 {
35 	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
37 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38 	struct cpufreq_policy *policy = cdbs->shared->policy;
39 	unsigned int sampling_rate;
40 	unsigned int max_load = 0;
41 	unsigned int ignore_nice;
42 	unsigned int j;
43 
44 	if (dbs_data->cdata->governor == GOV_ONDEMAND) {
45 		struct od_cpu_dbs_info_s *od_dbs_info =
46 				dbs_data->cdata->get_cpu_dbs_info_s(cpu);
47 
48 		/*
49 		 * Sometimes, the ondemand governor uses an additional
50 		 * multiplier to give long delays. So apply this multiplier to
51 		 * the 'sampling_rate', so as to keep the wake-up-from-idle
52 		 * detection logic a bit conservative.
53 		 */
54 		sampling_rate = od_tuners->sampling_rate;
55 		sampling_rate *= od_dbs_info->rate_mult;
56 
57 		ignore_nice = od_tuners->ignore_nice_load;
58 	} else {
59 		sampling_rate = cs_tuners->sampling_rate;
60 		ignore_nice = cs_tuners->ignore_nice_load;
61 	}
62 
63 	/* Get Absolute Load */
64 	for_each_cpu(j, policy->cpus) {
65 		struct cpu_dbs_info *j_cdbs;
66 		u64 cur_wall_time, cur_idle_time;
67 		unsigned int idle_time, wall_time;
68 		unsigned int load;
69 		int io_busy = 0;
70 
71 		j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
72 
73 		/*
74 		 * For the purpose of ondemand, waiting for disk IO is
75 		 * an indication that you're performance critical, and
76 		 * not that the system is actually idle. So do not add
77 		 * the iowait time to the cpu idle time.
78 		 */
79 		if (dbs_data->cdata->governor == GOV_ONDEMAND)
80 			io_busy = od_tuners->io_is_busy;
81 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
82 
83 		wall_time = (unsigned int)
84 			(cur_wall_time - j_cdbs->prev_cpu_wall);
85 		j_cdbs->prev_cpu_wall = cur_wall_time;
86 
87 		idle_time = (unsigned int)
88 			(cur_idle_time - j_cdbs->prev_cpu_idle);
89 		j_cdbs->prev_cpu_idle = cur_idle_time;
90 
91 		if (ignore_nice) {
92 			u64 cur_nice;
93 			unsigned long cur_nice_jiffies;
94 
95 			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
96 					 cdbs->prev_cpu_nice;
97 			/*
98 			 * Assumption: nice time between sampling periods will
99 			 * be less than 2^32 jiffies for 32 bit sys
100 			 */
101 			cur_nice_jiffies = (unsigned long)
102 					cputime64_to_jiffies64(cur_nice);
103 
104 			cdbs->prev_cpu_nice =
105 				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
106 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
107 		}
108 
109 		if (unlikely(!wall_time || wall_time < idle_time))
110 			continue;
111 
112 		/*
113 		 * If the CPU had gone completely idle, and a task just woke up
114 		 * on this CPU now, it would be unfair to calculate 'load' the
115 		 * usual way for this elapsed time-window, because it will show
116 		 * near-zero load, irrespective of how CPU intensive that task
117 		 * actually is. This is undesirable for latency-sensitive bursty
118 		 * workloads.
119 		 *
120 		 * To avoid this, we reuse the 'load' from the previous
121 		 * time-window and give this task a chance to start with a
122 		 * reasonably high CPU frequency. (However, we shouldn't over-do
123 		 * this copy, lest we get stuck at a high load (high frequency)
124 		 * for too long, even when the current system load has actually
125 		 * dropped down. So we perform the copy only once, upon the
126 		 * first wake-up from idle.)
127 		 *
128 		 * Detecting this situation is easy: the governor's deferrable
129 		 * timer would not have fired during CPU-idle periods. Hence
130 		 * an unusually large 'wall_time' (as compared to the sampling
131 		 * rate) indicates this scenario.
132 		 *
133 		 * prev_load can be zero in two cases and we must recalculate it
134 		 * for both cases:
135 		 * - during long idle intervals
136 		 * - explicitly set to zero
137 		 */
138 		if (unlikely(wall_time > (2 * sampling_rate) &&
139 			     j_cdbs->prev_load)) {
140 			load = j_cdbs->prev_load;
141 
142 			/*
143 			 * Perform a destructive copy, to ensure that we copy
144 			 * the previous load only once, upon the first wake-up
145 			 * from idle.
146 			 */
147 			j_cdbs->prev_load = 0;
148 		} else {
149 			load = 100 * (wall_time - idle_time) / wall_time;
150 			j_cdbs->prev_load = load;
151 		}
152 
153 		if (load > max_load)
154 			max_load = load;
155 	}
156 
157 	dbs_data->cdata->gov_check_cpu(cpu, max_load);
158 }
159 EXPORT_SYMBOL_GPL(dbs_check_cpu);
160 
161 static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
162 		unsigned int delay)
163 {
164 	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
165 
166 	mod_delayed_work_on(cpu, system_wq, &cdbs->dwork, delay);
167 }
168 
169 void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
170 		unsigned int delay, bool all_cpus)
171 {
172 	int i;
173 
174 	mutex_lock(&cpufreq_governor_lock);
175 	if (!policy->governor_enabled)
176 		goto out_unlock;
177 
178 	if (!all_cpus) {
179 		/*
180 		 * Use raw_smp_processor_id() to avoid preemptible warnings.
181 		 * We know that this is only called with all_cpus == false from
182 		 * works that have been queued with *_work_on() functions and
183 		 * those works are canceled during CPU_DOWN_PREPARE so they
184 		 * can't possibly run on any other CPU.
185 		 */
186 		__gov_queue_work(raw_smp_processor_id(), dbs_data, delay);
187 	} else {
188 		for_each_cpu(i, policy->cpus)
189 			__gov_queue_work(i, dbs_data, delay);
190 	}
191 
192 out_unlock:
193 	mutex_unlock(&cpufreq_governor_lock);
194 }
195 EXPORT_SYMBOL_GPL(gov_queue_work);
196 
197 static inline void gov_cancel_work(struct dbs_data *dbs_data,
198 		struct cpufreq_policy *policy)
199 {
200 	struct cpu_dbs_info *cdbs;
201 	int i;
202 
203 	for_each_cpu(i, policy->cpus) {
204 		cdbs = dbs_data->cdata->get_cpu_cdbs(i);
205 		cancel_delayed_work_sync(&cdbs->dwork);
206 	}
207 }
208 
209 /* Will return if we need to evaluate cpu load again or not */
210 static bool need_load_eval(struct cpu_common_dbs_info *shared,
211 			   unsigned int sampling_rate)
212 {
213 	if (policy_is_shared(shared->policy)) {
214 		ktime_t time_now = ktime_get();
215 		s64 delta_us = ktime_us_delta(time_now, shared->time_stamp);
216 
217 		/* Do nothing if we recently have sampled */
218 		if (delta_us < (s64)(sampling_rate / 2))
219 			return false;
220 		else
221 			shared->time_stamp = time_now;
222 	}
223 
224 	return true;
225 }
226 
227 static void dbs_timer(struct work_struct *work)
228 {
229 	struct cpu_dbs_info *cdbs = container_of(work, struct cpu_dbs_info,
230 						 dwork.work);
231 	struct cpu_common_dbs_info *shared = cdbs->shared;
232 	struct cpufreq_policy *policy = shared->policy;
233 	struct dbs_data *dbs_data = policy->governor_data;
234 	unsigned int sampling_rate, delay;
235 	bool modify_all = true;
236 
237 	mutex_lock(&shared->timer_mutex);
238 
239 	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
240 		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
241 
242 		sampling_rate = cs_tuners->sampling_rate;
243 	} else {
244 		struct od_dbs_tuners *od_tuners = dbs_data->tuners;
245 
246 		sampling_rate = od_tuners->sampling_rate;
247 	}
248 
249 	if (!need_load_eval(cdbs->shared, sampling_rate))
250 		modify_all = false;
251 
252 	delay = dbs_data->cdata->gov_dbs_timer(cdbs, dbs_data, modify_all);
253 	gov_queue_work(dbs_data, policy, delay, modify_all);
254 
255 	mutex_unlock(&shared->timer_mutex);
256 }
257 
258 static void set_sampling_rate(struct dbs_data *dbs_data,
259 		unsigned int sampling_rate)
260 {
261 	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
262 		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
263 		cs_tuners->sampling_rate = sampling_rate;
264 	} else {
265 		struct od_dbs_tuners *od_tuners = dbs_data->tuners;
266 		od_tuners->sampling_rate = sampling_rate;
267 	}
268 }
269 
270 static int alloc_common_dbs_info(struct cpufreq_policy *policy,
271 				 struct common_dbs_data *cdata)
272 {
273 	struct cpu_common_dbs_info *shared;
274 	int j;
275 
276 	/* Allocate memory for the common information for policy->cpus */
277 	shared = kzalloc(sizeof(*shared), GFP_KERNEL);
278 	if (!shared)
279 		return -ENOMEM;
280 
281 	/* Set shared for all CPUs, online+offline */
282 	for_each_cpu(j, policy->related_cpus)
283 		cdata->get_cpu_cdbs(j)->shared = shared;
284 
285 	return 0;
286 }
287 
288 static void free_common_dbs_info(struct cpufreq_policy *policy,
289 				 struct common_dbs_data *cdata)
290 {
291 	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
292 	struct cpu_common_dbs_info *shared = cdbs->shared;
293 	int j;
294 
295 	for_each_cpu(j, policy->cpus)
296 		cdata->get_cpu_cdbs(j)->shared = NULL;
297 
298 	kfree(shared);
299 }
300 
301 static int cpufreq_governor_init(struct cpufreq_policy *policy,
302 				 struct dbs_data *dbs_data,
303 				 struct common_dbs_data *cdata)
304 {
305 	unsigned int latency;
306 	int ret;
307 
308 	/* State should be equivalent to EXIT */
309 	if (policy->governor_data)
310 		return -EBUSY;
311 
312 	if (dbs_data) {
313 		if (WARN_ON(have_governor_per_policy()))
314 			return -EINVAL;
315 
316 		ret = alloc_common_dbs_info(policy, cdata);
317 		if (ret)
318 			return ret;
319 
320 		dbs_data->usage_count++;
321 		policy->governor_data = dbs_data;
322 		return 0;
323 	}
324 
325 	dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
326 	if (!dbs_data)
327 		return -ENOMEM;
328 
329 	ret = alloc_common_dbs_info(policy, cdata);
330 	if (ret)
331 		goto free_dbs_data;
332 
333 	dbs_data->cdata = cdata;
334 	dbs_data->usage_count = 1;
335 
336 	ret = cdata->init(dbs_data, !policy->governor->initialized);
337 	if (ret)
338 		goto free_common_dbs_info;
339 
340 	/* policy latency is in ns. Convert it to us first */
341 	latency = policy->cpuinfo.transition_latency / 1000;
342 	if (latency == 0)
343 		latency = 1;
344 
345 	/* Bring kernel and HW constraints together */
346 	dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
347 					  MIN_LATENCY_MULTIPLIER * latency);
348 	set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
349 					latency * LATENCY_MULTIPLIER));
350 
351 	if (!have_governor_per_policy()) {
352 		if (WARN_ON(cpufreq_get_global_kobject())) {
353 			ret = -EINVAL;
354 			goto cdata_exit;
355 		}
356 		cdata->gdbs_data = dbs_data;
357 	}
358 
359 	ret = sysfs_create_group(get_governor_parent_kobj(policy),
360 				 get_sysfs_attr(dbs_data));
361 	if (ret)
362 		goto put_kobj;
363 
364 	policy->governor_data = dbs_data;
365 
366 	return 0;
367 
368 put_kobj:
369 	if (!have_governor_per_policy()) {
370 		cdata->gdbs_data = NULL;
371 		cpufreq_put_global_kobject();
372 	}
373 cdata_exit:
374 	cdata->exit(dbs_data, !policy->governor->initialized);
375 free_common_dbs_info:
376 	free_common_dbs_info(policy, cdata);
377 free_dbs_data:
378 	kfree(dbs_data);
379 	return ret;
380 }
381 
382 static int cpufreq_governor_exit(struct cpufreq_policy *policy,
383 				 struct dbs_data *dbs_data)
384 {
385 	struct common_dbs_data *cdata = dbs_data->cdata;
386 	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
387 
388 	/* State should be equivalent to INIT */
389 	if (!cdbs->shared || cdbs->shared->policy)
390 		return -EBUSY;
391 
392 	policy->governor_data = NULL;
393 	if (!--dbs_data->usage_count) {
394 		sysfs_remove_group(get_governor_parent_kobj(policy),
395 				   get_sysfs_attr(dbs_data));
396 
397 		if (!have_governor_per_policy()) {
398 			cdata->gdbs_data = NULL;
399 			cpufreq_put_global_kobject();
400 		}
401 
402 		cdata->exit(dbs_data, policy->governor->initialized == 1);
403 		kfree(dbs_data);
404 	}
405 
406 	free_common_dbs_info(policy, cdata);
407 	return 0;
408 }
409 
410 static int cpufreq_governor_start(struct cpufreq_policy *policy,
411 				  struct dbs_data *dbs_data)
412 {
413 	struct common_dbs_data *cdata = dbs_data->cdata;
414 	unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
415 	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
416 	struct cpu_common_dbs_info *shared = cdbs->shared;
417 	int io_busy = 0;
418 
419 	if (!policy->cur)
420 		return -EINVAL;
421 
422 	/* State should be equivalent to INIT */
423 	if (!shared || shared->policy)
424 		return -EBUSY;
425 
426 	if (cdata->governor == GOV_CONSERVATIVE) {
427 		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
428 
429 		sampling_rate = cs_tuners->sampling_rate;
430 		ignore_nice = cs_tuners->ignore_nice_load;
431 	} else {
432 		struct od_dbs_tuners *od_tuners = dbs_data->tuners;
433 
434 		sampling_rate = od_tuners->sampling_rate;
435 		ignore_nice = od_tuners->ignore_nice_load;
436 		io_busy = od_tuners->io_is_busy;
437 	}
438 
439 	shared->policy = policy;
440 	shared->time_stamp = ktime_get();
441 	mutex_init(&shared->timer_mutex);
442 
443 	for_each_cpu(j, policy->cpus) {
444 		struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j);
445 		unsigned int prev_load;
446 
447 		j_cdbs->prev_cpu_idle =
448 			get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
449 
450 		prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
451 					    j_cdbs->prev_cpu_idle);
452 		j_cdbs->prev_load = 100 * prev_load /
453 				    (unsigned int)j_cdbs->prev_cpu_wall;
454 
455 		if (ignore_nice)
456 			j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
457 
458 		INIT_DEFERRABLE_WORK(&j_cdbs->dwork, dbs_timer);
459 	}
460 
461 	if (cdata->governor == GOV_CONSERVATIVE) {
462 		struct cs_cpu_dbs_info_s *cs_dbs_info =
463 			cdata->get_cpu_dbs_info_s(cpu);
464 
465 		cs_dbs_info->down_skip = 0;
466 		cs_dbs_info->enable = 1;
467 		cs_dbs_info->requested_freq = policy->cur;
468 	} else {
469 		struct od_ops *od_ops = cdata->gov_ops;
470 		struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
471 
472 		od_dbs_info->rate_mult = 1;
473 		od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
474 		od_ops->powersave_bias_init_cpu(cpu);
475 	}
476 
477 	gov_queue_work(dbs_data, policy, delay_for_sampling_rate(sampling_rate),
478 		       true);
479 	return 0;
480 }
481 
482 static int cpufreq_governor_stop(struct cpufreq_policy *policy,
483 				 struct dbs_data *dbs_data)
484 {
485 	struct common_dbs_data *cdata = dbs_data->cdata;
486 	unsigned int cpu = policy->cpu;
487 	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
488 	struct cpu_common_dbs_info *shared = cdbs->shared;
489 
490 	/* State should be equivalent to START */
491 	if (!shared || !shared->policy)
492 		return -EBUSY;
493 
494 	gov_cancel_work(dbs_data, policy);
495 
496 	if (cdata->governor == GOV_CONSERVATIVE) {
497 		struct cs_cpu_dbs_info_s *cs_dbs_info =
498 			cdata->get_cpu_dbs_info_s(cpu);
499 
500 		cs_dbs_info->enable = 0;
501 	}
502 
503 	shared->policy = NULL;
504 	mutex_destroy(&shared->timer_mutex);
505 	return 0;
506 }
507 
508 static int cpufreq_governor_limits(struct cpufreq_policy *policy,
509 				   struct dbs_data *dbs_data)
510 {
511 	struct common_dbs_data *cdata = dbs_data->cdata;
512 	unsigned int cpu = policy->cpu;
513 	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
514 
515 	/* State should be equivalent to START */
516 	if (!cdbs->shared || !cdbs->shared->policy)
517 		return -EBUSY;
518 
519 	mutex_lock(&cdbs->shared->timer_mutex);
520 	if (policy->max < cdbs->shared->policy->cur)
521 		__cpufreq_driver_target(cdbs->shared->policy, policy->max,
522 					CPUFREQ_RELATION_H);
523 	else if (policy->min > cdbs->shared->policy->cur)
524 		__cpufreq_driver_target(cdbs->shared->policy, policy->min,
525 					CPUFREQ_RELATION_L);
526 	dbs_check_cpu(dbs_data, cpu);
527 	mutex_unlock(&cdbs->shared->timer_mutex);
528 
529 	return 0;
530 }
531 
532 int cpufreq_governor_dbs(struct cpufreq_policy *policy,
533 			 struct common_dbs_data *cdata, unsigned int event)
534 {
535 	struct dbs_data *dbs_data;
536 	int ret;
537 
538 	/* Lock governor to block concurrent initialization of governor */
539 	mutex_lock(&cdata->mutex);
540 
541 	if (have_governor_per_policy())
542 		dbs_data = policy->governor_data;
543 	else
544 		dbs_data = cdata->gdbs_data;
545 
546 	if (!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT)) {
547 		ret = -EINVAL;
548 		goto unlock;
549 	}
550 
551 	switch (event) {
552 	case CPUFREQ_GOV_POLICY_INIT:
553 		ret = cpufreq_governor_init(policy, dbs_data, cdata);
554 		break;
555 	case CPUFREQ_GOV_POLICY_EXIT:
556 		ret = cpufreq_governor_exit(policy, dbs_data);
557 		break;
558 	case CPUFREQ_GOV_START:
559 		ret = cpufreq_governor_start(policy, dbs_data);
560 		break;
561 	case CPUFREQ_GOV_STOP:
562 		ret = cpufreq_governor_stop(policy, dbs_data);
563 		break;
564 	case CPUFREQ_GOV_LIMITS:
565 		ret = cpufreq_governor_limits(policy, dbs_data);
566 		break;
567 	default:
568 		ret = -EINVAL;
569 	}
570 
571 unlock:
572 	mutex_unlock(&cdata->mutex);
573 
574 	return ret;
575 }
576 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);
577