1 /*
2  * drivers/cpufreq/cpufreq_governor.c
3  *
4  * CPUFREQ governors common code
5  *
6  * Copyright	(C) 2001 Russell King
7  *		(C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8  *		(C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9  *		(C) 2009 Alexander Clouter <alex@digriz.org.uk>
10  *		(c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <asm/cputime.h>
20 #include <linux/cpufreq.h>
21 #include <linux/cpumask.h>
22 #include <linux/export.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/mutex.h>
25 #include <linux/tick.h>
26 #include <linux/types.h>
27 #include <linux/workqueue.h>
28 
29 #include "cpufreq_governor.h"
30 
31 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
32 {
33 	u64 idle_time;
34 	u64 cur_wall_time;
35 	u64 busy_time;
36 
37 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
38 
39 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
40 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
41 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
42 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
43 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
44 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
45 
46 	idle_time = cur_wall_time - busy_time;
47 	if (wall)
48 		*wall = cputime_to_usecs(cur_wall_time);
49 
50 	return cputime_to_usecs(idle_time);
51 }
52 
53 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall)
54 {
55 	u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
56 
57 	if (idle_time == -1ULL)
58 		return get_cpu_idle_time_jiffy(cpu, wall);
59 	else
60 		idle_time += get_cpu_iowait_time_us(cpu, wall);
61 
62 	return idle_time;
63 }
64 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
65 
66 void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
67 {
68 	struct cpu_dbs_common_info *cdbs = dbs_data->get_cpu_cdbs(cpu);
69 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
70 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
71 	struct cpufreq_policy *policy;
72 	unsigned int max_load = 0;
73 	unsigned int ignore_nice;
74 	unsigned int j;
75 
76 	if (dbs_data->governor == GOV_ONDEMAND)
77 		ignore_nice = od_tuners->ignore_nice;
78 	else
79 		ignore_nice = cs_tuners->ignore_nice;
80 
81 	policy = cdbs->cur_policy;
82 
83 	/* Get Absolute Load (in terms of freq for ondemand gov) */
84 	for_each_cpu(j, policy->cpus) {
85 		struct cpu_dbs_common_info *j_cdbs;
86 		u64 cur_wall_time, cur_idle_time, cur_iowait_time;
87 		unsigned int idle_time, wall_time, iowait_time;
88 		unsigned int load;
89 
90 		j_cdbs = dbs_data->get_cpu_cdbs(j);
91 
92 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
93 
94 		wall_time = (unsigned int)
95 			(cur_wall_time - j_cdbs->prev_cpu_wall);
96 		j_cdbs->prev_cpu_wall = cur_wall_time;
97 
98 		idle_time = (unsigned int)
99 			(cur_idle_time - j_cdbs->prev_cpu_idle);
100 		j_cdbs->prev_cpu_idle = cur_idle_time;
101 
102 		if (ignore_nice) {
103 			u64 cur_nice;
104 			unsigned long cur_nice_jiffies;
105 
106 			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
107 					 cdbs->prev_cpu_nice;
108 			/*
109 			 * Assumption: nice time between sampling periods will
110 			 * be less than 2^32 jiffies for 32 bit sys
111 			 */
112 			cur_nice_jiffies = (unsigned long)
113 					cputime64_to_jiffies64(cur_nice);
114 
115 			cdbs->prev_cpu_nice =
116 				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
117 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
118 		}
119 
120 		if (dbs_data->governor == GOV_ONDEMAND) {
121 			struct od_cpu_dbs_info_s *od_j_dbs_info =
122 				dbs_data->get_cpu_dbs_info_s(cpu);
123 
124 			cur_iowait_time = get_cpu_iowait_time_us(j,
125 					&cur_wall_time);
126 			if (cur_iowait_time == -1ULL)
127 				cur_iowait_time = 0;
128 
129 			iowait_time = (unsigned int) (cur_iowait_time -
130 					od_j_dbs_info->prev_cpu_iowait);
131 			od_j_dbs_info->prev_cpu_iowait = cur_iowait_time;
132 
133 			/*
134 			 * For the purpose of ondemand, waiting for disk IO is
135 			 * an indication that you're performance critical, and
136 			 * not that the system is actually idle. So subtract the
137 			 * iowait time from the cpu idle time.
138 			 */
139 			if (od_tuners->io_is_busy && idle_time >= iowait_time)
140 				idle_time -= iowait_time;
141 		}
142 
143 		if (unlikely(!wall_time || wall_time < idle_time))
144 			continue;
145 
146 		load = 100 * (wall_time - idle_time) / wall_time;
147 
148 		if (dbs_data->governor == GOV_ONDEMAND) {
149 			int freq_avg = __cpufreq_driver_getavg(policy, j);
150 			if (freq_avg <= 0)
151 				freq_avg = policy->cur;
152 
153 			load *= freq_avg;
154 		}
155 
156 		if (load > max_load)
157 			max_load = load;
158 	}
159 
160 	dbs_data->gov_check_cpu(cpu, max_load);
161 }
162 EXPORT_SYMBOL_GPL(dbs_check_cpu);
163 
164 static inline void dbs_timer_init(struct dbs_data *dbs_data,
165 		struct cpu_dbs_common_info *cdbs, unsigned int sampling_rate)
166 {
167 	int delay = delay_for_sampling_rate(sampling_rate);
168 
169 	INIT_DEFERRABLE_WORK(&cdbs->work, dbs_data->gov_dbs_timer);
170 	schedule_delayed_work_on(cdbs->cpu, &cdbs->work, delay);
171 }
172 
173 static inline void dbs_timer_exit(struct cpu_dbs_common_info *cdbs)
174 {
175 	cancel_delayed_work_sync(&cdbs->work);
176 }
177 
178 int cpufreq_governor_dbs(struct dbs_data *dbs_data,
179 		struct cpufreq_policy *policy, unsigned int event)
180 {
181 	struct od_cpu_dbs_info_s *od_dbs_info = NULL;
182 	struct cs_cpu_dbs_info_s *cs_dbs_info = NULL;
183 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
184 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
185 	struct cpu_dbs_common_info *cpu_cdbs;
186 	unsigned int *sampling_rate, latency, ignore_nice, j, cpu = policy->cpu;
187 	int rc;
188 
189 	cpu_cdbs = dbs_data->get_cpu_cdbs(cpu);
190 
191 	if (dbs_data->governor == GOV_CONSERVATIVE) {
192 		cs_dbs_info = dbs_data->get_cpu_dbs_info_s(cpu);
193 		sampling_rate = &cs_tuners->sampling_rate;
194 		ignore_nice = cs_tuners->ignore_nice;
195 	} else {
196 		od_dbs_info = dbs_data->get_cpu_dbs_info_s(cpu);
197 		sampling_rate = &od_tuners->sampling_rate;
198 		ignore_nice = od_tuners->ignore_nice;
199 	}
200 
201 	switch (event) {
202 	case CPUFREQ_GOV_START:
203 		if ((!cpu_online(cpu)) || (!policy->cur))
204 			return -EINVAL;
205 
206 		mutex_lock(&dbs_data->mutex);
207 
208 		dbs_data->enable++;
209 		cpu_cdbs->cpu = cpu;
210 		for_each_cpu(j, policy->cpus) {
211 			struct cpu_dbs_common_info *j_cdbs;
212 			j_cdbs = dbs_data->get_cpu_cdbs(j);
213 
214 			j_cdbs->cur_policy = policy;
215 			j_cdbs->prev_cpu_idle = get_cpu_idle_time(j,
216 					&j_cdbs->prev_cpu_wall);
217 			if (ignore_nice)
218 				j_cdbs->prev_cpu_nice =
219 					kcpustat_cpu(j).cpustat[CPUTIME_NICE];
220 		}
221 
222 		/*
223 		 * Start the timerschedule work, when this governor is used for
224 		 * first time
225 		 */
226 		if (dbs_data->enable != 1)
227 			goto second_time;
228 
229 		rc = sysfs_create_group(cpufreq_global_kobject,
230 				dbs_data->attr_group);
231 		if (rc) {
232 			mutex_unlock(&dbs_data->mutex);
233 			return rc;
234 		}
235 
236 		/* policy latency is in nS. Convert it to uS first */
237 		latency = policy->cpuinfo.transition_latency / 1000;
238 		if (latency == 0)
239 			latency = 1;
240 
241 		/*
242 		 * conservative does not implement micro like ondemand
243 		 * governor, thus we are bound to jiffes/HZ
244 		 */
245 		if (dbs_data->governor == GOV_CONSERVATIVE) {
246 			struct cs_ops *ops = dbs_data->gov_ops;
247 
248 			cpufreq_register_notifier(ops->notifier_block,
249 					CPUFREQ_TRANSITION_NOTIFIER);
250 
251 			dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
252 				jiffies_to_usecs(10);
253 		} else {
254 			struct od_ops *ops = dbs_data->gov_ops;
255 
256 			od_tuners->io_is_busy = ops->io_busy();
257 		}
258 
259 		/* Bring kernel and HW constraints together */
260 		dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
261 				MIN_LATENCY_MULTIPLIER * latency);
262 		*sampling_rate = max(dbs_data->min_sampling_rate, latency *
263 				LATENCY_MULTIPLIER);
264 
265 second_time:
266 		if (dbs_data->governor == GOV_CONSERVATIVE) {
267 			cs_dbs_info->down_skip = 0;
268 			cs_dbs_info->enable = 1;
269 			cs_dbs_info->requested_freq = policy->cur;
270 		} else {
271 			struct od_ops *ops = dbs_data->gov_ops;
272 			od_dbs_info->rate_mult = 1;
273 			od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
274 			ops->powersave_bias_init_cpu(cpu);
275 		}
276 		mutex_unlock(&dbs_data->mutex);
277 
278 		mutex_init(&cpu_cdbs->timer_mutex);
279 		dbs_timer_init(dbs_data, cpu_cdbs, *sampling_rate);
280 		break;
281 
282 	case CPUFREQ_GOV_STOP:
283 		if (dbs_data->governor == GOV_CONSERVATIVE)
284 			cs_dbs_info->enable = 0;
285 
286 		dbs_timer_exit(cpu_cdbs);
287 
288 		mutex_lock(&dbs_data->mutex);
289 		mutex_destroy(&cpu_cdbs->timer_mutex);
290 		dbs_data->enable--;
291 		if (!dbs_data->enable) {
292 			struct cs_ops *ops = dbs_data->gov_ops;
293 
294 			sysfs_remove_group(cpufreq_global_kobject,
295 					dbs_data->attr_group);
296 			if (dbs_data->governor == GOV_CONSERVATIVE)
297 				cpufreq_unregister_notifier(ops->notifier_block,
298 						CPUFREQ_TRANSITION_NOTIFIER);
299 		}
300 		mutex_unlock(&dbs_data->mutex);
301 
302 		break;
303 
304 	case CPUFREQ_GOV_LIMITS:
305 		mutex_lock(&cpu_cdbs->timer_mutex);
306 		if (policy->max < cpu_cdbs->cur_policy->cur)
307 			__cpufreq_driver_target(cpu_cdbs->cur_policy,
308 					policy->max, CPUFREQ_RELATION_H);
309 		else if (policy->min > cpu_cdbs->cur_policy->cur)
310 			__cpufreq_driver_target(cpu_cdbs->cur_policy,
311 					policy->min, CPUFREQ_RELATION_L);
312 		dbs_check_cpu(dbs_data, cpu);
313 		mutex_unlock(&cpu_cdbs->timer_mutex);
314 		break;
315 	}
316 	return 0;
317 }
318 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);
319