1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * drivers/cpufreq/cpufreq_governor.c 4 * 5 * CPUFREQ governors common code 6 * 7 * Copyright (C) 2001 Russell King 8 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. 9 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com> 10 * (C) 2009 Alexander Clouter <alex@digriz.org.uk> 11 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org> 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/export.h> 17 #include <linux/kernel_stat.h> 18 #include <linux/slab.h> 19 20 #include "cpufreq_governor.h" 21 22 #define CPUFREQ_DBS_MIN_SAMPLING_INTERVAL (2 * TICK_NSEC / NSEC_PER_USEC) 23 24 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs); 25 26 static DEFINE_MUTEX(gov_dbs_data_mutex); 27 28 /* Common sysfs tunables */ 29 /** 30 * store_sampling_rate - update sampling rate effective immediately if needed. 31 * 32 * If new rate is smaller than the old, simply updating 33 * dbs.sampling_rate might not be appropriate. For example, if the 34 * original sampling_rate was 1 second and the requested new sampling rate is 10 35 * ms because the user needs immediate reaction from ondemand governor, but not 36 * sure if higher frequency will be required or not, then, the governor may 37 * change the sampling rate too late; up to 1 second later. Thus, if we are 38 * reducing the sampling rate, we need to make the new value effective 39 * immediately. 40 * 41 * This must be called with dbs_data->mutex held, otherwise traversing 42 * policy_dbs_list isn't safe. 43 */ 44 ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf, 45 size_t count) 46 { 47 struct dbs_data *dbs_data = to_dbs_data(attr_set); 48 struct policy_dbs_info *policy_dbs; 49 unsigned int sampling_interval; 50 int ret; 51 52 ret = sscanf(buf, "%u", &sampling_interval); 53 if (ret != 1 || sampling_interval < CPUFREQ_DBS_MIN_SAMPLING_INTERVAL) 54 return -EINVAL; 55 56 dbs_data->sampling_rate = sampling_interval; 57 58 /* 59 * We are operating under dbs_data->mutex and so the list and its 60 * entries can't be freed concurrently. 61 */ 62 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) { 63 mutex_lock(&policy_dbs->update_mutex); 64 /* 65 * On 32-bit architectures this may race with the 66 * sample_delay_ns read in dbs_update_util_handler(), but that 67 * really doesn't matter. If the read returns a value that's 68 * too big, the sample will be skipped, but the next invocation 69 * of dbs_update_util_handler() (when the update has been 70 * completed) will take a sample. 71 * 72 * If this runs in parallel with dbs_work_handler(), we may end 73 * up overwriting the sample_delay_ns value that it has just 74 * written, but it will be corrected next time a sample is 75 * taken, so it shouldn't be significant. 76 */ 77 gov_update_sample_delay(policy_dbs, 0); 78 mutex_unlock(&policy_dbs->update_mutex); 79 } 80 81 return count; 82 } 83 EXPORT_SYMBOL_GPL(store_sampling_rate); 84 85 /** 86 * gov_update_cpu_data - Update CPU load data. 87 * @dbs_data: Top-level governor data pointer. 88 * 89 * Update CPU load data for all CPUs in the domain governed by @dbs_data 90 * (that may be a single policy or a bunch of them if governor tunables are 91 * system-wide). 92 * 93 * Call under the @dbs_data mutex. 94 */ 95 void gov_update_cpu_data(struct dbs_data *dbs_data) 96 { 97 struct policy_dbs_info *policy_dbs; 98 99 list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) { 100 unsigned int j; 101 102 for_each_cpu(j, policy_dbs->policy->cpus) { 103 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 104 105 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, 106 dbs_data->io_is_busy); 107 if (dbs_data->ignore_nice_load) 108 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 109 } 110 } 111 } 112 EXPORT_SYMBOL_GPL(gov_update_cpu_data); 113 114 unsigned int dbs_update(struct cpufreq_policy *policy) 115 { 116 struct policy_dbs_info *policy_dbs = policy->governor_data; 117 struct dbs_data *dbs_data = policy_dbs->dbs_data; 118 unsigned int ignore_nice = dbs_data->ignore_nice_load; 119 unsigned int max_load = 0, idle_periods = UINT_MAX; 120 unsigned int sampling_rate, io_busy, j; 121 122 /* 123 * Sometimes governors may use an additional multiplier to increase 124 * sample delays temporarily. Apply that multiplier to sampling_rate 125 * so as to keep the wake-up-from-idle detection logic a bit 126 * conservative. 127 */ 128 sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult; 129 /* 130 * For the purpose of ondemand, waiting for disk IO is an indication 131 * that you're performance critical, and not that the system is actually 132 * idle, so do not add the iowait time to the CPU idle time then. 133 */ 134 io_busy = dbs_data->io_is_busy; 135 136 /* Get Absolute Load */ 137 for_each_cpu(j, policy->cpus) { 138 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 139 u64 update_time, cur_idle_time; 140 unsigned int idle_time, time_elapsed; 141 unsigned int load; 142 143 cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy); 144 145 time_elapsed = update_time - j_cdbs->prev_update_time; 146 j_cdbs->prev_update_time = update_time; 147 148 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle; 149 j_cdbs->prev_cpu_idle = cur_idle_time; 150 151 if (ignore_nice) { 152 u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 153 154 idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC); 155 j_cdbs->prev_cpu_nice = cur_nice; 156 } 157 158 if (unlikely(!time_elapsed)) { 159 /* 160 * That can only happen when this function is called 161 * twice in a row with a very short interval between the 162 * calls, so the previous load value can be used then. 163 */ 164 load = j_cdbs->prev_load; 165 } else if (unlikely((int)idle_time > 2 * sampling_rate && 166 j_cdbs->prev_load)) { 167 /* 168 * If the CPU had gone completely idle and a task has 169 * just woken up on this CPU now, it would be unfair to 170 * calculate 'load' the usual way for this elapsed 171 * time-window, because it would show near-zero load, 172 * irrespective of how CPU intensive that task actually 173 * was. This is undesirable for latency-sensitive bursty 174 * workloads. 175 * 176 * To avoid this, reuse the 'load' from the previous 177 * time-window and give this task a chance to start with 178 * a reasonably high CPU frequency. However, that 179 * shouldn't be over-done, lest we get stuck at a high 180 * load (high frequency) for too long, even when the 181 * current system load has actually dropped down, so 182 * clear prev_load to guarantee that the load will be 183 * computed again next time. 184 * 185 * Detecting this situation is easy: an unusually large 186 * 'idle_time' (as compared to the sampling rate) 187 * indicates this scenario. 188 */ 189 load = j_cdbs->prev_load; 190 j_cdbs->prev_load = 0; 191 } else { 192 if (time_elapsed >= idle_time) { 193 load = 100 * (time_elapsed - idle_time) / time_elapsed; 194 } else { 195 /* 196 * That can happen if idle_time is returned by 197 * get_cpu_idle_time_jiffy(). In that case 198 * idle_time is roughly equal to the difference 199 * between time_elapsed and "busy time" obtained 200 * from CPU statistics. Then, the "busy time" 201 * can end up being greater than time_elapsed 202 * (for example, if jiffies_64 and the CPU 203 * statistics are updated by different CPUs), 204 * so idle_time may in fact be negative. That 205 * means, though, that the CPU was busy all 206 * the time (on the rough average) during the 207 * last sampling interval and 100 can be 208 * returned as the load. 209 */ 210 load = (int)idle_time < 0 ? 100 : 0; 211 } 212 j_cdbs->prev_load = load; 213 } 214 215 if (unlikely((int)idle_time > 2 * sampling_rate)) { 216 unsigned int periods = idle_time / sampling_rate; 217 218 if (periods < idle_periods) 219 idle_periods = periods; 220 } 221 222 if (load > max_load) 223 max_load = load; 224 } 225 226 policy_dbs->idle_periods = idle_periods; 227 228 return max_load; 229 } 230 EXPORT_SYMBOL_GPL(dbs_update); 231 232 static void dbs_work_handler(struct work_struct *work) 233 { 234 struct policy_dbs_info *policy_dbs; 235 struct cpufreq_policy *policy; 236 struct dbs_governor *gov; 237 238 policy_dbs = container_of(work, struct policy_dbs_info, work); 239 policy = policy_dbs->policy; 240 gov = dbs_governor_of(policy); 241 242 /* 243 * Make sure cpufreq_governor_limits() isn't evaluating load or the 244 * ondemand governor isn't updating the sampling rate in parallel. 245 */ 246 mutex_lock(&policy_dbs->update_mutex); 247 gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy)); 248 mutex_unlock(&policy_dbs->update_mutex); 249 250 /* Allow the utilization update handler to queue up more work. */ 251 atomic_set(&policy_dbs->work_count, 0); 252 /* 253 * If the update below is reordered with respect to the sample delay 254 * modification, the utilization update handler may end up using a stale 255 * sample delay value. 256 */ 257 smp_wmb(); 258 policy_dbs->work_in_progress = false; 259 } 260 261 static void dbs_irq_work(struct irq_work *irq_work) 262 { 263 struct policy_dbs_info *policy_dbs; 264 265 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work); 266 schedule_work_on(smp_processor_id(), &policy_dbs->work); 267 } 268 269 static void dbs_update_util_handler(struct update_util_data *data, u64 time, 270 unsigned int flags) 271 { 272 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util); 273 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs; 274 u64 delta_ns, lst; 275 276 if (!cpufreq_this_cpu_can_update(policy_dbs->policy)) 277 return; 278 279 /* 280 * The work may not be allowed to be queued up right now. 281 * Possible reasons: 282 * - Work has already been queued up or is in progress. 283 * - It is too early (too little time from the previous sample). 284 */ 285 if (policy_dbs->work_in_progress) 286 return; 287 288 /* 289 * If the reads below are reordered before the check above, the value 290 * of sample_delay_ns used in the computation may be stale. 291 */ 292 smp_rmb(); 293 lst = READ_ONCE(policy_dbs->last_sample_time); 294 delta_ns = time - lst; 295 if ((s64)delta_ns < policy_dbs->sample_delay_ns) 296 return; 297 298 /* 299 * If the policy is not shared, the irq_work may be queued up right away 300 * at this point. Otherwise, we need to ensure that only one of the 301 * CPUs sharing the policy will do that. 302 */ 303 if (policy_dbs->is_shared) { 304 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1)) 305 return; 306 307 /* 308 * If another CPU updated last_sample_time in the meantime, we 309 * shouldn't be here, so clear the work counter and bail out. 310 */ 311 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) { 312 atomic_set(&policy_dbs->work_count, 0); 313 return; 314 } 315 } 316 317 policy_dbs->last_sample_time = time; 318 policy_dbs->work_in_progress = true; 319 irq_work_queue(&policy_dbs->irq_work); 320 } 321 322 static void gov_set_update_util(struct policy_dbs_info *policy_dbs, 323 unsigned int delay_us) 324 { 325 struct cpufreq_policy *policy = policy_dbs->policy; 326 int cpu; 327 328 gov_update_sample_delay(policy_dbs, delay_us); 329 policy_dbs->last_sample_time = 0; 330 331 for_each_cpu(cpu, policy->cpus) { 332 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu); 333 334 cpufreq_add_update_util_hook(cpu, &cdbs->update_util, 335 dbs_update_util_handler); 336 } 337 } 338 339 static inline void gov_clear_update_util(struct cpufreq_policy *policy) 340 { 341 int i; 342 343 for_each_cpu(i, policy->cpus) 344 cpufreq_remove_update_util_hook(i); 345 346 synchronize_rcu(); 347 } 348 349 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy, 350 struct dbs_governor *gov) 351 { 352 struct policy_dbs_info *policy_dbs; 353 int j; 354 355 /* Allocate memory for per-policy governor data. */ 356 policy_dbs = gov->alloc(); 357 if (!policy_dbs) 358 return NULL; 359 360 policy_dbs->policy = policy; 361 mutex_init(&policy_dbs->update_mutex); 362 atomic_set(&policy_dbs->work_count, 0); 363 init_irq_work(&policy_dbs->irq_work, dbs_irq_work); 364 INIT_WORK(&policy_dbs->work, dbs_work_handler); 365 366 /* Set policy_dbs for all CPUs, online+offline */ 367 for_each_cpu(j, policy->related_cpus) { 368 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 369 370 j_cdbs->policy_dbs = policy_dbs; 371 } 372 return policy_dbs; 373 } 374 375 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs, 376 struct dbs_governor *gov) 377 { 378 int j; 379 380 mutex_destroy(&policy_dbs->update_mutex); 381 382 for_each_cpu(j, policy_dbs->policy->related_cpus) { 383 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 384 385 j_cdbs->policy_dbs = NULL; 386 j_cdbs->update_util.func = NULL; 387 } 388 gov->free(policy_dbs); 389 } 390 391 int cpufreq_dbs_governor_init(struct cpufreq_policy *policy) 392 { 393 struct dbs_governor *gov = dbs_governor_of(policy); 394 struct dbs_data *dbs_data; 395 struct policy_dbs_info *policy_dbs; 396 int ret = 0; 397 398 /* State should be equivalent to EXIT */ 399 if (policy->governor_data) 400 return -EBUSY; 401 402 policy_dbs = alloc_policy_dbs_info(policy, gov); 403 if (!policy_dbs) 404 return -ENOMEM; 405 406 /* Protect gov->gdbs_data against concurrent updates. */ 407 mutex_lock(&gov_dbs_data_mutex); 408 409 dbs_data = gov->gdbs_data; 410 if (dbs_data) { 411 if (WARN_ON(have_governor_per_policy())) { 412 ret = -EINVAL; 413 goto free_policy_dbs_info; 414 } 415 policy_dbs->dbs_data = dbs_data; 416 policy->governor_data = policy_dbs; 417 418 gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list); 419 goto out; 420 } 421 422 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL); 423 if (!dbs_data) { 424 ret = -ENOMEM; 425 goto free_policy_dbs_info; 426 } 427 428 gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list); 429 430 ret = gov->init(dbs_data); 431 if (ret) 432 goto free_policy_dbs_info; 433 434 /* 435 * The sampling interval should not be less than the transition latency 436 * of the CPU and it also cannot be too small for dbs_update() to work 437 * correctly. 438 */ 439 dbs_data->sampling_rate = max_t(unsigned int, 440 CPUFREQ_DBS_MIN_SAMPLING_INTERVAL, 441 cpufreq_policy_transition_delay_us(policy)); 442 443 if (!have_governor_per_policy()) 444 gov->gdbs_data = dbs_data; 445 446 policy_dbs->dbs_data = dbs_data; 447 policy->governor_data = policy_dbs; 448 449 gov->kobj_type.sysfs_ops = &governor_sysfs_ops; 450 ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type, 451 get_governor_parent_kobj(policy), 452 "%s", gov->gov.name); 453 if (!ret) 454 goto out; 455 456 /* Failure, so roll back. */ 457 pr_err("initialization failed (dbs_data kobject init error %d)\n", ret); 458 459 kobject_put(&dbs_data->attr_set.kobj); 460 461 policy->governor_data = NULL; 462 463 if (!have_governor_per_policy()) 464 gov->gdbs_data = NULL; 465 gov->exit(dbs_data); 466 kfree(dbs_data); 467 468 free_policy_dbs_info: 469 free_policy_dbs_info(policy_dbs, gov); 470 471 out: 472 mutex_unlock(&gov_dbs_data_mutex); 473 return ret; 474 } 475 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init); 476 477 void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy) 478 { 479 struct dbs_governor *gov = dbs_governor_of(policy); 480 struct policy_dbs_info *policy_dbs = policy->governor_data; 481 struct dbs_data *dbs_data = policy_dbs->dbs_data; 482 unsigned int count; 483 484 /* Protect gov->gdbs_data against concurrent updates. */ 485 mutex_lock(&gov_dbs_data_mutex); 486 487 count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list); 488 489 policy->governor_data = NULL; 490 491 if (!count) { 492 if (!have_governor_per_policy()) 493 gov->gdbs_data = NULL; 494 495 gov->exit(dbs_data); 496 kfree(dbs_data); 497 } 498 499 free_policy_dbs_info(policy_dbs, gov); 500 501 mutex_unlock(&gov_dbs_data_mutex); 502 } 503 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit); 504 505 int cpufreq_dbs_governor_start(struct cpufreq_policy *policy) 506 { 507 struct dbs_governor *gov = dbs_governor_of(policy); 508 struct policy_dbs_info *policy_dbs = policy->governor_data; 509 struct dbs_data *dbs_data = policy_dbs->dbs_data; 510 unsigned int sampling_rate, ignore_nice, j; 511 unsigned int io_busy; 512 513 if (!policy->cur) 514 return -EINVAL; 515 516 policy_dbs->is_shared = policy_is_shared(policy); 517 policy_dbs->rate_mult = 1; 518 519 sampling_rate = dbs_data->sampling_rate; 520 ignore_nice = dbs_data->ignore_nice_load; 521 io_busy = dbs_data->io_is_busy; 522 523 for_each_cpu(j, policy->cpus) { 524 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 525 526 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy); 527 /* 528 * Make the first invocation of dbs_update() compute the load. 529 */ 530 j_cdbs->prev_load = 0; 531 532 if (ignore_nice) 533 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 534 } 535 536 gov->start(policy); 537 538 gov_set_update_util(policy_dbs, sampling_rate); 539 return 0; 540 } 541 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start); 542 543 void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy) 544 { 545 struct policy_dbs_info *policy_dbs = policy->governor_data; 546 547 gov_clear_update_util(policy_dbs->policy); 548 irq_work_sync(&policy_dbs->irq_work); 549 cancel_work_sync(&policy_dbs->work); 550 atomic_set(&policy_dbs->work_count, 0); 551 policy_dbs->work_in_progress = false; 552 } 553 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop); 554 555 void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy) 556 { 557 struct policy_dbs_info *policy_dbs; 558 559 /* Protect gov->gdbs_data against cpufreq_dbs_governor_exit() */ 560 mutex_lock(&gov_dbs_data_mutex); 561 policy_dbs = policy->governor_data; 562 if (!policy_dbs) 563 goto out; 564 565 mutex_lock(&policy_dbs->update_mutex); 566 cpufreq_policy_apply_limits(policy); 567 gov_update_sample_delay(policy_dbs, 0); 568 mutex_unlock(&policy_dbs->update_mutex); 569 570 out: 571 mutex_unlock(&gov_dbs_data_mutex); 572 } 573 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits); 574