1 /*
2  * drivers/cpufreq/cpufreq_governor.c
3  *
4  * CPUFREQ governors common code
5  *
6  * Copyright	(C) 2001 Russell King
7  *		(C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8  *		(C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9  *		(C) 2009 Alexander Clouter <alex@digriz.org.uk>
10  *		(c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22 
23 #include "cpufreq_governor.h"
24 
25 static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
26 {
27 	if (have_governor_per_policy())
28 		return dbs_data->cdata->attr_group_gov_pol;
29 	else
30 		return dbs_data->cdata->attr_group_gov_sys;
31 }
32 
33 void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
34 {
35 	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36 	struct od_dbs_tuners *od_tuners = dbs_data->tuners;
37 	struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38 	struct cpufreq_policy *policy = cdbs->shared->policy;
39 	unsigned int sampling_rate;
40 	unsigned int max_load = 0;
41 	unsigned int ignore_nice;
42 	unsigned int j;
43 
44 	if (dbs_data->cdata->governor == GOV_ONDEMAND) {
45 		struct od_cpu_dbs_info_s *od_dbs_info =
46 				dbs_data->cdata->get_cpu_dbs_info_s(cpu);
47 
48 		/*
49 		 * Sometimes, the ondemand governor uses an additional
50 		 * multiplier to give long delays. So apply this multiplier to
51 		 * the 'sampling_rate', so as to keep the wake-up-from-idle
52 		 * detection logic a bit conservative.
53 		 */
54 		sampling_rate = od_tuners->sampling_rate;
55 		sampling_rate *= od_dbs_info->rate_mult;
56 
57 		ignore_nice = od_tuners->ignore_nice_load;
58 	} else {
59 		sampling_rate = cs_tuners->sampling_rate;
60 		ignore_nice = cs_tuners->ignore_nice_load;
61 	}
62 
63 	/* Get Absolute Load */
64 	for_each_cpu(j, policy->cpus) {
65 		struct cpu_dbs_info *j_cdbs;
66 		u64 cur_wall_time, cur_idle_time;
67 		unsigned int idle_time, wall_time;
68 		unsigned int load;
69 		int io_busy = 0;
70 
71 		j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
72 
73 		/*
74 		 * For the purpose of ondemand, waiting for disk IO is
75 		 * an indication that you're performance critical, and
76 		 * not that the system is actually idle. So do not add
77 		 * the iowait time to the cpu idle time.
78 		 */
79 		if (dbs_data->cdata->governor == GOV_ONDEMAND)
80 			io_busy = od_tuners->io_is_busy;
81 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
82 
83 		wall_time = (unsigned int)
84 			(cur_wall_time - j_cdbs->prev_cpu_wall);
85 		j_cdbs->prev_cpu_wall = cur_wall_time;
86 
87 		idle_time = (unsigned int)
88 			(cur_idle_time - j_cdbs->prev_cpu_idle);
89 		j_cdbs->prev_cpu_idle = cur_idle_time;
90 
91 		if (ignore_nice) {
92 			u64 cur_nice;
93 			unsigned long cur_nice_jiffies;
94 
95 			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
96 					 cdbs->prev_cpu_nice;
97 			/*
98 			 * Assumption: nice time between sampling periods will
99 			 * be less than 2^32 jiffies for 32 bit sys
100 			 */
101 			cur_nice_jiffies = (unsigned long)
102 					cputime64_to_jiffies64(cur_nice);
103 
104 			cdbs->prev_cpu_nice =
105 				kcpustat_cpu(j).cpustat[CPUTIME_NICE];
106 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
107 		}
108 
109 		if (unlikely(!wall_time || wall_time < idle_time))
110 			continue;
111 
112 		/*
113 		 * If the CPU had gone completely idle, and a task just woke up
114 		 * on this CPU now, it would be unfair to calculate 'load' the
115 		 * usual way for this elapsed time-window, because it will show
116 		 * near-zero load, irrespective of how CPU intensive that task
117 		 * actually is. This is undesirable for latency-sensitive bursty
118 		 * workloads.
119 		 *
120 		 * To avoid this, we reuse the 'load' from the previous
121 		 * time-window and give this task a chance to start with a
122 		 * reasonably high CPU frequency. (However, we shouldn't over-do
123 		 * this copy, lest we get stuck at a high load (high frequency)
124 		 * for too long, even when the current system load has actually
125 		 * dropped down. So we perform the copy only once, upon the
126 		 * first wake-up from idle.)
127 		 *
128 		 * Detecting this situation is easy: the governor's deferrable
129 		 * timer would not have fired during CPU-idle periods. Hence
130 		 * an unusually large 'wall_time' (as compared to the sampling
131 		 * rate) indicates this scenario.
132 		 *
133 		 * prev_load can be zero in two cases and we must recalculate it
134 		 * for both cases:
135 		 * - during long idle intervals
136 		 * - explicitly set to zero
137 		 */
138 		if (unlikely(wall_time > (2 * sampling_rate) &&
139 			     j_cdbs->prev_load)) {
140 			load = j_cdbs->prev_load;
141 
142 			/*
143 			 * Perform a destructive copy, to ensure that we copy
144 			 * the previous load only once, upon the first wake-up
145 			 * from idle.
146 			 */
147 			j_cdbs->prev_load = 0;
148 		} else {
149 			load = 100 * (wall_time - idle_time) / wall_time;
150 			j_cdbs->prev_load = load;
151 		}
152 
153 		if (load > max_load)
154 			max_load = load;
155 	}
156 
157 	dbs_data->cdata->gov_check_cpu(cpu, max_load);
158 }
159 EXPORT_SYMBOL_GPL(dbs_check_cpu);
160 
161 static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
162 		unsigned int delay)
163 {
164 	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
165 
166 	mod_delayed_work_on(cpu, system_wq, &cdbs->dwork, delay);
167 }
168 
169 void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
170 		unsigned int delay, bool all_cpus)
171 {
172 	int i;
173 
174 	if (!all_cpus) {
175 		/*
176 		 * Use raw_smp_processor_id() to avoid preemptible warnings.
177 		 * We know that this is only called with all_cpus == false from
178 		 * works that have been queued with *_work_on() functions and
179 		 * those works are canceled during CPU_DOWN_PREPARE so they
180 		 * can't possibly run on any other CPU.
181 		 */
182 		__gov_queue_work(raw_smp_processor_id(), dbs_data, delay);
183 	} else {
184 		for_each_cpu(i, policy->cpus)
185 			__gov_queue_work(i, dbs_data, delay);
186 	}
187 }
188 EXPORT_SYMBOL_GPL(gov_queue_work);
189 
190 static inline void gov_cancel_work(struct dbs_data *dbs_data,
191 		struct cpufreq_policy *policy)
192 {
193 	struct cpu_dbs_info *cdbs;
194 	int i;
195 
196 	for_each_cpu(i, policy->cpus) {
197 		cdbs = dbs_data->cdata->get_cpu_cdbs(i);
198 		cancel_delayed_work_sync(&cdbs->dwork);
199 	}
200 }
201 
202 /* Will return if we need to evaluate cpu load again or not */
203 static bool need_load_eval(struct cpu_common_dbs_info *shared,
204 			   unsigned int sampling_rate)
205 {
206 	if (policy_is_shared(shared->policy)) {
207 		ktime_t time_now = ktime_get();
208 		s64 delta_us = ktime_us_delta(time_now, shared->time_stamp);
209 
210 		/* Do nothing if we recently have sampled */
211 		if (delta_us < (s64)(sampling_rate / 2))
212 			return false;
213 		else
214 			shared->time_stamp = time_now;
215 	}
216 
217 	return true;
218 }
219 
220 static void dbs_timer(struct work_struct *work)
221 {
222 	struct cpu_dbs_info *cdbs = container_of(work, struct cpu_dbs_info,
223 						 dwork.work);
224 	struct cpu_common_dbs_info *shared = cdbs->shared;
225 	struct cpufreq_policy *policy;
226 	struct dbs_data *dbs_data;
227 	unsigned int sampling_rate, delay;
228 	bool modify_all = true;
229 
230 	mutex_lock(&shared->timer_mutex);
231 
232 	policy = shared->policy;
233 
234 	/*
235 	 * Governor might already be disabled and there is no point continuing
236 	 * with the work-handler.
237 	 */
238 	if (!policy)
239 		goto unlock;
240 
241 	dbs_data = policy->governor_data;
242 
243 	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
244 		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
245 
246 		sampling_rate = cs_tuners->sampling_rate;
247 	} else {
248 		struct od_dbs_tuners *od_tuners = dbs_data->tuners;
249 
250 		sampling_rate = od_tuners->sampling_rate;
251 	}
252 
253 	if (!need_load_eval(cdbs->shared, sampling_rate))
254 		modify_all = false;
255 
256 	delay = dbs_data->cdata->gov_dbs_timer(cdbs, dbs_data, modify_all);
257 	gov_queue_work(dbs_data, policy, delay, modify_all);
258 
259 unlock:
260 	mutex_unlock(&shared->timer_mutex);
261 }
262 
263 static void set_sampling_rate(struct dbs_data *dbs_data,
264 		unsigned int sampling_rate)
265 {
266 	if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
267 		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
268 		cs_tuners->sampling_rate = sampling_rate;
269 	} else {
270 		struct od_dbs_tuners *od_tuners = dbs_data->tuners;
271 		od_tuners->sampling_rate = sampling_rate;
272 	}
273 }
274 
275 static int alloc_common_dbs_info(struct cpufreq_policy *policy,
276 				 struct common_dbs_data *cdata)
277 {
278 	struct cpu_common_dbs_info *shared;
279 	int j;
280 
281 	/* Allocate memory for the common information for policy->cpus */
282 	shared = kzalloc(sizeof(*shared), GFP_KERNEL);
283 	if (!shared)
284 		return -ENOMEM;
285 
286 	/* Set shared for all CPUs, online+offline */
287 	for_each_cpu(j, policy->related_cpus)
288 		cdata->get_cpu_cdbs(j)->shared = shared;
289 
290 	return 0;
291 }
292 
293 static void free_common_dbs_info(struct cpufreq_policy *policy,
294 				 struct common_dbs_data *cdata)
295 {
296 	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
297 	struct cpu_common_dbs_info *shared = cdbs->shared;
298 	int j;
299 
300 	for_each_cpu(j, policy->cpus)
301 		cdata->get_cpu_cdbs(j)->shared = NULL;
302 
303 	kfree(shared);
304 }
305 
306 static int cpufreq_governor_init(struct cpufreq_policy *policy,
307 				 struct dbs_data *dbs_data,
308 				 struct common_dbs_data *cdata)
309 {
310 	unsigned int latency;
311 	int ret;
312 
313 	/* State should be equivalent to EXIT */
314 	if (policy->governor_data)
315 		return -EBUSY;
316 
317 	if (dbs_data) {
318 		if (WARN_ON(have_governor_per_policy()))
319 			return -EINVAL;
320 
321 		ret = alloc_common_dbs_info(policy, cdata);
322 		if (ret)
323 			return ret;
324 
325 		dbs_data->usage_count++;
326 		policy->governor_data = dbs_data;
327 		return 0;
328 	}
329 
330 	dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
331 	if (!dbs_data)
332 		return -ENOMEM;
333 
334 	ret = alloc_common_dbs_info(policy, cdata);
335 	if (ret)
336 		goto free_dbs_data;
337 
338 	dbs_data->cdata = cdata;
339 	dbs_data->usage_count = 1;
340 
341 	ret = cdata->init(dbs_data, !policy->governor->initialized);
342 	if (ret)
343 		goto free_common_dbs_info;
344 
345 	/* policy latency is in ns. Convert it to us first */
346 	latency = policy->cpuinfo.transition_latency / 1000;
347 	if (latency == 0)
348 		latency = 1;
349 
350 	/* Bring kernel and HW constraints together */
351 	dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
352 					  MIN_LATENCY_MULTIPLIER * latency);
353 	set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
354 					latency * LATENCY_MULTIPLIER));
355 
356 	if (!have_governor_per_policy())
357 		cdata->gdbs_data = dbs_data;
358 
359 	ret = sysfs_create_group(get_governor_parent_kobj(policy),
360 				 get_sysfs_attr(dbs_data));
361 	if (ret)
362 		goto reset_gdbs_data;
363 
364 	policy->governor_data = dbs_data;
365 
366 	return 0;
367 
368 reset_gdbs_data:
369 	if (!have_governor_per_policy())
370 		cdata->gdbs_data = NULL;
371 	cdata->exit(dbs_data, !policy->governor->initialized);
372 free_common_dbs_info:
373 	free_common_dbs_info(policy, cdata);
374 free_dbs_data:
375 	kfree(dbs_data);
376 	return ret;
377 }
378 
379 static int cpufreq_governor_exit(struct cpufreq_policy *policy,
380 				 struct dbs_data *dbs_data)
381 {
382 	struct common_dbs_data *cdata = dbs_data->cdata;
383 	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
384 
385 	/* State should be equivalent to INIT */
386 	if (!cdbs->shared || cdbs->shared->policy)
387 		return -EBUSY;
388 
389 	policy->governor_data = NULL;
390 	if (!--dbs_data->usage_count) {
391 		sysfs_remove_group(get_governor_parent_kobj(policy),
392 				   get_sysfs_attr(dbs_data));
393 
394 		if (!have_governor_per_policy())
395 			cdata->gdbs_data = NULL;
396 
397 		cdata->exit(dbs_data, policy->governor->initialized == 1);
398 		kfree(dbs_data);
399 	}
400 
401 	free_common_dbs_info(policy, cdata);
402 	return 0;
403 }
404 
405 static int cpufreq_governor_start(struct cpufreq_policy *policy,
406 				  struct dbs_data *dbs_data)
407 {
408 	struct common_dbs_data *cdata = dbs_data->cdata;
409 	unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
410 	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
411 	struct cpu_common_dbs_info *shared = cdbs->shared;
412 	int io_busy = 0;
413 
414 	if (!policy->cur)
415 		return -EINVAL;
416 
417 	/* State should be equivalent to INIT */
418 	if (!shared || shared->policy)
419 		return -EBUSY;
420 
421 	if (cdata->governor == GOV_CONSERVATIVE) {
422 		struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
423 
424 		sampling_rate = cs_tuners->sampling_rate;
425 		ignore_nice = cs_tuners->ignore_nice_load;
426 	} else {
427 		struct od_dbs_tuners *od_tuners = dbs_data->tuners;
428 
429 		sampling_rate = od_tuners->sampling_rate;
430 		ignore_nice = od_tuners->ignore_nice_load;
431 		io_busy = od_tuners->io_is_busy;
432 	}
433 
434 	shared->policy = policy;
435 	shared->time_stamp = ktime_get();
436 	mutex_init(&shared->timer_mutex);
437 
438 	for_each_cpu(j, policy->cpus) {
439 		struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j);
440 		unsigned int prev_load;
441 
442 		j_cdbs->prev_cpu_idle =
443 			get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
444 
445 		prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
446 					    j_cdbs->prev_cpu_idle);
447 		j_cdbs->prev_load = 100 * prev_load /
448 				    (unsigned int)j_cdbs->prev_cpu_wall;
449 
450 		if (ignore_nice)
451 			j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
452 
453 		INIT_DEFERRABLE_WORK(&j_cdbs->dwork, dbs_timer);
454 	}
455 
456 	if (cdata->governor == GOV_CONSERVATIVE) {
457 		struct cs_cpu_dbs_info_s *cs_dbs_info =
458 			cdata->get_cpu_dbs_info_s(cpu);
459 
460 		cs_dbs_info->down_skip = 0;
461 		cs_dbs_info->requested_freq = policy->cur;
462 	} else {
463 		struct od_ops *od_ops = cdata->gov_ops;
464 		struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
465 
466 		od_dbs_info->rate_mult = 1;
467 		od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
468 		od_ops->powersave_bias_init_cpu(cpu);
469 	}
470 
471 	gov_queue_work(dbs_data, policy, delay_for_sampling_rate(sampling_rate),
472 		       true);
473 	return 0;
474 }
475 
476 static int cpufreq_governor_stop(struct cpufreq_policy *policy,
477 				 struct dbs_data *dbs_data)
478 {
479 	struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(policy->cpu);
480 	struct cpu_common_dbs_info *shared = cdbs->shared;
481 
482 	/* State should be equivalent to START */
483 	if (!shared || !shared->policy)
484 		return -EBUSY;
485 
486 	/*
487 	 * Work-handler must see this updated, as it should not proceed any
488 	 * further after governor is disabled. And so timer_mutex is taken while
489 	 * updating this value.
490 	 */
491 	mutex_lock(&shared->timer_mutex);
492 	shared->policy = NULL;
493 	mutex_unlock(&shared->timer_mutex);
494 
495 	gov_cancel_work(dbs_data, policy);
496 
497 	mutex_destroy(&shared->timer_mutex);
498 	return 0;
499 }
500 
501 static int cpufreq_governor_limits(struct cpufreq_policy *policy,
502 				   struct dbs_data *dbs_data)
503 {
504 	struct common_dbs_data *cdata = dbs_data->cdata;
505 	unsigned int cpu = policy->cpu;
506 	struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
507 
508 	/* State should be equivalent to START */
509 	if (!cdbs->shared || !cdbs->shared->policy)
510 		return -EBUSY;
511 
512 	mutex_lock(&cdbs->shared->timer_mutex);
513 	if (policy->max < cdbs->shared->policy->cur)
514 		__cpufreq_driver_target(cdbs->shared->policy, policy->max,
515 					CPUFREQ_RELATION_H);
516 	else if (policy->min > cdbs->shared->policy->cur)
517 		__cpufreq_driver_target(cdbs->shared->policy, policy->min,
518 					CPUFREQ_RELATION_L);
519 	dbs_check_cpu(dbs_data, cpu);
520 	mutex_unlock(&cdbs->shared->timer_mutex);
521 
522 	return 0;
523 }
524 
525 int cpufreq_governor_dbs(struct cpufreq_policy *policy,
526 			 struct common_dbs_data *cdata, unsigned int event)
527 {
528 	struct dbs_data *dbs_data;
529 	int ret;
530 
531 	/* Lock governor to block concurrent initialization of governor */
532 	mutex_lock(&cdata->mutex);
533 
534 	if (have_governor_per_policy())
535 		dbs_data = policy->governor_data;
536 	else
537 		dbs_data = cdata->gdbs_data;
538 
539 	if (!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT)) {
540 		ret = -EINVAL;
541 		goto unlock;
542 	}
543 
544 	switch (event) {
545 	case CPUFREQ_GOV_POLICY_INIT:
546 		ret = cpufreq_governor_init(policy, dbs_data, cdata);
547 		break;
548 	case CPUFREQ_GOV_POLICY_EXIT:
549 		ret = cpufreq_governor_exit(policy, dbs_data);
550 		break;
551 	case CPUFREQ_GOV_START:
552 		ret = cpufreq_governor_start(policy, dbs_data);
553 		break;
554 	case CPUFREQ_GOV_STOP:
555 		ret = cpufreq_governor_stop(policy, dbs_data);
556 		break;
557 	case CPUFREQ_GOV_LIMITS:
558 		ret = cpufreq_governor_limits(policy, dbs_data);
559 		break;
560 	default:
561 		ret = -EINVAL;
562 	}
563 
564 unlock:
565 	mutex_unlock(&cdata->mutex);
566 
567 	return ret;
568 }
569 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);
570