1 /* 2 * drivers/cpufreq/cpufreq_governor.c 3 * 4 * CPUFREQ governors common code 5 * 6 * Copyright (C) 2001 Russell King 7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. 8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com> 9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk> 10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/slab.h> 22 23 #include "cpufreq_governor.h" 24 25 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs); 26 27 static DEFINE_MUTEX(gov_dbs_data_mutex); 28 29 /* Common sysfs tunables */ 30 /** 31 * store_sampling_rate - update sampling rate effective immediately if needed. 32 * 33 * If new rate is smaller than the old, simply updating 34 * dbs.sampling_rate might not be appropriate. For example, if the 35 * original sampling_rate was 1 second and the requested new sampling rate is 10 36 * ms because the user needs immediate reaction from ondemand governor, but not 37 * sure if higher frequency will be required or not, then, the governor may 38 * change the sampling rate too late; up to 1 second later. Thus, if we are 39 * reducing the sampling rate, we need to make the new value effective 40 * immediately. 41 * 42 * This must be called with dbs_data->mutex held, otherwise traversing 43 * policy_dbs_list isn't safe. 44 */ 45 ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf, 46 size_t count) 47 { 48 struct dbs_data *dbs_data = to_dbs_data(attr_set); 49 struct policy_dbs_info *policy_dbs; 50 int ret; 51 ret = sscanf(buf, "%u", &dbs_data->sampling_rate); 52 if (ret != 1) 53 return -EINVAL; 54 55 /* 56 * We are operating under dbs_data->mutex and so the list and its 57 * entries can't be freed concurrently. 58 */ 59 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) { 60 mutex_lock(&policy_dbs->update_mutex); 61 /* 62 * On 32-bit architectures this may race with the 63 * sample_delay_ns read in dbs_update_util_handler(), but that 64 * really doesn't matter. If the read returns a value that's 65 * too big, the sample will be skipped, but the next invocation 66 * of dbs_update_util_handler() (when the update has been 67 * completed) will take a sample. 68 * 69 * If this runs in parallel with dbs_work_handler(), we may end 70 * up overwriting the sample_delay_ns value that it has just 71 * written, but it will be corrected next time a sample is 72 * taken, so it shouldn't be significant. 73 */ 74 gov_update_sample_delay(policy_dbs, 0); 75 mutex_unlock(&policy_dbs->update_mutex); 76 } 77 78 return count; 79 } 80 EXPORT_SYMBOL_GPL(store_sampling_rate); 81 82 /** 83 * gov_update_cpu_data - Update CPU load data. 84 * @dbs_data: Top-level governor data pointer. 85 * 86 * Update CPU load data for all CPUs in the domain governed by @dbs_data 87 * (that may be a single policy or a bunch of them if governor tunables are 88 * system-wide). 89 * 90 * Call under the @dbs_data mutex. 91 */ 92 void gov_update_cpu_data(struct dbs_data *dbs_data) 93 { 94 struct policy_dbs_info *policy_dbs; 95 96 list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) { 97 unsigned int j; 98 99 for_each_cpu(j, policy_dbs->policy->cpus) { 100 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 101 102 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, 103 dbs_data->io_is_busy); 104 if (dbs_data->ignore_nice_load) 105 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 106 } 107 } 108 } 109 EXPORT_SYMBOL_GPL(gov_update_cpu_data); 110 111 unsigned int dbs_update(struct cpufreq_policy *policy) 112 { 113 struct policy_dbs_info *policy_dbs = policy->governor_data; 114 struct dbs_data *dbs_data = policy_dbs->dbs_data; 115 unsigned int ignore_nice = dbs_data->ignore_nice_load; 116 unsigned int max_load = 0, idle_periods = UINT_MAX; 117 unsigned int sampling_rate, io_busy, j; 118 119 /* 120 * Sometimes governors may use an additional multiplier to increase 121 * sample delays temporarily. Apply that multiplier to sampling_rate 122 * so as to keep the wake-up-from-idle detection logic a bit 123 * conservative. 124 */ 125 sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult; 126 /* 127 * For the purpose of ondemand, waiting for disk IO is an indication 128 * that you're performance critical, and not that the system is actually 129 * idle, so do not add the iowait time to the CPU idle time then. 130 */ 131 io_busy = dbs_data->io_is_busy; 132 133 /* Get Absolute Load */ 134 for_each_cpu(j, policy->cpus) { 135 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 136 u64 update_time, cur_idle_time; 137 unsigned int idle_time, time_elapsed; 138 unsigned int load; 139 140 cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy); 141 142 time_elapsed = update_time - j_cdbs->prev_update_time; 143 j_cdbs->prev_update_time = update_time; 144 145 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle; 146 j_cdbs->prev_cpu_idle = cur_idle_time; 147 148 if (ignore_nice) { 149 u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 150 151 idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC); 152 j_cdbs->prev_cpu_nice = cur_nice; 153 } 154 155 if (unlikely(!time_elapsed)) { 156 /* 157 * That can only happen when this function is called 158 * twice in a row with a very short interval between the 159 * calls, so the previous load value can be used then. 160 */ 161 load = j_cdbs->prev_load; 162 } else if (unlikely(time_elapsed > 2 * sampling_rate && 163 j_cdbs->prev_load)) { 164 /* 165 * If the CPU had gone completely idle and a task has 166 * just woken up on this CPU now, it would be unfair to 167 * calculate 'load' the usual way for this elapsed 168 * time-window, because it would show near-zero load, 169 * irrespective of how CPU intensive that task actually 170 * was. This is undesirable for latency-sensitive bursty 171 * workloads. 172 * 173 * To avoid this, reuse the 'load' from the previous 174 * time-window and give this task a chance to start with 175 * a reasonably high CPU frequency. However, that 176 * shouldn't be over-done, lest we get stuck at a high 177 * load (high frequency) for too long, even when the 178 * current system load has actually dropped down, so 179 * clear prev_load to guarantee that the load will be 180 * computed again next time. 181 * 182 * Detecting this situation is easy: the governor's 183 * utilization update handler would not have run during 184 * CPU-idle periods. Hence, an unusually large 185 * 'time_elapsed' (as compared to the sampling rate) 186 * indicates this scenario. 187 */ 188 load = j_cdbs->prev_load; 189 j_cdbs->prev_load = 0; 190 } else { 191 if (time_elapsed >= idle_time) { 192 load = 100 * (time_elapsed - idle_time) / time_elapsed; 193 } else { 194 /* 195 * That can happen if idle_time is returned by 196 * get_cpu_idle_time_jiffy(). In that case 197 * idle_time is roughly equal to the difference 198 * between time_elapsed and "busy time" obtained 199 * from CPU statistics. Then, the "busy time" 200 * can end up being greater than time_elapsed 201 * (for example, if jiffies_64 and the CPU 202 * statistics are updated by different CPUs), 203 * so idle_time may in fact be negative. That 204 * means, though, that the CPU was busy all 205 * the time (on the rough average) during the 206 * last sampling interval and 100 can be 207 * returned as the load. 208 */ 209 load = (int)idle_time < 0 ? 100 : 0; 210 } 211 j_cdbs->prev_load = load; 212 } 213 214 if (time_elapsed > 2 * sampling_rate) { 215 unsigned int periods = time_elapsed / sampling_rate; 216 217 if (periods < idle_periods) 218 idle_periods = periods; 219 } 220 221 if (load > max_load) 222 max_load = load; 223 } 224 225 policy_dbs->idle_periods = idle_periods; 226 227 return max_load; 228 } 229 EXPORT_SYMBOL_GPL(dbs_update); 230 231 static void dbs_work_handler(struct work_struct *work) 232 { 233 struct policy_dbs_info *policy_dbs; 234 struct cpufreq_policy *policy; 235 struct dbs_governor *gov; 236 237 policy_dbs = container_of(work, struct policy_dbs_info, work); 238 policy = policy_dbs->policy; 239 gov = dbs_governor_of(policy); 240 241 /* 242 * Make sure cpufreq_governor_limits() isn't evaluating load or the 243 * ondemand governor isn't updating the sampling rate in parallel. 244 */ 245 mutex_lock(&policy_dbs->update_mutex); 246 gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy)); 247 mutex_unlock(&policy_dbs->update_mutex); 248 249 /* Allow the utilization update handler to queue up more work. */ 250 atomic_set(&policy_dbs->work_count, 0); 251 /* 252 * If the update below is reordered with respect to the sample delay 253 * modification, the utilization update handler may end up using a stale 254 * sample delay value. 255 */ 256 smp_wmb(); 257 policy_dbs->work_in_progress = false; 258 } 259 260 static void dbs_irq_work(struct irq_work *irq_work) 261 { 262 struct policy_dbs_info *policy_dbs; 263 264 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work); 265 schedule_work_on(smp_processor_id(), &policy_dbs->work); 266 } 267 268 static void dbs_update_util_handler(struct update_util_data *data, u64 time, 269 unsigned int flags) 270 { 271 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util); 272 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs; 273 u64 delta_ns, lst; 274 275 if (!cpufreq_can_do_remote_dvfs(policy_dbs->policy)) 276 return; 277 278 /* 279 * The work may not be allowed to be queued up right now. 280 * Possible reasons: 281 * - Work has already been queued up or is in progress. 282 * - It is too early (too little time from the previous sample). 283 */ 284 if (policy_dbs->work_in_progress) 285 return; 286 287 /* 288 * If the reads below are reordered before the check above, the value 289 * of sample_delay_ns used in the computation may be stale. 290 */ 291 smp_rmb(); 292 lst = READ_ONCE(policy_dbs->last_sample_time); 293 delta_ns = time - lst; 294 if ((s64)delta_ns < policy_dbs->sample_delay_ns) 295 return; 296 297 /* 298 * If the policy is not shared, the irq_work may be queued up right away 299 * at this point. Otherwise, we need to ensure that only one of the 300 * CPUs sharing the policy will do that. 301 */ 302 if (policy_dbs->is_shared) { 303 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1)) 304 return; 305 306 /* 307 * If another CPU updated last_sample_time in the meantime, we 308 * shouldn't be here, so clear the work counter and bail out. 309 */ 310 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) { 311 atomic_set(&policy_dbs->work_count, 0); 312 return; 313 } 314 } 315 316 policy_dbs->last_sample_time = time; 317 policy_dbs->work_in_progress = true; 318 irq_work_queue(&policy_dbs->irq_work); 319 } 320 321 static void gov_set_update_util(struct policy_dbs_info *policy_dbs, 322 unsigned int delay_us) 323 { 324 struct cpufreq_policy *policy = policy_dbs->policy; 325 int cpu; 326 327 gov_update_sample_delay(policy_dbs, delay_us); 328 policy_dbs->last_sample_time = 0; 329 330 for_each_cpu(cpu, policy->cpus) { 331 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu); 332 333 cpufreq_add_update_util_hook(cpu, &cdbs->update_util, 334 dbs_update_util_handler); 335 } 336 } 337 338 static inline void gov_clear_update_util(struct cpufreq_policy *policy) 339 { 340 int i; 341 342 for_each_cpu(i, policy->cpus) 343 cpufreq_remove_update_util_hook(i); 344 345 synchronize_sched(); 346 } 347 348 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy, 349 struct dbs_governor *gov) 350 { 351 struct policy_dbs_info *policy_dbs; 352 int j; 353 354 /* Allocate memory for per-policy governor data. */ 355 policy_dbs = gov->alloc(); 356 if (!policy_dbs) 357 return NULL; 358 359 policy_dbs->policy = policy; 360 mutex_init(&policy_dbs->update_mutex); 361 atomic_set(&policy_dbs->work_count, 0); 362 init_irq_work(&policy_dbs->irq_work, dbs_irq_work); 363 INIT_WORK(&policy_dbs->work, dbs_work_handler); 364 365 /* Set policy_dbs for all CPUs, online+offline */ 366 for_each_cpu(j, policy->related_cpus) { 367 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 368 369 j_cdbs->policy_dbs = policy_dbs; 370 } 371 return policy_dbs; 372 } 373 374 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs, 375 struct dbs_governor *gov) 376 { 377 int j; 378 379 mutex_destroy(&policy_dbs->update_mutex); 380 381 for_each_cpu(j, policy_dbs->policy->related_cpus) { 382 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 383 384 j_cdbs->policy_dbs = NULL; 385 j_cdbs->update_util.func = NULL; 386 } 387 gov->free(policy_dbs); 388 } 389 390 int cpufreq_dbs_governor_init(struct cpufreq_policy *policy) 391 { 392 struct dbs_governor *gov = dbs_governor_of(policy); 393 struct dbs_data *dbs_data; 394 struct policy_dbs_info *policy_dbs; 395 int ret = 0; 396 397 /* State should be equivalent to EXIT */ 398 if (policy->governor_data) 399 return -EBUSY; 400 401 policy_dbs = alloc_policy_dbs_info(policy, gov); 402 if (!policy_dbs) 403 return -ENOMEM; 404 405 /* Protect gov->gdbs_data against concurrent updates. */ 406 mutex_lock(&gov_dbs_data_mutex); 407 408 dbs_data = gov->gdbs_data; 409 if (dbs_data) { 410 if (WARN_ON(have_governor_per_policy())) { 411 ret = -EINVAL; 412 goto free_policy_dbs_info; 413 } 414 policy_dbs->dbs_data = dbs_data; 415 policy->governor_data = policy_dbs; 416 417 gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list); 418 goto out; 419 } 420 421 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL); 422 if (!dbs_data) { 423 ret = -ENOMEM; 424 goto free_policy_dbs_info; 425 } 426 427 gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list); 428 429 ret = gov->init(dbs_data); 430 if (ret) 431 goto free_policy_dbs_info; 432 433 dbs_data->sampling_rate = cpufreq_policy_transition_delay_us(policy); 434 435 if (!have_governor_per_policy()) 436 gov->gdbs_data = dbs_data; 437 438 policy_dbs->dbs_data = dbs_data; 439 policy->governor_data = policy_dbs; 440 441 gov->kobj_type.sysfs_ops = &governor_sysfs_ops; 442 ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type, 443 get_governor_parent_kobj(policy), 444 "%s", gov->gov.name); 445 if (!ret) 446 goto out; 447 448 /* Failure, so roll back. */ 449 pr_err("initialization failed (dbs_data kobject init error %d)\n", ret); 450 451 policy->governor_data = NULL; 452 453 if (!have_governor_per_policy()) 454 gov->gdbs_data = NULL; 455 gov->exit(dbs_data); 456 kfree(dbs_data); 457 458 free_policy_dbs_info: 459 free_policy_dbs_info(policy_dbs, gov); 460 461 out: 462 mutex_unlock(&gov_dbs_data_mutex); 463 return ret; 464 } 465 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init); 466 467 void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy) 468 { 469 struct dbs_governor *gov = dbs_governor_of(policy); 470 struct policy_dbs_info *policy_dbs = policy->governor_data; 471 struct dbs_data *dbs_data = policy_dbs->dbs_data; 472 unsigned int count; 473 474 /* Protect gov->gdbs_data against concurrent updates. */ 475 mutex_lock(&gov_dbs_data_mutex); 476 477 count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list); 478 479 policy->governor_data = NULL; 480 481 if (!count) { 482 if (!have_governor_per_policy()) 483 gov->gdbs_data = NULL; 484 485 gov->exit(dbs_data); 486 kfree(dbs_data); 487 } 488 489 free_policy_dbs_info(policy_dbs, gov); 490 491 mutex_unlock(&gov_dbs_data_mutex); 492 } 493 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit); 494 495 int cpufreq_dbs_governor_start(struct cpufreq_policy *policy) 496 { 497 struct dbs_governor *gov = dbs_governor_of(policy); 498 struct policy_dbs_info *policy_dbs = policy->governor_data; 499 struct dbs_data *dbs_data = policy_dbs->dbs_data; 500 unsigned int sampling_rate, ignore_nice, j; 501 unsigned int io_busy; 502 503 if (!policy->cur) 504 return -EINVAL; 505 506 policy_dbs->is_shared = policy_is_shared(policy); 507 policy_dbs->rate_mult = 1; 508 509 sampling_rate = dbs_data->sampling_rate; 510 ignore_nice = dbs_data->ignore_nice_load; 511 io_busy = dbs_data->io_is_busy; 512 513 for_each_cpu(j, policy->cpus) { 514 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 515 516 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy); 517 /* 518 * Make the first invocation of dbs_update() compute the load. 519 */ 520 j_cdbs->prev_load = 0; 521 522 if (ignore_nice) 523 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 524 } 525 526 gov->start(policy); 527 528 gov_set_update_util(policy_dbs, sampling_rate); 529 return 0; 530 } 531 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start); 532 533 void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy) 534 { 535 struct policy_dbs_info *policy_dbs = policy->governor_data; 536 537 gov_clear_update_util(policy_dbs->policy); 538 irq_work_sync(&policy_dbs->irq_work); 539 cancel_work_sync(&policy_dbs->work); 540 atomic_set(&policy_dbs->work_count, 0); 541 policy_dbs->work_in_progress = false; 542 } 543 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop); 544 545 void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy) 546 { 547 struct policy_dbs_info *policy_dbs = policy->governor_data; 548 549 mutex_lock(&policy_dbs->update_mutex); 550 cpufreq_policy_apply_limits(policy); 551 gov_update_sample_delay(policy_dbs, 0); 552 553 mutex_unlock(&policy_dbs->update_mutex); 554 } 555 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits); 556