1 /* 2 * drivers/cpufreq/cpufreq_governor.c 3 * 4 * CPUFREQ governors common code 5 * 6 * Copyright (C) 2001 Russell King 7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. 8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com> 9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk> 10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/export.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/sched.h> 22 #include <linux/slab.h> 23 24 #include "cpufreq_governor.h" 25 26 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs); 27 28 static DEFINE_MUTEX(gov_dbs_data_mutex); 29 30 /* Common sysfs tunables */ 31 /** 32 * store_sampling_rate - update sampling rate effective immediately if needed. 33 * 34 * If new rate is smaller than the old, simply updating 35 * dbs.sampling_rate might not be appropriate. For example, if the 36 * original sampling_rate was 1 second and the requested new sampling rate is 10 37 * ms because the user needs immediate reaction from ondemand governor, but not 38 * sure if higher frequency will be required or not, then, the governor may 39 * change the sampling rate too late; up to 1 second later. Thus, if we are 40 * reducing the sampling rate, we need to make the new value effective 41 * immediately. 42 * 43 * This must be called with dbs_data->mutex held, otherwise traversing 44 * policy_dbs_list isn't safe. 45 */ 46 ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf, 47 size_t count) 48 { 49 struct dbs_data *dbs_data = to_dbs_data(attr_set); 50 struct policy_dbs_info *policy_dbs; 51 unsigned int rate; 52 int ret; 53 ret = sscanf(buf, "%u", &rate); 54 if (ret != 1) 55 return -EINVAL; 56 57 dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate); 58 59 /* 60 * We are operating under dbs_data->mutex and so the list and its 61 * entries can't be freed concurrently. 62 */ 63 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) { 64 mutex_lock(&policy_dbs->timer_mutex); 65 /* 66 * On 32-bit architectures this may race with the 67 * sample_delay_ns read in dbs_update_util_handler(), but that 68 * really doesn't matter. If the read returns a value that's 69 * too big, the sample will be skipped, but the next invocation 70 * of dbs_update_util_handler() (when the update has been 71 * completed) will take a sample. 72 * 73 * If this runs in parallel with dbs_work_handler(), we may end 74 * up overwriting the sample_delay_ns value that it has just 75 * written, but it will be corrected next time a sample is 76 * taken, so it shouldn't be significant. 77 */ 78 gov_update_sample_delay(policy_dbs, 0); 79 mutex_unlock(&policy_dbs->timer_mutex); 80 } 81 82 return count; 83 } 84 EXPORT_SYMBOL_GPL(store_sampling_rate); 85 86 /** 87 * gov_update_cpu_data - Update CPU load data. 88 * @dbs_data: Top-level governor data pointer. 89 * 90 * Update CPU load data for all CPUs in the domain governed by @dbs_data 91 * (that may be a single policy or a bunch of them if governor tunables are 92 * system-wide). 93 * 94 * Call under the @dbs_data mutex. 95 */ 96 void gov_update_cpu_data(struct dbs_data *dbs_data) 97 { 98 struct policy_dbs_info *policy_dbs; 99 100 list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) { 101 unsigned int j; 102 103 for_each_cpu(j, policy_dbs->policy->cpus) { 104 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 105 106 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, 107 dbs_data->io_is_busy); 108 if (dbs_data->ignore_nice_load) 109 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 110 } 111 } 112 } 113 EXPORT_SYMBOL_GPL(gov_update_cpu_data); 114 115 unsigned int dbs_update(struct cpufreq_policy *policy) 116 { 117 struct policy_dbs_info *policy_dbs = policy->governor_data; 118 struct dbs_data *dbs_data = policy_dbs->dbs_data; 119 unsigned int ignore_nice = dbs_data->ignore_nice_load; 120 unsigned int max_load = 0; 121 unsigned int sampling_rate, io_busy, j; 122 123 /* 124 * Sometimes governors may use an additional multiplier to increase 125 * sample delays temporarily. Apply that multiplier to sampling_rate 126 * so as to keep the wake-up-from-idle detection logic a bit 127 * conservative. 128 */ 129 sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult; 130 /* 131 * For the purpose of ondemand, waiting for disk IO is an indication 132 * that you're performance critical, and not that the system is actually 133 * idle, so do not add the iowait time to the CPU idle time then. 134 */ 135 io_busy = dbs_data->io_is_busy; 136 137 /* Get Absolute Load */ 138 for_each_cpu(j, policy->cpus) { 139 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 140 u64 update_time, cur_idle_time; 141 unsigned int idle_time, time_elapsed; 142 unsigned int load; 143 144 cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy); 145 146 time_elapsed = update_time - j_cdbs->prev_update_time; 147 j_cdbs->prev_update_time = update_time; 148 149 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle; 150 j_cdbs->prev_cpu_idle = cur_idle_time; 151 152 if (ignore_nice) { 153 u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 154 155 idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice); 156 j_cdbs->prev_cpu_nice = cur_nice; 157 } 158 159 if (unlikely(!time_elapsed)) { 160 /* 161 * That can only happen when this function is called 162 * twice in a row with a very short interval between the 163 * calls, so the previous load value can be used then. 164 */ 165 load = j_cdbs->prev_load; 166 } else if (unlikely(time_elapsed > 2 * sampling_rate && 167 j_cdbs->prev_load)) { 168 /* 169 * If the CPU had gone completely idle and a task has 170 * just woken up on this CPU now, it would be unfair to 171 * calculate 'load' the usual way for this elapsed 172 * time-window, because it would show near-zero load, 173 * irrespective of how CPU intensive that task actually 174 * was. This is undesirable for latency-sensitive bursty 175 * workloads. 176 * 177 * To avoid this, reuse the 'load' from the previous 178 * time-window and give this task a chance to start with 179 * a reasonably high CPU frequency. However, that 180 * shouldn't be over-done, lest we get stuck at a high 181 * load (high frequency) for too long, even when the 182 * current system load has actually dropped down, so 183 * clear prev_load to guarantee that the load will be 184 * computed again next time. 185 * 186 * Detecting this situation is easy: the governor's 187 * utilization update handler would not have run during 188 * CPU-idle periods. Hence, an unusually large 189 * 'time_elapsed' (as compared to the sampling rate) 190 * indicates this scenario. 191 */ 192 load = j_cdbs->prev_load; 193 j_cdbs->prev_load = 0; 194 } else { 195 if (time_elapsed >= idle_time) { 196 load = 100 * (time_elapsed - idle_time) / time_elapsed; 197 } else { 198 /* 199 * That can happen if idle_time is returned by 200 * get_cpu_idle_time_jiffy(). In that case 201 * idle_time is roughly equal to the difference 202 * between time_elapsed and "busy time" obtained 203 * from CPU statistics. Then, the "busy time" 204 * can end up being greater than time_elapsed 205 * (for example, if jiffies_64 and the CPU 206 * statistics are updated by different CPUs), 207 * so idle_time may in fact be negative. That 208 * means, though, that the CPU was busy all 209 * the time (on the rough average) during the 210 * last sampling interval and 100 can be 211 * returned as the load. 212 */ 213 load = (int)idle_time < 0 ? 100 : 0; 214 } 215 j_cdbs->prev_load = load; 216 } 217 218 if (load > max_load) 219 max_load = load; 220 } 221 return max_load; 222 } 223 EXPORT_SYMBOL_GPL(dbs_update); 224 225 static void dbs_work_handler(struct work_struct *work) 226 { 227 struct policy_dbs_info *policy_dbs; 228 struct cpufreq_policy *policy; 229 struct dbs_governor *gov; 230 231 policy_dbs = container_of(work, struct policy_dbs_info, work); 232 policy = policy_dbs->policy; 233 gov = dbs_governor_of(policy); 234 235 /* 236 * Make sure cpufreq_governor_limits() isn't evaluating load or the 237 * ondemand governor isn't updating the sampling rate in parallel. 238 */ 239 mutex_lock(&policy_dbs->timer_mutex); 240 gov_update_sample_delay(policy_dbs, gov->gov_dbs_timer(policy)); 241 mutex_unlock(&policy_dbs->timer_mutex); 242 243 /* Allow the utilization update handler to queue up more work. */ 244 atomic_set(&policy_dbs->work_count, 0); 245 /* 246 * If the update below is reordered with respect to the sample delay 247 * modification, the utilization update handler may end up using a stale 248 * sample delay value. 249 */ 250 smp_wmb(); 251 policy_dbs->work_in_progress = false; 252 } 253 254 static void dbs_irq_work(struct irq_work *irq_work) 255 { 256 struct policy_dbs_info *policy_dbs; 257 258 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work); 259 schedule_work_on(smp_processor_id(), &policy_dbs->work); 260 } 261 262 static void dbs_update_util_handler(struct update_util_data *data, u64 time, 263 unsigned long util, unsigned long max) 264 { 265 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util); 266 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs; 267 u64 delta_ns, lst; 268 269 /* 270 * The work may not be allowed to be queued up right now. 271 * Possible reasons: 272 * - Work has already been queued up or is in progress. 273 * - It is too early (too little time from the previous sample). 274 */ 275 if (policy_dbs->work_in_progress) 276 return; 277 278 /* 279 * If the reads below are reordered before the check above, the value 280 * of sample_delay_ns used in the computation may be stale. 281 */ 282 smp_rmb(); 283 lst = READ_ONCE(policy_dbs->last_sample_time); 284 delta_ns = time - lst; 285 if ((s64)delta_ns < policy_dbs->sample_delay_ns) 286 return; 287 288 /* 289 * If the policy is not shared, the irq_work may be queued up right away 290 * at this point. Otherwise, we need to ensure that only one of the 291 * CPUs sharing the policy will do that. 292 */ 293 if (policy_dbs->is_shared) { 294 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1)) 295 return; 296 297 /* 298 * If another CPU updated last_sample_time in the meantime, we 299 * shouldn't be here, so clear the work counter and bail out. 300 */ 301 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) { 302 atomic_set(&policy_dbs->work_count, 0); 303 return; 304 } 305 } 306 307 policy_dbs->last_sample_time = time; 308 policy_dbs->work_in_progress = true; 309 irq_work_queue(&policy_dbs->irq_work); 310 } 311 312 static void gov_set_update_util(struct policy_dbs_info *policy_dbs, 313 unsigned int delay_us) 314 { 315 struct cpufreq_policy *policy = policy_dbs->policy; 316 int cpu; 317 318 gov_update_sample_delay(policy_dbs, delay_us); 319 policy_dbs->last_sample_time = 0; 320 321 for_each_cpu(cpu, policy->cpus) { 322 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu); 323 324 cpufreq_add_update_util_hook(cpu, &cdbs->update_util, 325 dbs_update_util_handler); 326 } 327 } 328 329 static inline void gov_clear_update_util(struct cpufreq_policy *policy) 330 { 331 int i; 332 333 for_each_cpu(i, policy->cpus) 334 cpufreq_remove_update_util_hook(i); 335 336 synchronize_sched(); 337 } 338 339 static void gov_cancel_work(struct cpufreq_policy *policy) 340 { 341 struct policy_dbs_info *policy_dbs = policy->governor_data; 342 343 gov_clear_update_util(policy_dbs->policy); 344 irq_work_sync(&policy_dbs->irq_work); 345 cancel_work_sync(&policy_dbs->work); 346 atomic_set(&policy_dbs->work_count, 0); 347 policy_dbs->work_in_progress = false; 348 } 349 350 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy, 351 struct dbs_governor *gov) 352 { 353 struct policy_dbs_info *policy_dbs; 354 int j; 355 356 /* Allocate memory for per-policy governor data. */ 357 policy_dbs = gov->alloc(); 358 if (!policy_dbs) 359 return NULL; 360 361 policy_dbs->policy = policy; 362 mutex_init(&policy_dbs->timer_mutex); 363 atomic_set(&policy_dbs->work_count, 0); 364 init_irq_work(&policy_dbs->irq_work, dbs_irq_work); 365 INIT_WORK(&policy_dbs->work, dbs_work_handler); 366 367 /* Set policy_dbs for all CPUs, online+offline */ 368 for_each_cpu(j, policy->related_cpus) { 369 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 370 371 j_cdbs->policy_dbs = policy_dbs; 372 } 373 return policy_dbs; 374 } 375 376 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs, 377 struct dbs_governor *gov) 378 { 379 int j; 380 381 mutex_destroy(&policy_dbs->timer_mutex); 382 383 for_each_cpu(j, policy_dbs->policy->related_cpus) { 384 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 385 386 j_cdbs->policy_dbs = NULL; 387 j_cdbs->update_util.func = NULL; 388 } 389 gov->free(policy_dbs); 390 } 391 392 static int cpufreq_governor_init(struct cpufreq_policy *policy) 393 { 394 struct dbs_governor *gov = dbs_governor_of(policy); 395 struct dbs_data *dbs_data; 396 struct policy_dbs_info *policy_dbs; 397 unsigned int latency; 398 int ret = 0; 399 400 /* State should be equivalent to EXIT */ 401 if (policy->governor_data) 402 return -EBUSY; 403 404 policy_dbs = alloc_policy_dbs_info(policy, gov); 405 if (!policy_dbs) 406 return -ENOMEM; 407 408 /* Protect gov->gdbs_data against concurrent updates. */ 409 mutex_lock(&gov_dbs_data_mutex); 410 411 dbs_data = gov->gdbs_data; 412 if (dbs_data) { 413 if (WARN_ON(have_governor_per_policy())) { 414 ret = -EINVAL; 415 goto free_policy_dbs_info; 416 } 417 policy_dbs->dbs_data = dbs_data; 418 policy->governor_data = policy_dbs; 419 420 gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list); 421 goto out; 422 } 423 424 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL); 425 if (!dbs_data) { 426 ret = -ENOMEM; 427 goto free_policy_dbs_info; 428 } 429 430 gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list); 431 432 ret = gov->init(dbs_data, !policy->governor->initialized); 433 if (ret) 434 goto free_policy_dbs_info; 435 436 /* policy latency is in ns. Convert it to us first */ 437 latency = policy->cpuinfo.transition_latency / 1000; 438 if (latency == 0) 439 latency = 1; 440 441 /* Bring kernel and HW constraints together */ 442 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate, 443 MIN_LATENCY_MULTIPLIER * latency); 444 dbs_data->sampling_rate = max(dbs_data->min_sampling_rate, 445 LATENCY_MULTIPLIER * latency); 446 447 if (!have_governor_per_policy()) 448 gov->gdbs_data = dbs_data; 449 450 policy_dbs->dbs_data = dbs_data; 451 policy->governor_data = policy_dbs; 452 453 gov->kobj_type.sysfs_ops = &governor_sysfs_ops; 454 ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type, 455 get_governor_parent_kobj(policy), 456 "%s", gov->gov.name); 457 if (!ret) 458 goto out; 459 460 /* Failure, so roll back. */ 461 pr_err("cpufreq: Governor initialization failed (dbs_data kobject init error %d)\n", ret); 462 463 policy->governor_data = NULL; 464 465 if (!have_governor_per_policy()) 466 gov->gdbs_data = NULL; 467 gov->exit(dbs_data, !policy->governor->initialized); 468 kfree(dbs_data); 469 470 free_policy_dbs_info: 471 free_policy_dbs_info(policy_dbs, gov); 472 473 out: 474 mutex_unlock(&gov_dbs_data_mutex); 475 return ret; 476 } 477 478 static int cpufreq_governor_exit(struct cpufreq_policy *policy) 479 { 480 struct dbs_governor *gov = dbs_governor_of(policy); 481 struct policy_dbs_info *policy_dbs = policy->governor_data; 482 struct dbs_data *dbs_data = policy_dbs->dbs_data; 483 unsigned int count; 484 485 /* Protect gov->gdbs_data against concurrent updates. */ 486 mutex_lock(&gov_dbs_data_mutex); 487 488 count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list); 489 490 policy->governor_data = NULL; 491 492 if (!count) { 493 if (!have_governor_per_policy()) 494 gov->gdbs_data = NULL; 495 496 gov->exit(dbs_data, policy->governor->initialized == 1); 497 kfree(dbs_data); 498 } 499 500 free_policy_dbs_info(policy_dbs, gov); 501 502 mutex_unlock(&gov_dbs_data_mutex); 503 return 0; 504 } 505 506 static int cpufreq_governor_start(struct cpufreq_policy *policy) 507 { 508 struct dbs_governor *gov = dbs_governor_of(policy); 509 struct policy_dbs_info *policy_dbs = policy->governor_data; 510 struct dbs_data *dbs_data = policy_dbs->dbs_data; 511 unsigned int sampling_rate, ignore_nice, j; 512 unsigned int io_busy; 513 514 if (!policy->cur) 515 return -EINVAL; 516 517 policy_dbs->is_shared = policy_is_shared(policy); 518 policy_dbs->rate_mult = 1; 519 520 sampling_rate = dbs_data->sampling_rate; 521 ignore_nice = dbs_data->ignore_nice_load; 522 io_busy = dbs_data->io_is_busy; 523 524 for_each_cpu(j, policy->cpus) { 525 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j); 526 527 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy); 528 /* 529 * Make the first invocation of dbs_update() compute the load. 530 */ 531 j_cdbs->prev_load = 0; 532 533 if (ignore_nice) 534 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE]; 535 } 536 537 gov->start(policy); 538 539 gov_set_update_util(policy_dbs, sampling_rate); 540 return 0; 541 } 542 543 static int cpufreq_governor_stop(struct cpufreq_policy *policy) 544 { 545 gov_cancel_work(policy); 546 return 0; 547 } 548 549 static int cpufreq_governor_limits(struct cpufreq_policy *policy) 550 { 551 struct policy_dbs_info *policy_dbs = policy->governor_data; 552 553 mutex_lock(&policy_dbs->timer_mutex); 554 555 if (policy->max < policy->cur) 556 __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H); 557 else if (policy->min > policy->cur) 558 __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L); 559 560 gov_update_sample_delay(policy_dbs, 0); 561 562 mutex_unlock(&policy_dbs->timer_mutex); 563 564 return 0; 565 } 566 567 int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event) 568 { 569 if (event == CPUFREQ_GOV_POLICY_INIT) { 570 return cpufreq_governor_init(policy); 571 } else if (policy->governor_data) { 572 switch (event) { 573 case CPUFREQ_GOV_POLICY_EXIT: 574 return cpufreq_governor_exit(policy); 575 case CPUFREQ_GOV_START: 576 return cpufreq_governor_start(policy); 577 case CPUFREQ_GOV_STOP: 578 return cpufreq_governor_stop(policy); 579 case CPUFREQ_GOV_LIMITS: 580 return cpufreq_governor_limits(policy); 581 } 582 } 583 return -EINVAL; 584 } 585 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs); 586